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Abstract—Goal: Implementation of an artificial intelli
gence-based medical diagnosis tool for brain tumor classi-
fication, which is called the BTFSC-Net. Methods: Medical
images are preprocessed using a hybrid probabilistic
wiener filter (HPWF) The deep learning convolutional
neural network (DLCNN) was utilized to fuse MRI and CT
images with robust edge analysis (REA) properties, which
are used to identify the slopes and edges of source images.
Then, hybrid fuzzy c-means integrated k-means (HFCMIK)
clustering is used to segment the disease affected region
from the fused image. Further, hybrid features such as
texture, colour, and low-level features are extracted from
the fused image by using gray-level cooccurrence matrix
(GLCM), redundant discrete wavelet transform (RDWT)
descriptors. Finally, a deep learning based probabilistic
neural network (DLPNN) is used to classify malignant and
benign tumors. The BTFSC-Net attained 99.21% of seg-
mentation accuracy and 99.46% of classification accuracy.
Conclusions: The simulations showed that BTFSC-Net
outperformed as compared to existing methods.

Index Terms—Brain tumor segmentation, classification,
feature extraction, deep learning convolutional neural net-
work, robust edge analysis.

Impact Statement—Development of fusion-based seg-
mentation with a classification framework for cranial and
neuroendoscopy treatment using an artificial intelligence-
based medical diagnosis tool.

l. INTRODUCTION

ORLD Health Organization [1], the National Brain
W Tumor Society [2], and the Indian Society of Neuro-
Oncology [3] classified that brain tumor as one of the deadliest
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as it is an uncontrollable growth of a malignant brain cell. Brain
tumor incidence has risen sharply in the last 30 years, impacting
millions of deaths globally.

For example, 241037 deaths occurred in 2020 [4]. Thus, early
diagnosis increases treatment options and survival chances [5].
Tumors may be treated with radiation, surgery, chemotherapy, or
a combination of clinical methods [6]. Brain tumors are scanned
to identify them, and the most frequently utilized brain imaging
methods [7] are MRI and CT. Identifying a tumor from normal
brain tissue is crucial and the ability to derive lesion properties
from normal tissues helps diagnosis [8]. Lesion size, texture,
shape, and placement vary based on person to person. To provide
a diagnosis, images must be classified and categorized with
tissue segmentation in manual, semi-automated, and completely
automated forms. A radiologist manually segments it [9] and
expert segmentation needs several enhanced datasets and pixel
profiles to identify the damage border. Completely automated
machine learning methods are preferable. So, naive bayes, de-
cision, tree, random forest, and support vector machines (SVM)
were used as glioma supervised classifiers. Traditional machine
learning fails to segment and categorize.

Multimodal image fusion [10] and pixel-to-pixel fusion hap-
pen in the spatial domain. There is also a nonsubsampled shearlet
transform domain (NSST) and a maximum and minimum for the
fusion process by using weighted pixels [11]. Pixel action sets
the weights in order to choose the most active pixels, where
local laplacian energy and phase congruency are utilized [12].
Further, the original images are squared by utilizing a parameter-
adaptive pulse-coupled neural network with average weighting
[13]. This image fusion method uses maximum average mutual
information. Several works [14] present morphological compo-
nent analysis-based convolutional sparsity (MCA-CS) for image
fusion, in which the first MCA-CS component of each input
image is multiplied independently and color, information, and
brightness extraction may occur. Several methods are used to
do the preprocessing operation. These include laws of texture
energy measures (LTEM) [15], graph filter and sparse represen-
tation (GFSR) [16], dual-branch CNN (DB-CNN) [17], Gabor
filtering based separable dictionary learning (GF-SDL) [18],
and local difference in non-subsampled domain LDNSD [19],
[20].

Wavelets operate poorly near edges and texturing areas where
there is no phase information in the segmentation operation.
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Further, improved U-Net [21] employed considerable VGG-
16 based data augmentation to improve segmentation accu-
racy. A Dice-based loss function to predict output label us-
ing both local and contextual information extracted by using
the triple intersecting U-Nets (TIU-Net) architecture in [22].
Cross-modality deep feature learning (CMDFL) [23] with a
bat-optimized loss function was used to improve how well
the segmentation worked. In addition, an efficient 3D residual
neural network (ERV-Net) [24] and a multiencoder network
(MENet) [25] were developed for better segmentation with
low computational cost. Deep multi-task learning (DMTL) [26]
with tiny kernels was also proposed to be done with the CNN
encoder-decoder. Due to the small training dataset, MENet and
DMTL used the autoencoder branch to guide and regularize
the encoder component. In addition, a latent correlation repre-
sentation learning (LCRL) based variational autoencoder with
endpoint clustering is proposed in [27]. A few more segmen-
tation approaches are fast level set-based CNN (FLS-CNN)
[28], Bayesian fuzzy clustering with hybrid deep autoencoder
(BFC-HDA) [29], and symmetric-driven adversarial network
(SDAN) [30]. But the SDAN method suffers from reduced
accuracy.

