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Abstract— Goal: To evaluate the suitability of 

seismocardiogram (SCG) and gyrocardiogram (GCG) recorded at 
the skin level to classify aortic stenosis (AS) patients from healthy 
volunteers, and to determine the optimal sensor position for the 
classification. Methods: SCG and GCG were recorded along three 
axes at five chest locations of fifteen healthy subjects and AS 
patients. Signal frames underwent feature extraction in frequency 
and time-frequency domains. Then, binary classification was 
performed through three machine learning and three deep 
learning methods, considering SCG, GCG, and their combination. 
Results: The highest classification accuracies were achieved using 
Support Vector Machine (SVM) classifier, with the best sensor 
locations being at the mitral valve for SCG signals (92.3% 
accuracy) and at the pulmonary valve for GCG (92.1%). 
Combining SCG and GCG data allows for further improvement 
in the achievable accuracy (93.5%). Jointly exploiting SCG and 
GCG signals and both SVM- and ResNet18-based classifiers, 40 s 
of monitoring allows for reaching 97.2% accuracy with a single 
sensor on the pulmonary valve. Conclusions: Combining SCG and 
GCG with adequate machine learning and deep learning 
classifiers allows reliable classification of AS patients. 
 

Index Terms— wearables, seismocardiogram, gyrocardiogram, 
machine learning, aortic stenosis, sensors. 
 

Impact Statement— Cardiac-induced accelerations and 
angular velocities at the skin level allow classifying aortic stenosis 
patients. 
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I. INTRODUCTION 
ORTIC stenosis (AS) is among the three most common 
valvular heart diseases in Western countries, occurring in 
about 3% of patients over 75 years of age [1]. Major risk 

factors for the development of aortic stenosis include 
hypertension and metabolic diseases. Hence, recent 
observational studies reported that due to the increasing 
prevalence of these cardiac risk factors, around 2% of people 
aged 55 years or older are already living with severe AS in high-
income countries [2], [3]. This cardiovascular disorder is 
caused by a degenerative calcification of the valvular cusps, 
which increases leaflet stiffness and reduces the systolic 
valvular opening, increasing the mean pressure gradient (∆P) 
between the left ventricle (LV) and the aorta [4], [5]. The 
typical course of AS includes a prolonged asymptomatic period, 
after which severe symptoms might appear once a significant 
reduction in stroke volume occurs over time [4], [5]. According 
to guidelines, severe AS is defined by a ∆P between the LV and 
aorta above 40 mmHg, an aortic valve area (AVA) smaller than 
1 cm2, and a peak aortic jet velocity across the valve higher than 
4.0 m/s [6]–[8]. These parameters are commonly obtained by 
performing an echocardiogram (hereinafter echo) [9], [10]. 
However, these current echo parameters could lose their 
reliability in some specific AS settings, provoking an under-
detection and underestimation of the severity of this valvular 
defect. Indeed, inconsistencies in the echo metrics may occur in 
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the presence of left ventricular dysfunction where peak aortic 
jet velocity and ∆P might be less than 4 m/s and 40 mmHg, 
respectively, also in the presence of severe AS [11]. If the 
disease is not detected, it will, of course, not be treated or 
treated too late. Unfortunately, late diagnosis and late referral 
for treatment are common in the AS field, with tremendous 
consequences on the outcomes and survival of these patients 
[12]. 

Additional advanced imaging tests such as computed 
tomography (CT) or cardiac magnetic resonance imaging 
(MRI) could be performed to obtain more detailed images of 
the heart and its valves [9], [10]. During CT, images of the heart 
are acquired using X-rays from various angles. Subsequently, 
these images are reconstructed into three-dimensional images. 
CT can be used to assess the size and shape of the aortic valve 
and to identify the presence of cusp calcifications. However, CT 
is not ideal for evaluating the function of the aortic valve and 
the amount of blood flow passing through the valve. MRI uses 
magnetic fields and radio waves. During the scan, a series of 
images of the heart from different angles are acquired, which 
are then reconstructed into three-dimensional images [13].  

Unlike CT, MRI can be used to assess the function of the 
heart valve and the amount of blood flow passing through it. 
However, MRI may be less accurate than CT in evaluating the 
presence of aortic calcifications [13]. 

These techniques have limitations primarily related to their 
invasiveness, complexity, and costs. In fact, advanced imaging 
techniques such as echocardiography, CT, and MRI require the 
use of expensive equipment and the presence of highly 
specialized personnel during diagnostic examinations [14]. 

