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Abstract—Goal: Modeling neurovascular coupling is
very important to understand brain functions, yet chal-
lenging due to the complexity of the involved phenom-
ena. An alternative approach was recently proposed where
the framework of fractional-order modeling is employed to
characterize the complex phenomena underlying the neu-
rovascular. Due to its nonlocal property, a fractional deriva-
tive is suitable for modeling delayed and power-law phe-
nomena. Methods: In this study, we analyze and validate a
fractional-order model, which characterizes the neurovas-
cular coupling mechanism. To show the added value of the
fractional-order parameters of the proposed model, we per-
form a parameter sensitivity analysis of the fractional model
compared to its integer counterpart. Moreover, the model
was validated using neural activity-CBF data related to both
event and block design experiments that were acquired us-
ing electrophysiology and laser Doppler flowmetry record-
ings, respectively. Results: The validation results show the
aptitude and flexibility of the fractional-order paradigm in
fitting a more comprehensive range of well-shaped CBF
response behaviors while maintaining a low model com-
plexity. Comparison with the standard integer-order models
shows the added value of the fractional-order parameters in
capturing various key determinants of the cerebral hemody-
namic response, e.g., post-stimulus undershoot. This in-
vestigation authenticates the ability and adaptability of the
fractional-order framework to characterize a wider range
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of well-shaped cerebral blood flow responses while pre-
serving low model complexity through a series of uncon-
strained and constrained optimizations. Conclusions: The
analysis of the proposed fractional-order model demon-
strates that the proposed framework yields a powerful tool
for a flexible characterization of the neurovascular coupling
mechanism.

Index Terms—Neurovascular coupling, Cerebral blood
flow, Neural activity, Fractional-order calculus, fractional
differentiation orders, Sensitivity analysis.

Impact Statement—The present study proposes a novel
fractional-order framework for modeling neurovascular
coupling. A parameter sensitivity analysis demonstrates
the potential flexibility, and effectiveness of the fractional-
order paradigm in reconstructing the cerebral hemodynam-
ics with manageable complexity; and a real experimental
validation analysis demonstrates the ability of the model in
modeling a wider range of well-shaped CBF responses.

I. INTRODUCTION

CHANGES in neural activity lead to changes in local
cerebral blood flow (CBF) and energy metabolism. The

complex relationship between neural activity and cerebral blood
flow, referred to as neurovascular coupling (NVC), is a subject of
intensive investigation. Understanding factors and mechanisms
that orchestrate this relationship will improve our understanding
of the physiological underpinnings of measurements from
Functional Magnetic Resonance Imaging (fMRI) [1].
Investigating NVC in humans has become a possibility
with the development of neuroimaging techniques that measure
local hemodynamics, including CBF. Thus, quantitative models
have been proposed to describe the different mechanisms
linking transient neural activity to the changes in CBF [1]–[3].
NVC models can be arranged in a broad spectrum ranging from
simple models (with fewer details and fewer parameters) to more
complicated models involving many biophysical parameters
and complex relationships [4]. An example of such models
includes the simple model developed in Friston et al. [5], [6] and
which takes a stimulus waveform and outputs a CBF response
shape. The initial goal of developing this model was to fill in the
neurovascular compartment to the well-known Balloon Model
to predict Blood Oxygen Level Dependent (BOLD) (measured
with functional Magnetic Resonance Imaging (fMRI))
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responses given neural activity. A second order differential
equation is used to describe CBF changes given an input stimu-
lus. Another example is the model developed in Buxton et al. [7]
which consists of a simple neural adaptation model and a linear
convolution of neural activity with a flow response function.

While exploring biological processes underlying NVC using
more complicated models is desired, their applicability is limited
due to several mathematical constraints. For example, accurate
and reliable estimation of model parameters is more difficult
in complex models due to the higher number of parameters.
Furthermore, parameters of those models are harder to interpret
because of the lower model identifiability in complex mod-
els [4]. The difficulty of parameter estimation combined with
the low identifiability and interpretability may encourage using
simpler models with fewer parameters. Simpler NVC models,
however, remain limited in their flexibility to fit the dynamics of
CBF responses derived from specific experimental conditions or
pathological populations. Deneux et al. [8], for example, showed
that two of the dynamic linear NVC models (namely Friston’s
model and Buxton’s model) along with their nonlinear variations
were unable to capture different dynamics of CBF responses at
various stimulation lengths. Linear variations appear to fail to
fit the amplitude variations of different responses. While they
underfit responses to short stimulations, they overfit responses
to longer stimulations. Nonlinear variations also fail to account
for temporal dynamics of the CBF responses especially those
for shorter stimulations [8]. Those results call for developing
more flexible models that can fit experimental data without
compromising model simplicity.