Further, multiscale CNN (MS-CNN) [31] and deep learn-
ing with synthetic data augmentation (DLSDA) [32] are pro-
posed for brain tumor classification. But, the accuracy of tumor
detection must be enhanced and classified to be identified.
Moreover, fine-tuning-based transfer learning (FTTL) [33] is
used to differentiate meningioma from non-meningioma brain
images with a dice coefficient index [34]. The transfer learn-
ing CNN (TL-CNN) [35] model was used to classify brain
tumors into three types. The tumor was expanded, then ring-
divided and T1-weighted contrast-enhanced MRI was used to
modify an existing pre-trained network [36]. This approach
can automatically classify glioma brain tumors. The deep-
CNN (DD-CNN) [37] model was developed for identifying
brain tumors in MRI images. Here, 3D-CNN [38] was de-
veloped using MRI images of meningioma and pituitary tu-
mors based on CNN-multi-scale analysis. Furthermore, gener-
ative adversarial networks based on variational autoencoders
(GAN-VE) [39] and hybrid deep neural networks (HDNN)
[40] for improved performance of the classification process.
These traditional methods still need to be made better, which
is why they don’t work well enough for segmenting and
classifying.

Problem statement: As the size of the dataset grows larger,
conventional models suffer from high computational complex-
ity. Further, the fusion, segmentation, and classification per-
formance of conventional approaches needs to be enhanced.
The novelty is that there is no common method for fusion,
segmentation, feature extraction, and classification as of now.
Furthermore, in the literature, these combinations of hybrid
methods are not published. To overcome these problems, the
novel contribution of the article is as follows:

* A novel BTFSC-Net model is developed with the prepro-
cessing, fusion, segmentation, and classification stages,
which is a new design and has not been developed by
other authors yet.
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Fig. 1. Proposed brain tumor fusion with segmentation and classifica-
tion model.

TABLE |
PROPOSED BRAIN TUMOR FUSION WITH SEGMENTATION AND
CLASSIFICATION ALGORITHM

Input: MRI and CT brain images

Output: Classified outcome

Intermediate outcomes: Fused and Segmented outcomes

Objective Evaluation-Set 1: PSNR, UQL MSSSIM, RMSE, VIF, SSIM,
MSE.

Objective Evaluation-Set 2: SPE, SEN, SACC, SDIC, SJAC, SMCC of
segmentation

Objective Evaluation-Set 3: CACC, CAUC, CSEN, CSPE, SPR of
classification.

Step 1: Perform a preprocessing operation using HPWF for the removal
of various noises from MRI and CT medical images, which also enhances
the contrast, brightness, and color properties.

Step 2: Fusion-Net is used to fuse the preprocessed MRI, and CT images
with the REA analysis, which improves the region of tumor.

Step 3: In addition, HFCMIK is used to segment the tumor region from
the fused outcome, so an accurate area of brain tumor is detected.

Step 4: Finally, DLPNN is used to classify the benign and malignant
tumors from the GLCM, and RDWT trained features.

Step 5: Perform the objective and subjective evaluation.

¢ Initially, HPWF was developed for the removal of various
noises from MRI and CT medical images, which also
enhanced the contrast, brightness, and color properties.

® Then, a DLCNN-based fusion network is used to fuse the
preprocessed MRI and CT scans with the REA analysis,
which improves the region of tumor.

¢ In addition, HFCMIK is used to segment the tumor region
from the fused outcome, so an accurate area of brain tumor
is detected.

¢ Finally, DLPNN is used to classify the benign and malig-
nant tumors from the GLCM and RDWT trained features.

e The results of the simulation show that the suggested
strategy worked better than the other options.

The rest of the manuscript is organized as follows: Section II
deals with the proposed BTFSC-Net analysis. Section III deals
with results and discussions, along with performance compar-
isons. Section IV discusses the conclusion and future research.

Il. MATERIALS AND METHODS

This section gives a detailed analysis of brain tumor fusion
with segmentation and classification methods. Fig. 1 shows the
workflow of the proposed BTFSC-Net methodology, and Table I
presents the proposed algorithm. Prior to any further processing,
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TABLE I
HYBRID PROBABILISTIC WIENER FILTER ALGORITHM

Input: Noisy image X;;
Output: Denoised image Y;;

Step 1: Consider image X;;with random noise properties.
Step 2: Estimate g,y by convolution with mask as follows:
1

Oy = =M, B IX « MASK|,; 6))
Step 3: Choose the mask size based on standard noise threshold as
follows:

(3% 3,06y <20

W—{st,aGN > 20 @)

Step 4: Apply the mean filtering operation using local mask (R).

1

Xij =% X Xy xwy “4)
Step 5: Estimate the differenced image by performing sliding window
subtraction operation.

Dyj = [Xij — Xy ®)
Step 6: Perform the uniform distribution by using variance properties.

