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Abstract—Goal: To develop a computationally efficient
and unbiased synthetic data generator for large-scale in
silico clinical trials (CTs). Methods: We propose the BGMM-
OCE, an extension of the conventional BGMM (Bayesian
Gaussian Mixture Models) algorithm to provide unbiased
estimations regarding the optimal number of Gaussian
components and yield high-quality, large-scale synthetic
data at reduced computational complexity. Spectral cluster-
ing with efficient eigenvalue decomposition is applied to es-
timate the hyperparameters of the generator. A case study
is conducted to compare the performance of BGMM-OCE
against four straightforward synthetic data generators for in
silico CTs in hypertrophic cardiomyopathy (HCM). Results:
The BGMM-OCE generated 30000 virtual patient profiles
having the lowest coefficient-of-variation (0.046), inter- and
intra-correlation differences (0.017, and 0.016, respectively)
with the real ones in reduced execution time. Conclusions:
BGMM-OCE overcomes the lack of population size in HCM
which obscures the development of targeted therapies and
robust risk stratification models.

Index Terms—Gaussian Mixture Models, synthetic data
generator, in silico clinical trials, computational complexity,
hypertrophic cardiomyopathy.

Impact Statement—BGMM-OCE is a highly efficient
and unbiased synthetic data generator which can yield
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high-quality synthetic data to leverage the increased costs
for patient recruitment in in silico clinical trials.

I. INTRODUCTION

V IRTUAL population/synthetic data generation has gained
attention in the healthcare sector due to the overwhelming

need to overcome the significant lack of sufficient population
size, particularly for in silico clinical trials, where the orchestra-
tion of viable Phase II/III clinical trials (CTs) by pharmaceutical
companies is leveraged by the need for expensive drugs [1]–[3].
Furthermore, the lack of medical databases with increased sta-
tistical power (e.g., in rare diseases) obscures the deployment of
machine learning pipelines which can identify risk factors for
disease progression and treatment due to the reduced amount
of available training data. As a matter of fact, all these fac-
tors have a significant negative impact in the capacity of the
healthcare systems, where the costs and delays for treatment
and re-admission are already high. Virtual population generation
envisages to address these needs through the development of
synthetic data generators which are trained on the real datasets
to produce virtual (or synthetic) distributions which can “mimic”
the real ones in terms of reduced divergence and dispersion with
the real data. Since the synthetic data quality is affected by the
quality of the real data, it is first necessary to enhance the raw
data quality in terms of data completeness and conformity.

Several studies have been launched towards the design of
efficient synthetic medical data generators based on both proba-
bilistic approaches, such as, the multivariate normal distribution
(MVND) and the Bayesian networks (BN), as well as, machine
learning approaches, such as, the artificial neural networks
(ANNs), the supervised tree ensembles (STE), and the unsuper-
vised tree ensembles (UTE). The MVND was applied in [4], [5]
to generate virtual data based on the mean and the covariance
of the real data. In addition, the BN were used in [6]–[8] for
the generation of synthetic distributions based on the modeling
of conditional probabilities across diverse network topologies.
The BN and the MVND, however, suffer from mathematical
assumptions; the MVND algorithm assumes that the real data are
normally distributed whereas in the BNs the conditional proba-
bilities are modeled using assumptions on the prior distribution
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Fig. 1. An outline of the BGMM-OCE workflow.

of the features. To this end, machine learning based generators
have been proposed [9]–[11], such as, the ANNs with radial
basis functions [9], [11], the STE [10], [11], and the UTE [10],
[11], yielding favorable performance against the probabilistic
approaches. However, they are not computationally efficient
since they require increased training/testing time. Moreover, the
STE, and the ANN [9]–[11] are supervised learning algorithms
that require a “target feature” (i.e., an outcome) which influences
the correlation of the synthetic data and thus introduces critical
biases. Moreover, in the BN, there is an infinite number of edge
permutations in one topology which must be pre-defined prior
to the simulation.

The design of computationally efficient and unbiased syn-
thetic data generators is a technical challenge, particularly in
the case of large-scale CTs. A computationally efficient proba-
bilistic synthetic data generator has been introduced in [12], [13],
where Gaussian Mixture Models (GMMs) were used to generate
synthetic data. Since GMM maximizes only the data likelihood
based on the expectation maximization (EM) approach, it might
yield specific structures that might not apply to the data. This can
be solved by variational inference (VI) [14]–[16] which is more
efficient than EM and reduces the computational complexity.
Other attempts [17], [18] focused on the automated adjustment
of Gaussian distributions for background modeling. However,
none of these studies has focused on the optimal selection of the
number of Gaussian components which is arbitrary and affects
the estimation of the weight concentration (or gamma) parameter
which is of great importance since it affects the log-likelihood
of the model.