In the last decades, non-integer differentiation, the so-called
fractional-order differential calculus, became a popular tool for
characterizing real-world physical systems and complex behav-
iors from various fields such as biology, control, electronics, and
economics [9]–[13]. The long-memory and spatial dependence
phenomena inherent to the fractional-order systems present
unique and attractive feature which raises exciting opportuni-
ties. These opportunities include an accurate representation of
power-law behavioral phenomena, [14], [15]. For instance, the
power-law behavior has been demonstrated in describing human
soft tissues viscoelasticity and characterizing the elastic vascular
arteries. In-vivo and in-vitro experimental studies have pointed
that fractional-order calculus-based approaches are more decent
to precisely represent the hemodynamic; the viscoelasticity
properties of soft collagenous tissues in the vascular bed; the
aortic blood flow; red blood cell (RBC) membrane mechanical
properties and the heart valve cusp [16]–[19]. Consistent with
the ability of fractional-order models to fit temporal dynam-
ics, Belkhatir et al. in [20] have shown that the fractional-
order model can yield better fit to Blood-Oxygenation-Level-
Dependant (BOLD) signals measured with fMRI when com-
pared with the original integer-order NVC model proposed
by Friston et al. in [5]. Fractional calculus has been used as
a powerful tool to understand better the dynamic processes
that span spatiotemporal scales. Essentially, the fractional-order
model is a continuous-time model with high flexibility to fit
high-order dynamics and complex nonlinear phenomena. Based
on this study, fractional calculus seems to be a suitable approach

for NVC modeling. In fact, one of the most important properties
of fractional-order derivatives is that they depend on the entire
history of a function, not only the value of the function at the
evaluated point. This property, called non-locality or memory
effect, is relevant for modeling systems that exhibit temporal
dynamics and delays such as CBF response since the model’s
response at any given time depends on the whole history of the
CBF response.

The presented work aims to extend the previous work [20]
by studying the parameter sensitivity analysis of the fractional-
order dynamical model of NVC and validated this model using
both synthetic and real CBF data. The contributions of this paper
can be summarised in two main parts:

� In the first part, the mathematical model is illustrated
through a series of numerical simulations, which demon-
strates the fractional-order model’s ability to fit a wider
range of well-shaped CBF responses that cannot be cap-
tured with the standard models. In addition, using an
extensive parameter sensitivity analysis, we study the ef-
fect of the fractional differentiation order and the model’s
parameter on the CBF response.

� In the second part, the proposed model has been ap-
plied and validated using experimental CBF data obtained
from [21]. Moreover, we evaluated the performance of the
model and compared it to the integer-order model.

This paper is organized as follows. In Section II, we will recall
some basic concepts from the fractional-order derivatives and
the fractional-order neurovascular coupling mode.In addition,
this section presents the parameter sensitivity analysis of the
NVC fractional-order model along with the adopted method to
fit the real CBF data. Section III discusses the obtained results
and provides some future directions on the use of the model for
analyzing the cerebral hemodynamic.

II. MATERIALS & METHOD

A. Background

1) Fractional-Order Calculus: The concept of fractional
calculus is very old and goes back to the seventeenth century.
Fractional calculus is defined as a generalization of the integer-
order integration and differentiation operators to the non-integer
order. Because of its interesting properties of non-locality and
memory, the interest on fractional derivatives has grown in
many fields of engineering and science. Examples of real-life
applications include but not restricted to: viscoelastic, diffusive,
biomedical and biological systems [22]–[27].

The continuous fractional integro-differential operator Dα
t ,

whereα and t are the limits of the operation, is defined as follows

Dα
t =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

dα

dtα
, α > 0

1, α = 0

∫ t

a(dτ)
α, α < 0

(1)

For fractional derivative, several definitions exist in the lit-
erature [28], [30]. In this work, we consider the generalized
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Riemann-Liouville (RL) definition which is proposed in [29] and
recalled in definition 1. This definition is more appropriate for
mathematical analysis.