V- {{Dm'D(z)fD(a)---D(n)}f Dyj <u ©
{X1'X2'X3' e 'Xn}' Dij = u

Step 7: Generate the denoised image using average of the uniform

distribution outcome.
Y;; = mean(V) (7)

medical images are subjected to a HPWF, which is used to
eliminate noise from medical images. The DLCNN-based fusion
network is being developed for the fusion of MRI and CT scans
with maintaining REA capabilities. Here, REA is utilized here
because it is necessary to detect the slopes and borders of the
brain images in this case. In order to segregate the illness affected
area from the fused image, HFCMIK clustering is applied.
Furthermore, hybrid features are derived by combining GLCM,
RDWT based statistical color features from the fused image. A
DLPNN is utilized to categorize benign and malignant tumors.

A. Hybrid Probabilistic Wiener Filter-Based
Pre-Processing

The HPWF successfully enhances the image by removing
noise from images using Gaussian mask kernels. Table 2 shows
the HPWF algorithm. Images are made up of pixels.

The image is broken into numerous groups. In one of those
combinations, the pixel group is applied to HPWF, and the output
pixel is an upgraded version of the original pixel. Various noise
sources contaminate each image pixel. Consider the original
image O;; with its ith row and jth column pixel values. Here is
the generated noisy image X;;:

Xij = Oij + Gij (1)

Convolution with a mask is used to calculate the Gaussian
standard deviation (o). Here, the convolution operation is
performed between Xij and Mask, and generates o . Further,
the mask size is chosen based on standard noise threshold and
the 3x3 and 5x5 kernels are selected. Then, the mean filter-
ing operation using a local mask with a convolution operation
between X;; and W;; is applied. In addition, the differenced
image is estimated by performing a sliding window subtraction
operation Moreover, the uniform distribution is performed by
using variance properties using distributed outcomes. Finally, a

—
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denoised image is generated using the average of the uniform
distribution outcomes.

B. Fusion-Network

The proposed fusion approach can execute the fusion process
among multiple modalities of images, such as combinations
of CT and MRI scans, PET and MRI scans, and SPECT and
MRI scans, by utilizing two distinct structures to accomplish
the operation. Fig. 2 depicts the combination of an MRI and a
CT scan, while Fig. 3 depicts the combination of an MRI and
a PET/SPECT scan based on a multimodal medical imaging
fusion technique.

The REA approach is used for conducting image decompo-
sition. This removes the original slopes and edges of the source
features, which enables better slope analysis. if the images are
misaligned. In most cases, the slopes of medical features are
piecewise smooth, and analysis is used to represent the edges
of the image. When aligning these features, it is important to
ensure that the edge positions match those on CT data. This
demonstrates that the analysis attribute is dynamic and adapts
itself depending on the medical features that are referenced to.
An active slope analysis feature is the name given to this kind
of image. The input feature graphs that were blurry are then
removed from the input images that were represented using
HPWEF in order to generate images that are clear. In addition, the
weighted coefficients are derived by the use of the Fusion-Net.
After that, in order to arrive at the fused output, the HPWF and
REA findings were combined utilizing the weighted mean fusion
rule. Table 3 illustrates proposed fusion approach algorithm.
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TABLE Il
PROPOSED FUSION APPROACH

TABLE IV
PROPOSED HYBRID FuzzYy C-MEANS INTEGRATED K-MEANS ALGORITHM

Input: MRI, CT/SPECT/PET images

Output: Fused output

Step 1: Apply MRI and CT scans to REA for edge analysis.

Step 2: Apply the SPECT and PET based color images to RGB2YCbCr
color space format.

Step 3: Apply the luminance output of RGB2YCbCr to REA.

Step 4: REA decomposes the input images and identifies the detailed
edges along with its slope.

Step 5: HPWF is applied on edges for extracting texture-based features
with statistical properties.

Step 6: Perform the DLCNN based image feature level fusion using
Fusion-Net.

Step 7: Preform the YCbCr2RGB color space conversion for MRI-
SPECT and MRI-PET based fused outcome using chrominance red (Cr)
and chrominance blue (Cb) components.

Step 8: Evaluate the various performance metrics from the fused

outcome.
Fused input Convert into KM
image data vector - l
|—. Cluster
[—. indexes
Segmented Vecto_r FKCM I
output regrouping
Fig. 4. Proposed hybrid fuzzy c-means integrated k-means model.

C. Hybrid Fuzzy C-Means Integrated K-Means
Segmentation

Brain imaging segmentation is critical in tumor segmenta-
tion and analysis. Fig. 4 shows the planned HFCMIK tumor
segmentation technique. The restrictions of traditional k-means
clustering are solved and maximized by adaptive cluster index
localization, which introduces the mean property of cluster cen-
ters and similarity matching. This adaptive clustering technique
introduces adaptive k-means clustering (AKMC). Each cluster
will be used in the fuzzy kernel c-means (FKCM) clustering
method for successful brain tumor segmentation.