In this work, we focus on the optimal estimation of the
Gaussian components in the BGMM algorithm to yield concrete
estimations of the VI at reduced computational complexity for
large-scale synthetic data generation (we refer to this approach as
BGMM with Optimal Components Estimation: BGMM-OCE).

To do so, we first apply spectral clustering based on the Locally
Optimal Block Preconditioned Conjugate Gradient (LOBPCG)
method to identify the best clustering solution as the one with
the highest Davies Bouldin score (DBS) at small complexity.
Then, we set the optimal number of clusters as the number of
Gaussian components, and we define an exponentially decaying
gamma value. The BGMM-OCE’s performance was compared
against state-of-the-art synthetic data generators (BN, UTE,
STE, ANNs) in the context of in silico clinical trials for HCM.
According to our results, the BGMM-OCE was able to generate
30000 virtual patients having the lowest coefficient of variation
(0.046) and goodness of fit (0.191) at small execution time.

II. MATERIALS AND METHODS

A. Outline

According to Fig. 1, the large-scale synthetic data generation
process consists of four stages, namely: (i) the data diagnos-
tics stage, (ii) the robust initialization of Gaussian components
stage, (iii) the BGMM training and sampling stage, and (iv) the
validation stage. In the first stage, the data are transformed into
a JSON format for faster processing. A data diagnostics pipeline
is then applied to remove anomalies and address missing values
along with further incompatibilities within the raw data. Spectral
clustering is then applied on the transformed dataset based on
the LOBPCG method to derive k-clusters, where k ∈ [2,K].
The optimal number of clusters is extracted as the one with
the highest Davies Bouldin score (DBS), say opt. The BGMM
is then trained on the transformed (and curated) data, where the
number of components is set to opt, the prior distribution is based
on Dirichlet processes, and the weight concentration (gamma)
parameter is set to exp(−opt).

Upon the finalization of the BGMM training process, the
estimated component hyperparameters are used to randomly
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sample P multidimensional data samples which refer to the
synthetic dataset. The latter is compared with those obtained
by straightforward synthetic data generators (validation stage),
such as, the BN, STE, UTE, RBF-based ANNs (which were
described in Section I), in terms of reduced inter- and intra-
correlation differences, coefficient of variation (cV) difference,
goodness of fit (GOF), and KL-divergence with the real data.
The output of the workflow includes a virtual dataset along with
a virtual data quality report.

B. Diagnostics

The raw clinical data were first transformed into a JSON
format to enable faster I/O operations. The input feature space
was split into “eligible” and “non-eligible” feature sub-spaces,
where the “eligible” features were those having less than 30%
missing values without inconsistent fields and anomalies after
experimentations with the percentage of information loss. The
Isolation Forests were trained on non-missing records to identify
outliers [19]. The covariance matrix was estimated between each
pair of input features to remove duplicated features along with
the Levenshtein distance to remove lexically identical features
[20]. The k-nearest neighbors (kNN) [21] method was used
to impute missing values, where applicable, for the “eligible”
features only.

C. Robust Initialization of Gaussian Components

1) Fast Eigenvalue Decomposition: A scaling approach
robust to “hidden” outliers was applied to standardize the in-
put data, where the scaling and centering process was applied
independently for each feature according to the median and the
interquartile range. The eigensolver was based on the Locally
Optimal Block Preconditioned Conjugate Gradient Method
(LOBPCG) which is ideal for large symmetric positive definite
(SPD) generalized eigenproblems [22]–[24], as described in
Supplementary Material (Section A).

2) Clustering Evaluation Based on the DB
Score (DBS): The Davies-Bouldin Score (Supplementary
Material, Section B) was evaluated on a set of clusters and the
cluster with the highest DBS was selected as the optimal [25].

D. BGMM Training and Sampling

1) GMM: A Gaussian mixture model (GMM) lies on the
assumption that the data originate by a mixture of Gaussian
densities [26]. In practice, the expectation maximization (EM)
method is used to estimate the hyperparameters of the GMM, say
θ, by maximizing the data likelihood (Supplementary Material,
Sections C and D). However, an issue with EM is that the
resulting structural topologies fail to capture the data due to the
complexity of the problem. This can be addressed by variational
inference based on Dirichlet processes [26]–[28].