1) Definition 1:: Equitation [30] The initialized RL frac-
tional derivative of order α ∈ (0, 1) of a function g, denoted
0D

α
t g(t), is given by:

0D
α
t g(t) = 0d

α
t g(t) + Ψ(gi, α,−a, 0, t), t > 0, (2)

where 0d
α
t g(t) and Ψ(gi, α,−a, 0, t) are the uninitialized αth

order RL derivative and the initialization function, respectively.
They are given as follows:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0d
α
t g(t) =

1

Γ(1− α)

d

dt

∫ t

0

g(τ)

(t− τ)α
dτ,

Ψ(gi, α,−a, 0, t) =
1

Γ(1− α)

d

dt

∫ 0

−a

gi(τ)

(t− τ)α
dτ,

(3)

Γ(.) is the gamma function and gi(t) is the initialization (history)
function defined for t ∈ [−a, 0], a ∈ R > 0. This definition
assumes that the history-function for t ∈ (−∞,−a) is zero.

For numerical implementation the definition of Grunwald-
Letnikov (GL) given in definition 2 is used [28].

1) Definition 2:: Equation [28] The Grunwald-Letnikov
derivative of order α of a function g, denoted Dα

t g(t), is given
by:

Dα
t g(t) = lim

h→0

1

hα

∞∑
i=0

c
(α)
i g(t− ih), α > 0, (4)

where h > 0 is the time step, c(α)i (i = 0, 1, . . .) are the bi-
nomial coefficients recursively computed using the following
formula,

c
(α)
0 = 1, c

(α)
i =

(
1− 1 + α

i

)
c
(α)
i−1. (5)

2) Fractional Neurovascular Coupling Model: The pro-
posed fractional neurovascular coupling can be formally written
as: ⎧⎨

⎩
Dq1

t f(t) = s

Dq2
t f(t) = εu(t)− s

ks
− (f − 1)

kf
,

(6)

where f is the CBF, ε is the neural efficacy, ks is signal decay
and kf is the feedback term, q1 and q2 are the fractional differen-
tiation orders which range between 0 and 1. Note that when both
fractional orders are set to 1, the model represents the original
model, which we refer to as integer-order model, proposed by
Friston et al. [5].

Fractional dynamics are only present when any fractional-
order is set to a value less than 1. We refer to it as fractional-order
model. This note is the reason why the integer-order model is
a special case of the fractional-order model where both frac-
tional parameters are set to a value of one. According to the
integer-order model (where q1=q2=1 in (6)), an increase in
neural activity u(t) leads to an increase in the flow-inducing
signal s (which is assumed to control CBF, f , at the arteriole
level). The flow inducing signal s, then, leads to an increase in

CBF, f . This integer-order NVC model is simple. However, it
fails to account for more complex effects that arise from the
fractional dynamics underlying the CBF response [8]. Hence,
two new fractional differentiation order (namely, q1 and q2)
are introduced to fully model and account for the fractional
properties of the CBF responses.

B. Characterizing the Unique Contribution of the
Fractional Parameters

In the first analysis, we ask whether the fractional-order model
can generate unique well-shaped CBF responses that cannot be
produced with integer-order models, how those contributions
change the shape of the CBF response. More formally, this
analysis aims mainly to exclude any equivalence that may exist
between the integer-order model and the fractional-order model.
In other words, we ask whether we can match any output of
the fractional-order model (that has two more parameters) by
solely tuning parameters of the integer-order model? If the two
models are equivalent, then there exists a set of values for kf
and ks in the integer-order model that can match any output
of the fractional-order model. We can directly investigate this
claim by running an optimization problem that minimizes signal
dissimilarity between the two models. The minimization only
optimizes the parameters kf and ks of both models, by fixing q1
and q2 to constant values lying between 0 and 1.

By fixing q1 and q2 of fractional differentiation order model
at some constant(s) ranging between 0 and 1, we can compare
the obtained optimization results (i.e. the value of the function at
optimal values) across the range of q1 and q2. If the two models
are essentially equivalent, then signal dissimilarity should not
change across all values used for q1 and q2. However, a change
in signal dissimilarity across the range of q1 and q2 indicates
non-equivalence.

The cost function we used to calculate signal dissimilarity is
the L1-norm of the difference between the two signals. It can be
formally described as follows:

Minimize
kf ,ks,kf ,ks

∥∥fq1<1,q2<1(kf , ks)− fq1=1,q2=1(kf , ks)
∥∥
1
, (7)

where fq1<1,q2<1 denotes the CBF computed using the
fractional-order model and fq1=1,q2=1 denotes the CBF com-
puted using the integer-order model. Each model has a separate
set of four parameters. The fractional-order model has: q1 (where
q1 <1), q2 (where q2 <1), kf and ks. Similarly, the integer-order
model has: q1 (where q1=1), q2 (where q2=1), kf and ks. All
kf , ks, kf and ks are free to vary while q1 and q2 are fixed
at some predetermined values. For the integer-order model, q1
and q2 are always fixed at a value of 1 as have been noted
before. However, in the fractional-order model, we use different
combinations of values to test for the contribution of fractional
differentiation parameters. The goal, then, is to find some com-
bination of the four parameters that best minimize their dissim-
ilarity, under some values for q1 and q2 in the fractional-order
model.