The HFCMIK algorithm consists of two steps. The AKMC
method is used to choose initial centroids in the first phase.
Initial centroids are therefore fixed for the whole operation.
It reduces the number of iterations needed to group related
items. Finally, the AKMC algorithm provides a local optimal
by selecting a unique starting centroid. That leads to a global
optimal AKMC algorithm solution. The second phase employs
the Euclidean distance-based weighted FKCM technique. In
both stages, weights associated with each attribute value range
in the data set are processed. The upgraded weighted HFCMIK
algorithm uses a weighted ranking technique. The weighted
ranking method calculates the distance from the origin to each
weighted attribute of a data item. The (8) calculates weighted

Input: Fused image (I)
Output: Segmented image (S)

Step 1: Convert the input image I into data vectors.

Step 2: The initial centroids are identified by the k data points known as
cluster centers.

Step 3: Label the clusters based on Weighted data centroids as presented
using equation 16.

Step 4: perform the weighted sorting operation using Equation (9).

Step 5: The distance is computed from ‘U’ to the centroid.

Step 6: The closest centroid is assigned as segmented cluster.

Step 7: Repeat the process step 3 to step 6 until all clusters covered.

Step 8: Combine all the segmented clusters and generate segmented
output S.

data points.

IC3

n
U = WX, ®)
Jj=1 ‘
i=1
where, IW; denotes the weightage of X; attribute. For n data
points, n numbers of U values are estimated, and the format is

given in (9).

n Ul
O v ©)
j=1 Un

Then the sorted distances sort the weighted data points (Ui).
These data points are then separated into k equal sets, where
k is the number of clusters. The initial centroids in each set
are the middle points or their mean value. This algorithm’s
initial centroids lead to cluster members’ consistency. Because
HFCMIK uses distance measures to choose group members, the
proposed weighted ranking algorithm uses the distance formula
to pick starting centroids. Thus, the suggested weighted ranking
concept is useful for optimizing initial center selection. The
unique initial centroid selection and the attribute value-based
weights used for processing are two major elements of the first
phase of the method. The HFCMIK is a clustered method that
breaks an image into clusters. It uses centroids to symbolize its
artificially constructed cluster and re-estimates the segmented
output. Table 4 presents the HFCMIK algorithm for brain tumor
segmentation.

D. Hybrid Feature Extraction

It was possible to extract certain features of brain tumor and
then utilize those qualities as a basis for categorizing the different
lesions. Several essential characteristics have been recovered
that have helped in the distinction of brain tumors. These key
characteristics include statistical color features, RDWT-based
low-level features, and GLCM-based texture features, amongst
others. The GLCM technique is a method for assessing textures
that takes into consideration the spatial connection between the
pixels that make up the brain tumor. The GLCM technique
is used to characterize the texture of the brain tumor. This
approach works by computing often repeated pixel pairs that
have specific values and spectral relationships and then using that
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Fig. 5. Two-level redundant discrete wavelet transform coefficients.

information to describe the texture of the brain tumor. Following
the completion of the construction of the GLCM, statistical
texture characteristics may be extracted from the GLCM using
the procedure that was previously outlined. This probability
metric establishes the possibility of a certain grey level being
found near another grey level. The GLCM characteristics that
have been employed include

N-1
Contrast = Z Sapla— b)2 (10)
a,b=0
N-1 S
Homogeneity = —Zab (11)
a,%::O 14 (a—b)°
N-1
— ) (b—
Correlation = Z Sab la=p 3 ( - /Jb)] (12)
a,b=0 (Ua) (Ub)
N-1
Angular Second Moment (ASM) = Z Sz, (13)
a,b=0
Energy = VASM (14)

The next step, which is to extract the low-level characteristics,
involves using RDWT with two levels. When RDWT is first
applied to the segmented outcome, the output will initially
consist of the HH1, HL1, LH1, and LL1 bands in that order.
The LL band is then subjected to calculations for its correlation,
energy, and entropy properties. After that, RDWT is used once
again on the LL output band, which results in the output being
LL2,LH2, HL2, and HH2 in that order correspondingly. On the
LL2 band, the energy, entropy, and correlation characteristics
are computed once more as shown in Fig. 5.

Finally, statistical color characteristics that are based on the
standard deviation and mean are retrieved from the feature that
has been segmented. They represent it as follows

1 N
Mean () = ~5 > 1(0.])

Ve

5)

1
N o 2
S (i) —
Standard Deviation (o) = \/Z:m_1 []\52 J) =] (16)

After that, all of these features are merged together by means
of array concatenation, which produces the output in the form
of a hybrid feature matrix.
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Proposed deep learning based probabilistic neural network

E. Deep Learning Based Probabilistic Neural
Network Classification

Deep learning models have been more important in the feature
extraction and classification process recently. The segmented
pictures may be used by the DLPNN models to extract highly
correlated detailed spatial, spectral, texture, and color informa-
tion. The DLPNN models may also recognize the connections
between distinct segments of segmented pictures’ pixels and
extract such connections as features.