2) Weight Concentration Parameter (gamma) Estima-
tion: The precise definition of the weight concentration pa-
rameter is challenging. In practice, the weight concentration
parameter is defined as the inverse of the number of components.
However, this approach introduces biases since it assumes a

linear relationship between them. To deal with this, we expo-
nentiate the optimal number of components to capture non-linear
effects, as exp(−opt) and we set it equal to gamma.

3) Model implementation, training, and Random Sam-
pling: A pseudocode of the BGMMOCE algorithm is described
in Supplementary Material, Section E. The input includes the
curated dataset, the number of virtual patients, and the initial
parameters of the model. The algorithm first applies spectral
clustering process, for a set of k clusters under evaluation,
based on the LOBPCG method and extracts the best clustering
solution, i.e., the one having the highest DBS, say opt. Then,
the BGMM training process is initialized, where the number of
Gaussian components and the weight concentration parameter
are set equal to opt, and exp(−opt), respectively. Random
sampling is applied on the trained model based on Dirichlet
distributions to yield the synthetic (virtual) samples.

E. Validation

Four state-of-the art synthetic data generators [6]–[11] were
used for comparison purposes, including the BN, the ANNs, the
UTE, and the STE. Five quality indicators (Kullback-Leibler
divergence, inter- and intra- correlation difference, goodness of
fit - GOF, coefficient of variation - cV) [29]–[31] were used to
measure the similarity, dispersity, and divergence between the
synthetic and the real data (Supplementary Material, Section F).

III. RESULTS

A. Data Origins and Related Diagnostics

Anonymized clinical data were acquired by 648 patients with
hypertrophic cardiomyopathy as part of the SILICOFCM project
[32], [33] (Supplementary Material, Section G).

B. Large Scale Virtual Population Generation

1) Estimation of the Number of Gaussian Components:
Spectral clustering was first applied to estimate the number of
clusters using the LOBPCG eigensolver across a pre-defined
number of k-clusters, where k ∈ [2, 20]. The DBS was com-
puted for each cluster to assess the clustering consistency. Ac-
cording to Fig. 2, the number of clusters having the highest
DBS was 10. The process was repeated for multiple virtual
populations (1000 to 30000 with step 1000). In each case, the
BGMM-OCE was trained using 10 Gaussian components. The
distribution of the average intra-correlation differences appears
to be decaying over the increasing number of virtual patients,
with less than 0.018 difference for more than 14000 virtual
patients.

2) Comparison With SoA Data Generators: The virtual
data quality results for each data generator are depicted in
Fig. 3 across multiple virtual patient scenarios. According to
Table I and Fig. 3, the BGMM-OCE achieved the best perfor-
mance yielding the lowest average intra-and inter-correlation
difference, GOF and cV with non-significant variations in the
KL-divergence (less than 0.05).

Gaussian kernel density estimation was applied to estimate
the density of the real and synthetic data. According to Fig. 4,
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Fig. 2. The DBS distribution (left), average intra-correlation difference between the real and the synthetic data for multiple virtual patients (right).

Fig. 3. Average intra-correlation (on top left corner), GOF (on top right corner), KL-divergence (on bottom left corner) and cV (on bottom right
corner) across multiple virtual patients per data generator.

the synthetic distributions tend to “mimic” the real ones. In
all cases, the average cV difference between the real and the
synthetic distributions was less than 0.1 (for 1000 virtual pa-
tients) highlighting the reduced dispersity of the synthetic data
with respect to the real distributions.

To further demonstrate the biases which are intro-
duced in the case where the weight concentration pa-
rameter is set equal to 1/opt, we applied additional
BGMM-OCE experimentations. According to Supplementary
Table II, both the average correlation difference between the
real and the virtual patients (intra-correlation difference) and the
average correlation difference between the real and the virtual
features (inter-correlation difference), over multiple virtually
generated patients, is not well preserved, yielding higher differ-
ences compared against those from the BGMM-OCE configura-
tion in Table I. The GOF and KL-divergence scores are similar
to the values reported in Table I and thus are not reported in
Supplementary Table II.

C. Execution Time

According to Fig. 5, the BGMM-OCE required 23 secs on
average for the optimal component initialization step. In the
case where the application of spectral clustering involved 2-10
clusters, the execution time was reduced to 16 sec. However,
the execution time for random sampling across different virtual
populations was 0.031 sec on average.

The TE, BN, and UTE had the largest average execution
time (53 sec, 63 sec, and 75 sec, respectively). Interestingly, the
RBF-based ANNs achieved the lowest average execution time
(16 sec), but its increased computational tendency for virtual
populations beyond 17000 or 23000 patients indicates a higher
complexity than BGMM-OCE.