We carried out two series of optimizations. The first one was
assumption- and bounds-free where we set the lower bounds of
the four parameters (i.e., kf , ks, kf and ks) to zero and the upper
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TABLE I
PARAMETERS VALUES

bound to infinity. The aim was to numerically prove that the
fractional-order model can fit CBF flow response regardless the
values (or the upper bound) of the four parameters. As this leads
to unrealistic CBF responses, we defined permissible ranges for
the four parameters and re-ran a constrained optimization. The
selection of this range (or the upper bound) followed a visual
inspection of the CBF response shapes using different values for
the upper bound (e.g. 100, 50, 10 and 2). More importantly, it
was also guided by previous literature on the upper limits of kf
and ks (i.e. the range values in [8], [31]).

C. Parameters Sensitivity Analysis of NVC
Fractional-Order Model

After showing that the fractional-order model gives raise to
unique contributions to CBF response, we conduct a sensitivity
analysis to study how the parameters of the fractional-order
model affect or control the CBF response above and beyond
the key parameters in integer-order model. To this end, we
followed the sensitivity analysis approach conducted in [32].
Using a CBF response with a reference signal of fixed parameter
values (shown in Table I), we slowly manipulate each parameter
(and pairs of parameters) to quantify the deviation in output
behavior by computing the L1-norm of the difference between
the reference CBF and the manipulated CBF. Then we normalize
the result by the norm of the reference signal to give more
interpretable values.

D. Fitting Fractional-Order Model to Experimental
CBF Data

In this section, we fit the proposed fractional-order model
to real CBF data obtained from another study [21]. The input-
output data used in this paper were acquired using electrophys-
iology and laser Doppler flowmetry (LDF) recordings, respec-
tively. The data acquisition of the CSD data and CBF data are
described briefly in the following and for more details we refer
the reader to [21], [33], [34].

Hooded Lister rats with weight’s range 200− 300 g were
used. The animals were prepared in a way to meet certain pre-
defined specifications. After locating the whisker barrel cortex
region, electrophysiology and LDF probes were placed based
on the alignment of optical imaging maps with images of the
cortical surface. The inserted electrophysiology electrodes were
coupled to a data acquisition device (Medusa Bioamp, TDT, FL)
with a custom written Matlab interface. Field potential recording
was sampled at 6103.5 Hz with 16-bit resolution. To avoid the

intrinsic spatial ambiguity which is inherent in the electrophysi-
ology data, current source density (CSD) is used [33], [35]. The
CSD profiles were given to us with a sampling time between
each CSD point of 200ms. To allow concurrent measurements
of CBF, the LDF probe was positioned over the active area,
adjacent to the electrodes. An LDF spectrometer including a
low-pass filter was used to analyze the signal from the LDF
probe with minimized errors due to the measurements noise.
The CBF changes recorded with LPF were normalized to the
baseline CBF which is collected for 8 s period before the onset
of each trial. The CBF data acquired each 33.33ms which
correspond to an LDF with sampling rate of 30Hz.

Regarding the experimental paradigm, it consists of condi-
tioning block of stimulation followed by a probing block of
stimulation per trial. For each trial, two blocks of stimuli were
used. The first conditioning block has three different durations
(2, 8, 16 s) which are followed by the probing block of 1 s
duration. These two blocks are separated by 7 different time
gaps (0.6, 1, 2, 3, 4, 6, 8 s). Therefore, there were 21 types of
stimuli paradigms run for each animal. Last, the data were animal
averaged. The averaged CSD and CBF data recorded for the 21
types of paradigms are shown in Fig. 4 (blue lines).

Using the CSD data as input to the model and the CBF data
as its output, we evaluate how the model will fit the real-data
over a certain range of parameters. To get those fittings, we first
resampled the CSD input time points to the rate of CBF output
data. Then, we used optimization function ‘patternsearch’ (in
Matlab) to find the best set of parameters that can minimize
the L1 norm difference between the model outputs and the real
CBF data, given the same input. The procedure was repeated for
each subject, in each condition x stimulation combination. We
then visualized the average fit for all subjects (while showing
the standard deviation as a grey area), in each stimulation x gap
combination.