For all these reasons, new solutions that involve the use of 
wearable sensors are emerging. These devices show great 
promise in various fields, including the clinical-diagnostic 
realm, particularly in the cardiac domain. The introduction of 
wearable sensors in the cardiac field represents a new frontier 
in the diagnosis and monitoring of cardiovascular diseases, 
including AS. 12‐lead and single-lead ECG, in conjunction with 
deep learning (DL) algorithms, have been demonstrated to be 
potentially reliable screening tools for detecting significant AS 
[15]. However, biopotential recording suffers limitations as the 
ECG signal quality may be affected by noise and other 
confounding factors, especially when wearable devices are 
used, caused by skin-impedance changes, motion artifacts, and 
improper device installation. As an alternative to ECG 
recording, a promising solution is represented by sensors 
enabling recording vibrations induced by the heart in the form 
of linear accelerations (called seismocardiogram, hereinafter 
SCG) and angular velocities (called gyrocardiogram, 
hereinafter GCG) of the chest's surface to which they are 
attached. The operating principle is further detailed in Section 
II.A. The SCG and GCG have found application in the 
diagnosis of various cardiovascular diseases, such as aortic 
valve diseases [16], myocardial infarction [17], [18], atrial 
fibrillation [19], [20], and heart failure [17], [21], and in 
monitoring the effects of cardiac resynchronization therapy 
[22]. However, only a few studies in the literature tried to 
classify AS based on cardio-mechanical recordings, and they 
always used ECG to delineate SCG and GCG templates [23]–

[25]. This strongly limits our knowledge about the applicability 
of SCG and GCG in recognizing AS patients without the 
support of a synchronized ECG signal.  

Moreover, it is necessary to observe other limitations of the 
current state of the art in the field. All previous investigations 
that have attempted to classify AS suggested measuring SCG 
and sometimes GCG through magneto-inertial sensors placed 
on straps or bands around the thoracic cage, typically at the 
centre of the sternum [23]–[27]. This position, anatomically 
difficult to reproduce across studies, is prone to sensor 
placement errors and does not guarantee the absence of sensor 
displacement during measurement. To date, no study has 
employed wearable sensors in close contact with the skin 
surface, potentially improving the quality of the collected data. 
Additionally, none of the studies have yet explored multiple 
positions on the ribcage to optimally record SCG and GCG 
signals relevant to classifying patients with AS. In a previous 
study conducted by our research group, for instance, we 
demonstrated that cardiac monitoring of heart rate (HR) using 
magneto-inertial sensors is more accurate when the sensor is 
intimately placed in contact with the chest around the mitral 
valve area, even though literature typically positions magneto-
inertial sensors nearby the xiphoid process [28]. 

To tackle all these limitations, our study focuses on the multi-
site (five sensors) and multi-dimensional (three-axis) 
registration of accelerations and angular velocities induced by 
cardiac vibrations using magneto-inertial units with sensors 
intimately attached to the skin. We carried out experiments on 
both healthy volunteers and patients with severe AS. The 
multidimensional and distributed signals from SCG and GCG 
are employed to classify AS patients, utilizing various ECG-
independent Machine Learning (ML) and DL algorithms. The 
objectives of this research are threefold: 1) to assess the 
performance of classifiers in accurately distinguishing AS 
patients from healthy volunteers, exclusively based on SCG and 
GCG signals, 2) to explore the advantages resulting from the 
fusion of information extracted from both SCG and GCG 
signals, and 3) to determine the optimal sensor position, guiding 
further research in this domain. 

 
Fig. 1.  Simultaneous recordings of ECG, GCG (shoulder-to-shoulder 
direction), and SCG (dorsoventral direction). MC and MO: mitral valve closure 
and opening; AC and AO: aortic valve closure and opening. 
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II. MATERIALS AND METHODS  