IV. DISCUSSION

In this work, we developed a robust and computationally
efficient large scale synthetic data generator to overcome the lack
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Fig. 4. An illustration real (black) and synthetic (magenta) distributions for the 20 features under evaluation (Supplementary Material, Section G)
for 1000 virtual patients. The cV values refer to the absolute coefficient of variation difference between the real and the synthetic distributions.

TABLE I
SYNTHETIC DATA QUALITY EVALUATION RESULTS

of sufficient population size and leverage the increased costs for
patient recruitment for in silico clinical trials. Our intention was
to resolve significant biases which are introduced by the estima-
tion of the hyperparameters during the BGMM training process.
To do so, we proposed the BGMM-OCE which was designed to:

Fig. 5. Execution time comparison results.

(i) avoid the use of an arbitrary number of Gaussian components
through a computationally efficient spectral clustering stage, and
(ii) provide non-linear estimation of the gamma parameter by
exponentiating the number of components. According to our
results, the BGMM-OCE outperformed state-of-the art synthetic
data generators, yielding lowest cV, GOF, KL divergence, and
inter- and intra- correlation differences at reduced computational
complexity.

Spectral clustering is computationally demanding and partic-
ularly during the extraction of an increasing number of clusters.
To overcome this limitation, we used the LOBPCG method
to extract fast estimations of the eigenvectors and eigenvalues
by solving the minimum trace problem, rather than using the
conventional ARPACK [34] and AMG [35] solvers which are
computationally demanding. To further reduce the complexity
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of the clustering evaluation process, we store the local maxima
of the DBS and if there are no reported maxima after 5 clus-
ters under evaluation, the process is terminated thus avoiding
additional unnecessary clustering evaluations. The cluster with
the highest DBS is then extracted to define the number of
Gaussian components in the BGMM training stage. In addition,
the gamma parameter was exponentially related (non-linearly)
to the number of components, rather than inverse related (linear),
to avoid linear assumptions.

Similar to previous studies [11], [16], the BGMM-OCE places
particular emphasis on the quality of the input data since lack of
data quality reduces the statistical power of the outcomes. Thus,
the quality of the real data is reflected on the synthetic data. Here,
we extended an automated data curation pipeline presented in
[20] to avoid data contamination by separating the features in the
input space into two states; the “eligible” and the “non eligible”.
Advanced outlier detection methods like the Isolation Forests
were used to identify outliers and string-matching methods were
applied to detect duplicated features.

According to Supplementary Table I, the MVND and the
log-MVND [4], [5], [36] are fast but they are based on critical
assumptions (normality) and yield synthetic data with reduced
quality. Although the BN offer explainable presentations of
the conditional probabilities through the network, the different
topologies are infinite, the quality of the virtual data is reduced,
and the computational complexity is large [6]–[8]. The STE
and UTE yield synthetic data with better quality, but they still
have increased computational complexity for training/testing.
In addition, they need a “target feature” that influences the cor-
relation of the synthetic features and introduces critical biases.
The same stands for the ANN but it has reduced computational
complexity. According to Supplementary Table II, the inter- and
intra- correlation differences are higher than those reported for
the BGMM-OCE in Table I (where the weight concentration
parameter was equal to exp(−opt)). Thus, setting the weight
concentration parameter equal to exp(−opt) provides more
concise and coherent virtual patient profiles with well-preserved
correlations among the features.

The UTE, STE, and ANN are unable to capture the inter-
and intra- correlation differences. As far as the GMM algorithm
is concerned, although it is more computationally efficient,
but it requires multiple hyperparameters which are arbitrarily
defined [16] and thus they introduce biases. However, the precise
definition of components and the estimation of the weight con-
centration parameter is a technical challenge. The BGMM-OCE
overcomes this limitation by introducing a clustering stage based
on the LOBPCG method prior to the BGMM training to estimate
the optimal number of clusters as the one with the highest
DBS across a set of predefined clusters. The best clustering
solution is then set equal to the number of Gaussian components,
and the weight concentration parameter is exponentially related
to the number of Gaussian components instead of assuming
linear dependencies. The BGMM-OCE script is available in the
following GitHub repository: https://github.com/vpz4/BGMM-
OCE along with high-quality synthetic HCM data. We plan
in the near future to utilize the BGMM-OCE in additional

domains with insufficient population size to make drug testing
feasible [36].

V. CONCLUSION

BGMM-OCE introduces a highly efficient spectral clustering
stage to overcome the definition of arbitrary hyperparameters in
the BGMM process. The BGMM-OCE can yield high-quality
synthetic data at reduced complexity to enable the design of
targeted therapies and the development of disease prediction
models.
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