III. RESULTS

The effects of how parameter change the CBF response have
already been discussed elsewhere (see [5] for ks and kf , [20] for
fractional orders q1 and q2]. Fig. 1 recalls the different shapes of
CBF response in a range of values for each parameter. As shown
in Fig. 1 A and 1 B, decreasing q1 reduces signal width whereas
decreasing q2 increases the signal width and hence slows down
signal decay. In most cases, decreasing q2 also maintains a longer
post-stimulus undershoot (associated with the slower decay) as
well as delayed negative peak. On the other hand, q1 only exhibits
the negative undershoot in the first few fractions (approximately
up to q1=0.8) after which CBF response returns to baseline
rapidly with no apparent negative undershoot. In general, while
q1 has more control over the positive aspects of the signal
(i.e. overshoot width), q2 has more control over the negative
aspects of the signal like signal decay and undershoot duration.
Positive signal amplitude is a common feature that both q1 and
q2 effectively can change. Figs. 1 C and 1D shows the effect
of ks and kf , holding both fractional orders q1 and q2 at 1
(hence, it represents the integer-order model). Decreasing ks
increases signal oscillations while increasing kf eliminates the
CBF undershoot.
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Fig. 1. CBF response while varying each parameter. Panel A shows CBF response as a function of q1. Panel B shows CBF response as a funciton
of q2. Panel C shows CBF response as a function of kf . Panel D shows CBF response as a function of ks.

A. Characterizing the Unique Contribution of
Fractional Parameters

Fig. 2 shows the results of the two series of optimizations
described in Methods section. More specifically, signal dis-
similarity increases as either q1 and q2 decreases. If the two
models are equivalent, then a perfect match would be obtained
resulting in an error of zero. However, increasing dissimilarity
as a function of q1 and q2 indicates the noticeable effect of
the new fractional parameters on the CBF response that cannot
be obtained by tuning kf and ks of the integer-order model.
More specifically, as we can see in Fig. 2 C, when varying q1
while keeping q2 at 1, we can see that CBF undershoots still
matched, but overshoot amplitude is increasing due to the effect
of the fractional parameter q1. We note that the actual values
of error (or dissimilarity between the two models) are not of
interest, but rather how they change as a function of fractional
parameters.

B. Sensitivity Analysis for the Parameters of the
Fractional-Order Model

Each subplot of Fig. 3 corresponds to the relative error of the
CBF signal when one (or two) of the parameters takes values

in a grid around the reference value within a specific range
(shown in Table I). A unique extreme in the neighborhood of the
reference value of the parameter is observed for both ks (Fig. 3
A) and kf (Fig. 3 B). Notably, the relative error is asymmetric
around the observed global minimum. This asymmetry indicates
the CBF response becomes less sensitive to changes in those
parameters as the value of either parameter increases above the
reference value (see Fig. 3 A and 3 B). Hence, initial guesses
should always be taken less than the expected values of those
two parameters [32].

Similarly, Fig. 3 C - 3 F shows the relative error in CBF in
the case of varying two parameters (again, while keeping other
parameters at their reference values). Although a global mini-
mum is shown around the reference values, those figures show a
correlation between ks and both fractional orders which indicate
that ks can, to some extent, “undo” the effects of both fractional
orders. Concerning estimating the fractional parameters in light
of those results, it can be argued that estimation of both ks and kf
should always start with values less than their expected values
as model dynamics are slower (less sensitivity) to big variations
in values greater than the nominal values. For q1 and q2, initial
guesses are best set to 1 as CBF is less sensitive to variations in
fractional orders when they approach zero.
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Fig. 2. Results of the (A) unconstrained and (B) constrained optimization over kf and ks of the two models. Colors represent the L1-norm of
the difference between the two CBF outputs at the optimal values. In the constrained optimization, we used range from zero to 2. Signals of both
models within the black rectangle are visualized in (C).

C. Fitting Fractional-Order Model to Experimental
Data

Both integer-order and fractional-order models have been
fitted to real CBF experimental data. Paired t-test of errors
for each subject x condition combination show a significant
difference between the errors derived from the two models
(t(230) = −5.68, p-value < 1e−7; Meanfractional=60.706
< Meaninteger=62.913).