Finally, the classification operation is carried out by the
DLPNN models once they have been trained with these char-
acteristics. In order to create more complex features at lower
levels, DLPNN incorporates local characteristics from higher
levels of input, making it one of the best possibilities for the
classification process. By modifying the weights and kernel
sizes in combination with the local connections, the DLPNN
may also be made faster. Fig. 6 depicts the DLPNN model
for feature extraction and classification. It provides a thorough
examination of each layer, including information on the layer’s
dimension, filter size or kernel size, number of filters, and
parameters. A DLPNN model is created by combining all the
layers. The DLPNN performs the combined feature extraction
and classification of brain malignancies.

lll. RESULTS

This section provides the detailed results analysis and perfor-
mance comparison with existing approaches using the BraTS-
2020 dataset. Furthermore, evaluations of various objective per-
formances and visual objective performances are also presented.

A. Simulation Environment

This work was simulated using the MatlabR2021a tool with a
GPU processor. The models are trained under realistic conditions
on the dataset. The simulations are conducted using an NVIDIA
Tesla P100 processor equipped with the Windows 10 operating
system. The 10-fold cross validation technique is implemented
during the training of the proposed model. All the models
are trained with MatlabR2021a with 10-fold cross validation
through 1000 epochs and a 0.02 learning rate.



RAMPRASAD et al.: DEEP PROBABILISTIC SENSING AND LEARNING MODEL FOR BRAIN TUMOR 183

(2) (h)

Fig. 7.  MRI-CT fusion (a) CT input, (b) MRI input, (c) MCA-CS [14],
(d) LTEM [15], (e) DB-CNN [17], (f) GF-SDL [18], (g) LDNSD [19], (h)
Proposed fused outcome.

TABLE V
MRI-CT IMAGE FUSION APPROACHES PERFORMANCES COMPARISON

Metric MCA- LTEM DB- GF- LDNSD  Propose
(o} [15] CNN SDL [19] d
[14] [17] [18]
Entropy 6.374 6.585 7.484 8.485 8.937 10.2747
MI 0.5647  0.62762  0.489 1.383 1.3536 1.2784
PSNR  26.438 35.484 41.274 42447  45.637 49.337
SSIM 0.736 0.792 0.813 0.893 0.910 0.972
STD 0.283 0.2012 0.137 0.073 0.0531 0.0352
B. Dataset

The performance of the proposed network is evaluated using
the BraTS-2020 dataset [40]. Multi-modal brain MRI investiga-
tions include 369 images for training, 125 images for validation,
and 169 images for testing. T1-weighted (T1) contains 80 im-
ages, Tlce-weighted (T1ce) contains 80 images, T2-weighted
(T2) contains 80 images, and Flair sequences contains 209
images in each study. The annotations for training studies are
made available for online assessment and final segmentation
competition, but not for validation and test trials.

C. Performance Evaluation of Proposed Fusion
Process

The performance is compared by using entropy, structural
similarity index metric (SSIM), mutual information (MI), stan-
dard deviation (STD), and peak signal to noise ratio (PSNR)
metrics. Fig. 7 presents the visual performance comparison
of the proposed MRI-CT fusion outcome with conventional
approaches like MCA-CS [14], LTEM [15], DB-CNN [17],
GF-SDL [18], and LDNSD [19]. Further, the proposed method
resulted in higher contrast and brightness with an accurate tumor
highlight as compared to other fusion algorithms. Furthermore,
Table 5 presents the objective comparison of the proposed
method with the existing methods. Finally, for all performance
metrics, the proposed approach outperformed conventional ap-
proaches in terms of quantitative performance, as shown in
Fig. 8.

8
6
4

MCA-CS [14] LT }\I[l] 1)}3(\\11] GF-SDL [13] LDNSD [19 Pr\;\m.

u Entropy mMI SSIM aSTD

Fig. 8. Proposed Graphical representation of MRI-CT image fusion
approaches.

Fig. 9. MRI-PET fusion outcomes (a) MR input, (b) PET input (c)
MCA-CS [14], (d) LTEM [15], (e) DB-CNN [17], (f) GF-SDL [18], (g)
LDNSD [19], (h) Proposed fused outcome.

TABLE VI
MRI-PET IMAGE FUSION APPROACHES PERFORMANCES COMPARISON

Metric MCA- LTEM DB- GF- LDNS HPWF
CsS [15] CNN SDL D [19]
[14] [17] [18]
Entropy 7.374 8.585 9.484 10.485 11.937  14.747
MI 0.647 0.762 0.798 1.683 1.736 1.984
PSNR 29.438  37.484 43.274 45447  47.637 52.372
SSIM 0.612 0.702 0.731 0.813 0.901 0.962
STD 0.231 0.201 0.110 0.083 0.071 0.057

Fig. 9 compares the proposed MRI-PET fusion result with
the visual performance of standard methods such as MCA-CS
[14], LTEM [15], DB-CNN [17], GF-SDL [18], and LDNSD
[19]. In addition, the suggested approach produced a stronger
contrast and brightness, together with an accurate highlight of
the tumor, in comparison to the methods that were already in use.
In addition, an objective comparison of the suggested approach
with the same as other methods that already exist is shown
in Table 6. The suggested strategy ended up producing better
objective performance than traditional methods for each and
every performance parameter, as can be seen in the graphical
depiction shown in Fig. 10.