A. SCG and GCG signals 
Each cardiac cycle involves the heart twisting forward and 

touching the chest wall. As a result, vibrations in the chest can 
be detected with an accelerometer or a gyroscope attached to 
the sternum. The accelerometer records the linear acceleration 
of the chest (SCG), while the gyroscope records the angular 
velocity of the chest (GCG). Typically, the SCG signal is 
recorded using the dorsoventral axis of the accelerometer 
positioned on the xiphoid process. Since the 1990s, SCG has 
been used to measure the motion of the myocardium during 
ventricular contraction [29], [30]. Later, studies suggested that 
some fiducial points on the dorsoventral SCG signal were 
associated with aortic and mitral valve opening and closing 
events, as shown in Fig.1 [31]. More recently, a gyroscope 
placed on the sternum was used to collect GCG signals. This 
consists of recording the angular velocity of the chest caused by 
the heart's rotation. The rate of the angular velocity of the thorax 
can be described as the speed of rotation and the axis around 
which it rotates. As for the SCG, the GCG has also been defined 
as a new technique for monitoring the heart timing intervals 
exhibiting fiducial points related to the opening and closure of 
the aortic valve and mitral valve [32]–[34]. An example in 
which SCG and GCG signals are compared to an ECG signal is 
shown in Fig.1.  

B. Experimental Set-up and Protocol 
This study includes fifteen healthy subjects -healthy group- 

(4 males and 11 females, age: 26 ± 3 years, body mass: 61 ± 10 
kg, BMI: 21 ± 2 kg/m2, expressed as mean ± standard 
deviation) without evidence of cardiovascular diseases and 
fifteen AS patients (8 male and 7 females, age: 80 ± 12 years, 
body mass: 72 ± 14 kg, BMI: 26 ± 5 kg/m2). Among AS 
patients, fourteen were diagnosed with severe AS, while one 
was diagnosed with moderate AS. The AS severity was 
assessed through an ultrasound examination performed by 
specialized physicians combined with the measurement of the 
main hemodynamic parameters during left heart 
catheterization, as summarized in Table I. These values were 
used to evaluate the severity of AS and classified it as either 
mild (AVA>1.5 cm2, AVA/BSA³1.0 cm2/m2, 2.6 m/s ≤ 𝑉!"# ≤
	2.9 m/s, Δ𝑃 ≤20), moderate (1.0 cm2≤AVA≤1.5 cm2, 0.6 
cm2/m2≤AVA/BSA≤0.85 cm2/m2, 3.0 m/s ≤ 𝑉!"# ≤	4.0 m/s, 
20≤ Δ𝑃 ≤40), or severe (AVA<1.0 cm2, AVA/BSA<0.6 
cm2/m2,	𝑉!"# >4.0 m/s, Δ𝑃>40) [35]. 

Linear accelerations and angular velocities of the rib cage 
were recorded using commercial inertial measurement unit 
(IMU) sensors (Xsens Technologies B.V., Enschede, 
Netherlands) located at five different points of the thorax, as 
shown in Fig.2.  
 

The placement of the sensors before the test was guided by 
an expert physician, who placed them at the levels of the main 
areas of heart auscultation in a patient in a supine position. 
Specifically, they were positioned to correspond with the aortic 
valve (AO), mitral valve (MV), tricuspid valve (TV), 
pulmonary valve (PV), and with the xiphoid process (X) by 
using bi-adhesive medical tape typically employed in motion 
capture recordings [36]. The main 5 areas were identified 
through the palpation of the precordium, as usually performed 
during cardiac examination, and confirmed the sensors position 
by using fluoroscopy during left/right catheterization and 
coronary angiography. Each IMU sensor embeds a triaxial 
accelerometer and a triaxial gyroscope to record SCG and 
GCG, respectively.  

Hence, both the SCG and GCG signals were recorded along 
the x-axis (defined as the head-to-toe direction), y-axis (defined 
as the shoulder-to-shoulder direction), and z-axis (defined as 
the anterior-posterior direction). 

Regarding the healthy group, data were collected at the 
University Campus Bio-Medico di Roma. The recruitment was 
accomplished in adherence to the Declaration of Helsinki and 
after the ethics committee approval of our institution (Prot. 
PAR 04.22 OSS). As described above, the five IMU sensors 
were placed on the thorax at the skin level. Subsequently, each 
subject was instructed to assume a lying position and the SCG 
and GCG signals were collected for 120 s at a sampling rate of 
120 Hz. 

Data from the AS group were recorded during the cardiac 
catheterization preceding the transcatheter aortic valve 
implantation (pre-TAVI), at the Cardiology Unit of the 
Fondazione Policlinico Universitario Campus Bio-Medico, 
Rome, Italy. During this procedure, a catheter is inserted into 
the heart chambers under fluoroscopy guidance to measure 
intracardiac pressures and hemodynamic parameters, with 
insertion occurring intermittently during specific phases of the 
cardiac catheterization procedure rather than continuously 
throughout. 
 