Fig. 4 illustrate the results of fitting the fractional model to
experimental CBF data. Each subplot contains a combination of
stimulation x gap parameters that were used in the experiment.
Model fits (in blue) show a very good fit for short stimula-
tion paradigm (2 s) and a moderate fit for the 8 s stimulation

paradigm. However, it captures less well the dynamics of the
long (16 s) stimulation paradigm. Specifically, the model is only
able to fit the second peak while missing other dynamics in-
volved. Therefore, those results suggest that the fractional-order
model has a moderately higher flexibility in fitting experimental
data when compared with integer-order model due to the fact it
generalizes the integer-order model.

IV. DISCUSSION

In this work, we have shown that the fractional equations have
big potential in describing and characterizing a wide range of
cerebral hemodynamic responses than the standard integer-order



BELKHATIR et al.: PARAMETER SENSITIVITY AND EXPERIMENTAL VALIDATION FOR FRACTIONAL-ORDER DYNAMICAL MODELING 75

Fig. 3. Sensitivity analysis results showing the relative CBF norm error as a function of variations in (A) ks (B) kf (C) ks & q1 (D) kf & q1 (E) ks
& q2 and (F) kf & q2.

Fig. 4. Average fit of the fractional-order model (shown in blue) to experimental CBF data (shown in red). The figures also illustrate the standard
deviation of model estimates across all subjects (shown in gray). The lower bars indicate the stimulation time-courses. The figure shows a very good
fit for the short stimulation paradigm (2 s), a moderate fit for the 8 s stimulation paradigm and a poorer fit for the long stimulation (16 s) paradigm.
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models. The fractional-order model’s ability to cover different
response shapes is due to its flexibility and compliance of-
fered by the two extra fractional order parameters, namely the
fractional differentiation orders. Fractional parameters seem to
characterize the CBF response in distinct ways by controlling
the overshoots and the undershoots observed in the real CBF
signal. Our sensitivity analysis clearly shows that these two
parameters have different contributions in characterizing the
cerebral hemodynamic determinants. While the variation of the
positive overshoot of the CBF signal is sensitive to the value of
the fractional differentiation order q1, the negative part of the
CBF signal, namely the signal decay and undershoot, are more
sensitive to the value of the second fractional differentiation
order q2.

In this study, we noticed that the model fails to fit longer
stimulation paradigms. When the framework involves highly
nonlinear dynamics, this fact may limit the model’s applicability
to the long block design experiments of blocks longer than 8
seconds.

It is worth mentioning the strong correlation between ks and
both q1 and q2 (see Fig. 3 C and 3 E). These correlations indicate
that, within a specific interval,ks parameter can “undo” the effect
of both fractional-order parameters. This collinearity translates
into a difficulty of accurately estimating ks in the fractional-
order model.

Physiological interpretations of the fractional-order param-
eters q1 and q2 may be challenging. Similar to other NVC
models, the model is meant to be descriptive to fit a wider
range of experimental data that previous models cannot account
for (see [4] for a discussion). Although these descriptive mod-
els have less physiologically interpretable parameters, they are
extremely useful for comparison between different groups and
conditions.

V. CONCLUSION

Modeling the NVC mechanism is undertaking considerable
development. It is essential for a better assessment of BOLD
fMRI data and also a necessary step towards understanding the
physiology behind the complex phenomena involved and finding
biomarkers that represent the key features observed in measured
CBF profiles. Current NVC models still lack the flexibility to
fit a wider range of observed experimental data. In this paper,
the framework of fractional calculus is used to model the CBF
response to neural activity. A fractional-order oscillator is pro-
posed based on the well-accepted and known minimal model
proposed by Friston et al.. Through an optimization scheme
that compares the original integer-order model and the proposed
fractional one, we showed that the added fractional parameters
provide a unique contribution in describing the CBF that can
not be captured using the integer-order model’s parameters.
Moreover, we assessed how sensitive CBF measure is to changes
in the parameters of the model. Furthermore, using real neural
activity-CBF data, the fractional model has proven capable of
fitting wider CBF responses to both event and block design input
paradigms. Although fractional model parameters are harder
to interpret physiologically, they offer a great opportunity to
compare groups or conditions.

This paper does not deal with the estimation problem of the
model’s unknown parameters and fractional orders. This task
may be the subject of a forthcoming study where model-based
estimation techniques for fractional systems, for instance, the
modulating function based non-asymptotic technique [36], [37],
will be used to estimate the unknown parameters.
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[1] K. Uludaǧ, K. Uǧurbil, and L. Berliner, FMRI: From Nuclear Spins to
Brain Functions, vol. 30. New York, NY, USA: Springer, 2015.