D. Performance Evaluation of Proposed
Segmentation Approach

This section provides the detailed simulation analysis of the
proposed HFCMIK segmentation approach with conventional
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Fig. 10. Proposed Graphical representation of MR-PET image fusion
approaches.
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Fig. 11. Segmentation performance comparison of MR, CT, and
Fused images.

approaches. Fig. 12 shows the segmentation performance of
various approaches on MR, CT, and fused images. The location
of the tumor is not accurately identified using MRI segmen-
tation. Further, CT image segmentation also resulted in poor
localization of brain tumors. But the tumor location is perfectly
identified by performing the segmentation operation on the MR
and CT fused images. Fig. 11 shows the visual segmentation
performance of the HFCMIK approach and conventional U-NET

Fig. 12.
parison.

Graphical representation of segmentation performance com-

TABLE VIl
SEGMENTATION PERFORMANCE COMPARISON OF VARIOUS APPROACHES

U-NET CMDFL  ERV- BFC-

Method  [21] [23]  NET[24] HDA[29] HFCMIK
SACC  91.08 92.1 92.53 97.47 99.16
SSEN 903 90.44 93.52 97.33 99.91
SPEC 9036  90.64 91.96 95.3 98.81
SPR 93.13 93.3 93.86 94.85 99.55
SNPV  90.58 91.84 93.23 95.68 98.28
SFPR  90.66  92.37 95.63 98.07 98.99
SFDR  90.54  90.75 91.58 95.84 98.28
SFNR 9459  94.67 97.31 97.63 99.73
SF1 91.03 93.77 93.91 97.09 98.4
SMCC 9487 9531 97.01 97.69 99.83

TABLE VIII

CLASSIFICATION PERFORMANCE COMPARISON OF VARIOUS APPROACHES

Method TL-CNN  TL-CNN FTTL GAN-VE DLPNN
[33] [37] [33] [39]

CACC 94.84 95.14 96.04 98.06 99.75
CSEN 90.15 95.4 96.62 96.7 99.84
CPEC 91.13 94.26 95.47 97.15 98.18
CPR 92.01 95.06 96.16 97.57 99.47
CNPV 93.87 96.97 97.08 98.38 99.87
CFPR 94.21 96.24 97.1 98.35 99.44
CFDR 90.45 94.91 96.27 96.76 98.96
CFNR 94.83 95.4 96.62 97.95 98.89
CF1 93.41 94.37 95.29 97.92 98.87
CMCC 91.64 93.65 96.29 98.71 99.12

[21], K-means, ERV-NET [24], and BFC-HDA [29] approaches.
Fig. 11 shows the proposed HFCMIK segmentation approach
has resulted in better localization of tumor areas in MR, CT, and
fused images as compared to existing algorithms. All conven-
tional approaches are improperly localizing the tumor area.
This article compares the performance of various methods us-
ing multiple metrics called segmentation accuracy (SACC), seg-
mentation sensitivity (SSEN), segmentation specificity (SPEC),
segmentation precision (SPR), segmentation negative predic-
tive value (SNPV), segmentation false positive rate (SPVR),
segmentation false discovery rate (SFDR), segmentation false
negative rate (SFNR), segmentation F1-score (SF1), and seg-
mentation Matthew’s correlation coefficient (SMCC). Table 7
shows the segmentation performance of the proposed approach
with state-of-art approaches like U-NET [21], CMDFL [23],
ERV-NET [24], and BFC-HDA [29]. Table 8 shows that the
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Fig. 13. Graphical representation of classification performance.

HFCMIK approach outperformed as compared to existing algo-
rithms. The graphical representation of Table 8 is presented in
Fig. 12.

E. Performance Evaluation of Proposed
Classification Approach

This section provides the detailed simulation analysis of the
proposed DLPNN classification approach with conventional
methods. This article compares the performance of various
methods using multiple metrics called classification accuracy
(CACC), classification sensitivity (CSEN), classification speci-
ficity (CPEC), classification precision (CPR), classification neg-
ative predictive value (CNPV), classification false positive rate
(CPVR), classification false discovery rate (CFDR), classifica-
tion false negative rate (CFNR), classification F1-score (CF1),
and classification Matthew’s correlation coefficient (CMCC).

Table 8 shows the classification performance of the proposed
DLPNN approach others methods like TL-CNN [35], TL-CNN
[37], FTTL [33], and GAN-VE [39]. Table 8 shows that DLPNN
outperformed as compared to existing methods, and the graphi-
cal representation of the table is presented in Fig. 13.

IV. DISCUSSION

As the size of the dataset grows larger, conventional models
suffer from high computational complexity. Further, the fusion,
segmentation, and classification performance of conventional
approaches needs to be enhanced. In the literature, there are
multiple deep learning models that have been published. But
the complexity of those models is high. So, this work adopted
custom deep learning models with unique combinations of
layers (convolutional, MaxPooling, ReL.U, flatten, SoftMax),
number of filters, filter sizes, and stride factor. Finally, all these
combinations make the proposed fusion classification model a
novel architecture. Furthermore, there is no common method for
fusion, segmentation, feature extraction, and classification as of
now. Furthermore, in the literature, these combinations of hybrid
methods are not published. Therefore, in this work, a novel
BTFSC-Net model with the preprocessing, fusion, segmenta-
tion, and classification stages has been developed. Initially,
HPWF was developed for the removal of various noises from
MRI and CT medical images, which also enhanced the contrast,
brightness, and color properties. Then, a DLCNN-based fusion
network is used to fuse the preprocessed MRI and CT scans with
the REA analysis, which improves the region of tumor. Initially,

HPWF was developed for the removal of various noises from
MRI and CT medical images, which also enhanced the contrast,
brightness, and color properties. Then, a DLCNN-based fusion
network is used to fuse the preprocessed MRI and CT scans
with the REA analysis, which improves the region of tumor. In
addition, HFCMIK is used to segment the tumor region from the
fused outcome, so an accurate area of brain tumor is detected.
Finally, DLPNN is used to classify the benign and malignant
tumors from the GLCM and RDWT trained features. The results
of the simulation show that the suggested strategy worked better
than the other options.

V. CONCLUSION

This work implemented a hybrid fusion with segmentation
and classification models, which is effectively useful for radiol-
ogists to localize the tumor location accurately. This method is
also useful in hospitals for computer-aided classification of brain
tumors. Initially, this work implemented the HPWF filtering
approach for the removal of noise and preprocessing of the
source images. In addition, DLCNN-based Fusion-Net was uti-
lized to fuse both source images with multiple modalities. Then,
HFCMIK-based advanced segmentation is used to localize the
area of the brain tumor. Furthermore, hybrid features were
generated from segmented images using GLCM and RDWT
approaches. Finally, DLPNN was used to classify benign and
malignant tumors by using the trained features. Finally, the
simulation-based research findings proved that proposed fusion,
segmentation, and classification approaches resulted in supe-
rior performance as compared to several conventional methods.
Furthermore, the research findings proved that the proposed
method can be adopted for real-time applications. Furthermore,
this work can be extended with advanced optimization methods
for detailed feature extraction.

VI. SUPPLEMENTARY MATERIALS
A. Robust Edge Analysis

A REA approach is utilized to accomplish contemporaneous
fusion of source medical features throughout the fusion process.
The combining of MRI and CT images needs perfect fusion since
misalignment is difficult to eradicate. The MRI is initially focal-
ized to increase resolution, allowing for perfect feature fusion.
Similarly, lowering the mismatch progressively allows for exact
image fusion. These two steps are repeated until convergence
is achieved. It also considers the inherent correlation of distinct
bands, which was previously overlooked.

A unique active slope approach has been designed for total
energy function optimization in these bands. The subproblems
are effectively solved using REA with rapid iterations, and the
slope extraction was performed via backtracking. Unlike typical
variation approaches, REA has just one non-sensitive argument.
The initial step in medical image fusion is input medical image
fusion. Large medical images need reliable similarity assess-
ment without increasing computing complexity. Thus, REA is
used to keep data in space. In addition, any mismatch in the
medical imaging would exacerbate the slope analysis. Thus,



186 IEEE OPEN JOURNAL OF ENGINEERING IN MEDICINE AND BIOLOGY, VOL. 3, 2022

TABLE IX
ROBUST EDGE ANALYSIS ALGORITHM

Input: Medical images

Output: REA based slope and edges.

Step 1: Remove the edge aware noises from medical images using gaussian
denoising

Step 2: Apply the canny edge detection to identify the different types of
shapes, region edges.

Step 3: Eliminate the unnecessary edges utilizing average weight
distribution-based thresholding.

Step 4: Estimate the energy of each threshold region using Equation (17).
Step 5: Develop the perfect slope value (§) by optimizing the energy aware
sub-problems.

Step 6: Reduce the unwanted pixels with imperfect energy levels

Step 7: Finally, edge aware slopes are generated from non-smoothed
regions and smooth textures.

64 feature maps
Size:1616

128 feature maps
Size:16+16

Tnput patch p;
Size:16+16

128 feature maps

256 feature maps
Size:8+8

Xeunjos Aem-g

128 feature maps

128 feature maps ~ Si2&/8*8
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Size: 16716

64 feature maps
Size:16+16

Fig. 14. Proposed deep learning convolutional neural network based
fusion network.

REA is used to determine similarity.

E:%M}R—M—C’f (17)

Here, E is the pixel energy and R represents the edge with
slope levels. Since (8) reflects the energy cost of each pixel,
a low resolution would result in a large shift, causing image
overlapping. To avoid such a superficial solution, the slope
extraction approach is used. This may successfully prevent
iteratively changing an image in the incorrect direction. This
algorithm’s goal is to minimize the energy function, as shown
in (18). Initially, the problem is fixed as follows for R:

E=¢ (|¢R — (M =C)|* + ¥R~ (M + C’)’|2> (18)

Finally, £ is the optimized slope levels. Table 9 illustrates the
proposed REA process.