[2] Pike , G. Bruce. “Quantitative functional MRI: Concepts, issues and future
challenges,” Neuroimage, vol. 62, no. 2, pp. 1234–1240, 2012.

[3] P. A. Bandettini, “Neuronal or hemodynamic? Grappling with the func-
tional MRI signal,” Brain Connectivity, vol. 4, no. 7, pp. 487–498, 2014.

[4] C. Huneau, H. Benali, and H. Chabriat, “Investigating human neurovascu-
lar coupling using functional neuroimaging: A critical review of dynamic
models,” Front. Neurosci., vol. 9, pp. 1–12, 2015.

[5] K. J. Friston, A. Michelli, R. Turner, and C. J. Price, “Nonlinear responses
in FMRI: The balloon model, Volterra kernels and other hemodynamics,”
Neuroimage, vol. 12, pp. 466–477, 2000.

[6] E. J. Mathias, A. Kenny, M. J. Plank, and T. David, “Integrated models
of neurovascular coupling and bold signals: Responses for varying neural
activations,” NeuroImage, vol. 174, pp. 69–86, 2018.

[7] R. B. Buxton, K. Uludag, D. J. Dubowitz, and T. T. Liu, “Modeling
the hemodynamic response to brain activation,” Neuroimage, vol. 23,
pp. 220–233, 2004.

[8] T. Deneux, “Hemodynamic models: Investigation and application to brain
imaging analysis,” Ph.D. dissertation, Ecole Polytechnique X, May 2006.
[Online]. Available: https://pastel.archives-ouvertes.fr/tel-00457464

[9] M. A. Bahloul, Y. Aboelkassem, and T.-M. Laleg-Kirati, “Human hy-
pertension blood flow model using fractional calculus,” Front. Physiol.,
vol. 13, 2022, Art. no. 838593.

[10] M. A. Bahloul, Y. Aboelkassem, and T.-M. Laleg-Kirati, “Towards char-
acterization of the complex and frequency-dependent arterial compliance
based on fractional-order capacitor,” in Proc. IEEE 43rd Annu. Int. Conf.
IEEE Eng. Med. Biol. Soc., 2021, pp. 5559–5565.

[11] R. L. Magin, “Fractional calculus models of complex dynamics in biolog-
ical tissues,” Comput. Math. Appl., vol. 59, no. 5, pp. 1586–1593, 2010.

[12] R. L. Magin, “Fractional calculus in bioengineering: A tool to model
complex dynamics,” in Proc. 13th IEEE Int. Carpathian Control Conf.,
2012, pp. 464–469.

[13] R. E. Gutiérrez, J. M. Rosário, and J. Tenreiro Machado, “Fractional order
calculus: Basic concepts and engineering applications,” Math. Problems
Eng., vol. 2010, 2010, Art. no. 375858, doi: 10.1155/2010/375858.

[14] M. Bahloul, Z. Belkhatir, Y. Aboelkassem, and M. T. Laleg-Kirati,
“Physics-based modeling and data-driven algorithm for prediction
and diagnosis of atherosclerosis,” Biophysical J., vol. 121, no. 3,
pp. 419a–420a, 2022.

[15] M. A. Bahloul, M. Benencase, Z. Belkhatir, and T.-M. L. Kirati, “Finite-
time simultaneous estimation of aortic blood flow and differentiation
order for fractional-order arterial windkessel model calibration,” IFAC-
PapersOnLine, vol. 54, no. 15, pp. 538–543, 2021.

[16] D. Craiem and R. L. Magin, “Fractional order models of viscoelasticity
as an alternative in the analysis of red blood cell (RBC) membrane
mechanics,” Phys. Biol., vol. 7, no. 1, 2010, Art. no. 013001.

[17] M. A. Bahloul and T.-M. Laleg-Kirati, “Assessment of fractional-order
arterial windkessel as a model of aortic input impedance,” IEEE Open J.
Eng. Med. Biol., vol. 1, pp. 123–132, Apr. 2020.

[18] M. A. Bahloul and T. M. Laleg-Kirati, “Three-element fractional-order
viscoelastic arterial windkessel model,” in Proc. 40th Annu. Int. Conf.
IEEE Eng. Med. Biol. Soc., 2018, pp. 5261–5266.