B. Deep Learning Convolutional Neural Network
Based Fusion Network

Deep learning is frequently employed in image segmenta-
tion, classification, and fusion applications. Fig. 14 shows a
DLCNN-based Fusion-Net architecture for fusing several image
modalities depending on features. The Fusion-Net architecture
uses convolutional layers. Convolution layers are employed to
generate precise features, and the primary purpose of these
layers was to perform convolution among the feature patch and

TABLE X
FEATURE ANALYSIS

GLCM RDWT Colour Fused
Energy  Entropy LL HH Mean STD  Overall
1.3 433 56.02 77.34 1034 934 4535
2.4 5.67 3693 8746 1134 456 5646
35 6.56 4356 56.75 4535 635 67.56
5.6 7.73 5434 89.56 1134 7.54 7845

kernel-based weight fusion. Convolution layers may be found in
neural networks. The convolution layer that is applied to MRI
and CT features is represented by (19) and (20).

Fy = max (0, W7 x (XpR) + B1)
Fy = max (0, Wy * (Xer) + B1)

19)
(20)

Here, W1 is the kernel matrix with its weight values being
brought up to date, and B1 is the bias function that is based on
the rectifier linear unit (ReLU). In comparison, the convolutional
layer kernel only has 3x3 feature maps, whereas the first stage
convolutional layer has 64 feature maps that are 16 x 16 in size.
Equation (21) is a representation of the ReL.U process.

ReLU = max (0, x) (21)

In addition, the features that are generated by the convolu-
tional layers are used as input for the MaxPooling layer, which
then meticulously extracts the different types of features. The
primary purpose of the MaxPooling layer is to identify the
intra-and inter-dependencies that exist among the characteristics
of MRI and CT scans.

Utilizing inter and intra dependencies allows for the retrieval
of both the effect of CT on MRI as well as the impact of MRI
on CT. The operation of the MaxPooling layer is shown by (22)
and (23), which may be found below

F5 = max (0, Wa * (Fy + F2) + Ba)
Fy = max (0, Ws * (Fy + F}) + By)

(22)
(23)

Here, F5 and F) represent the feature maps of the results of
the MaxPooling layer for the combined MRI and CT features.
In addition, the second stage MaxPooling layers include 128
feature maps that have a size of 16 by 16, and the kernel in the
MaxPooling layers has a size of 2 by 2, respectively.

Fr = max (0, W5 x {F3, Fy} + B3) (24)

In this case, F'p refers to the fused feature maps that were
produced by the concatenation layer, W3 denotes the kernel
matrix with its updated weight values, and B3 refers to the
ReLU-based bias function.

Fig. 15 shows the receiver operating characteristic (ROC)
curve of the proposed method, which is used to measure the true
positive rate and false positive rate of the system. Furthermore,
Area Under the ROC Curve (AUC) is also calculated to measure
the two-dimensional classification performance of a system. The
proposed system achieves an AUC of 0.94.

Table 10 presents the feature values for various methods. Here,
the GLCM method calculated the energy and entropy features.
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TABLE XI
FEATURE EXTRACTION BASED CLASSIFICATION PERFORMANCE

0.8

1.0

Method  Proposed Proposed Proposed Proposed
model model model model

without without without without

GLCM RDWT colour feature fusion

CACC 96.65 97.88 97.17 96.13
CSEN 97.95 97.49 96.67 96.22
CPEC 97.95 98.68 96.56 97.77
CPR 98.43 96.82 96.78 96.24
CNPV 96.93 96.00 98.06 98.54
CFPR 98.90 96.83 96.05 98.69
CFDR 96.41 97.32 97.25 97.59
CFNR 97.76 98.93 97.32 97.93
CF1 96.57 97.78 98.66 98.92
CMCC 97.35 98.45 98.85 97.43

Furthermore, the RDWT approach calculated the low-low (LL)
and high-high (HH) features. Then, mean and standard deviation
(STD) based colour features are calculated. Finally, all the
features are combined, which forms the fused feature map. The
feature ranking is carried out using a genetic algorithm-based op-
timal maximization (GAOM) procedure. The individual RDWT,
GLCM, and colour features are applied to GAOM, which selects
the best features through genetic algorithm-based mutations.
Here, the GAOM operation also acts as a feature selection model
in the fusion process.

Table 11 presents the performance comparison of the pro-
posed method without different feature extraction models. The
second column contains the proposed model performance with
and without GLCM feature extraction. The third column con-
tains the proposed model performance with or without RDWT
feature extraction. The fourth column contains the proposed
model performance with and without colour feature extraction.
The fifth column contains the proposed model performance with
and without feature fusion and feature extraction. The Table 11
shows that the proposed method of performance with feature
fusion has better performance than other combinations.
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