[19] M. A. Bahloul and T.-M. L. Kirati, “Fractional-order model representa-
tions of apparent vascular compliance as an alternative in the analysis of
arterial stiffness: An in-silico study,” Physiol. Meas., vol. 42, no. 4, 2021,
Art. no. 045008.

https://pastel.archives-ouvertes.fr/tel-00457464
https://dx.doi.org/10.1155/2010/375858


BELKHATIR et al.: PARAMETER SENSITIVITY AND EXPERIMENTAL VALIDATION FOR FRACTIONAL-ORDER DYNAMICAL MODELING 77

[20] Z. Belkhatir and T. M. Laleg-Kirati, “Fractional dynamical model for
neurovascular coupling,” in Proc. 36th Annu. Int. Conf. Eng. Med. Biol.
Soc., 2014, pp. 4916–4919.

[21] Y. Zheng et al., “A dynamic model of neurovascular coupling: Implica-
tions for blood vessel dilation and constriction,” NeuroImage, vol. 52,
pp. 1135–1147, 2010.

[22] D. Craiem and R. Armentano, “Arterial viscoelasticity: A fractional deriva-
tive model,” in Proc. 28th IEEE EMBS Annu. Int. Conf., New York, NY,
USA, 2006, pp. 1098–1101.

[23] C. Ionescu, “Emerging tools in engineering: Fractional order ladder
impedance models for respiratory and neural systems,” IEEE J. Emerg.
Sel. Top. Circuits Syst., vol. 3, no. 3, pp. 425-431, Sep. 2013.

[24] M. A. Bahloul and T. M. Laleg-Kirati, “Arterial viscoelastic model using
lumped parameter circuit with fractional-order capacitor,” in Proc. IEEE
61st Int. Midwest Symp. Circuits Syst., 2018, pp. 53–56.

[25] J. Gad-Elkarim et al., “Fractional oblacker generalization of anomalous
diffusion as a multidimensional extension of the transmission line equa-
tion,” IEEE J. Emerg. Sel. Top. Circuits Syst., vol. 3, no. 3, pp. 432–441,
Sep. 2013.

[26] R. Magin, Fractional calculus in bioengineering, vol. 149, Danbury, CT,
USA: Begell House Publishers Inc., 2006.

[27] M. Bahloul, Y. Aboelkassem, T.-M. Laleg, M. A. Bahloul, Y.
Aboelkassem, and T.-M. L.-K. Team, “Fractional-order modeling of the
complex and frequency-dependent arterial compliance: In human and
animal validation,” in Proc. APS Division Fluid Dyn. Meeting Abstr., 2021,
Paper T15.012.

[28] I. Podlubny, Fractional Differential Equations, vol. 198. New York, NY,
USA: Academic, 1999.

[29] C. F. Lorenzo and T. T. Hartley, “Initialization, conceptualization, and
application in the generalized (fractional) calculus,” Crit. Rev. Biomed
Eng., vol. 35, no. 6, 2007.

[30] C. F. Lorenzo and T. T. Hartley, “Initialization of fractional-order
operators and fractional differential equations,” J. Comput. Nonlinear
Dyn., vol. 3, no. 2, 2008.

[31] Y. Behzadi and T. T. Liu, “An arteriolar compliance model of the cerebral
blood flow response to neural stimulus,” Neuroimage, vol. 25, no. 4,
pp. 1100–1111, 2005.

[32] C. Zayane and T. M. Laleg-Kirati, “A sensitivity analysis of FMRI balloon
model,” Comput. Math. Methods Med., vol. 2015, 2015.

[33] M. Jones, N. Hewson-Stoate, J. Martindale, P. Redgrave, and J.
Mayhew, “Nonlinear coupling of neural activity and CBF in rodent barrel
cortex,” Neuroimage, vol. 22, pp. 956–965, 2004.

[34] N. Hewson-Stoate, M. Jones, J. Martindale, J. Berwick, and J.
Mayhew, “Further nonlinearities in neurovascular coupling in rodent barrel
cortex,” Neuroimage, vol. 24, pp. 565–574, 2005.

[35] J. Martindale et al., “The hemodynamic impulse response to a single neural
event,” J. Cereb. Blood Flow Metab., vol. 23, pp. 546–555, 2003.

[36] Z. Belkhatir and T. M. Laleg-Kirati, “Parameters and fractional differ-
entiation orders estimation for linear continuous-time non-commensurate
fractional order systems,” Syst. Control Lett., vol. 115, no. 4, pp. 26–33,
2018.

[37] M. A. Bahloul, Z. Belkhatir, and T. M. Laleg-Kirati, “Initialization of frac-
tional order systems for the joint estimation of parameters and fractional
differentiation orders,” in Proc. Amer. Control Conf., 2022.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