 

TABLE I 
MAIN HEMODYNAMIC PARAMETERS OF AS PATIENTS 

Patient 
number 

AVA 
[cm2] 

AVA/BSA 
[cm2/m2] 

𝑉!"# 
[m/s] 

Δ𝑃 
[mmHg] 

1 0.8 0.47 4.01 45 
2 0.6 0.28 4.78 50 
3 NE NE 5.04 NE 
4 1.0 0.62 3.23 NE 
5 0.5 0.29 3.58 36 
6 0.7 0.41 3.07 25 
7 0.8 0.41 3.51 NE 
8 0.4 0.24 NE 15 
9 0.8 0.39 5.40 NE 

10 NE NE 4.20 NE 
11 0.7 0.39 3.98 40 
12 0.4 0.26 4.60 75 
13 0.9 0.58 2.67 NE 
14 0.8 0.45 NE 12 

15 0.45 0.30 3.88 30 

NE: Not Executed; AVA: Aortic Valve Area; BSA: Body Surface Area;  
Δ𝑃: pressure gradient between aorta and left ventricle; 𝑉$%&: peak velocity. 
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Fig. 2.  (a) Schematic representation of the positioning of the five IMU sensors on the chest (in the positions AV: aortic valve, PV: pulmonary valve, TV: tricuspid 
valve, X: xiphoid process, MV: mitral valve); (b) Example of SCG (along x, y and z axes) and GCG (along x, y, z axes) signals collected during a test with a lying 
subject; (c) Schematic representation of the protocol for the healthy group and the AS group; (d) Algorithms used for AS classification. 
 
The recruitment was accomplished in adherence to the 
Declaration of Helsinki and after the ethics committee approval 
of our institution (Prot. PAR 04.22 OSS). All participants 
provided written informed consent to participate in the study. 
Before the procedure, the five IMU sensors were placed on the 
thorax of the AS patients when lying on the operating table. 
Subsequently, the SCG and GCG signals were recorded while 
measuring intracardiac pressures for the entire duration of the 
procedure (about 1h) at a sampling rate of 120 Hz. 
Subsequently, 120 s segments were selected from the one-hour 
recording after visual inspection, ensuring that the chosen 
segments displayed minimal motion artifacts and clearly visible 
cardiac peaks.  

SCG and GCG signals of both the healthy and AS groups 
were stored in the internal memory of the IMU sensors and then 
downloaded to the computer for further analysis. In addition, 
hemodynamic parameters obtained following the doctor’s 
evaluation of cardiac catheterization were considered per each 
subject, as reported in Table I.  

C. Signal Pre-processing 
The collected signals were pre-processed in MATLAB® 

2023a environment. First, a finite impulse response (FIR) band-
pass filter with cut-off frequencies of 0.1 Hz and 30 Hz was 
applied to all axes of SCG and GCG signals. This allowed us to 
select only the signal frequencies related to the cardiac 
mechanical activity. Then, each signal was resampled at R = 60 
Hz to reduce the computational complexity of the subsequent 
processing.  

The resulting signals were then segmented into overlapping 
frames, using rectangular time windows of length L = 10 s with 
an overlap O = 80%, allowing a separation of 2 s between 
consecutive segments. A set with K = !1 + !

!"#
$$
%
− 1&' = 56 

frames, each comprising 𝐴 = 3	×	(𝐿	×	𝑅) samples considering 
all three axes, is thus generated from each original SCG or GCG 
acquisition lasting S = 120 s. The frames thus created were 
treated as individual samples in the considered systems, 

meaning that an inference about the presence of AS conditions 
is carried out on the basis of a single frame lasting L seconds, 
while the training of the employed classifier was conducted 
relying on the availability of a set of segments each lasting L = 
10 s.  

D. Signal representations 
The pre-processed signals were further treated in order to 

generate the representations fed to the employed classifiers. 
Specifically, the frequency and time-frequency domains were 
exploited to this aim, considering respectively the power 
spectral density (PSD) and the absolute values of the short-time 
Fourier Transform (STFT) of the considered frames. Using a 
frequency resolution of 1/3 Hz, subframes lasting 3 s with an 
overlap of 98%, and Chebyshev windows for subframe division 
when computing STFT, the obtained representations contain 3 
(channels)×30 (Hz)× !

!/'
(resolution) = 90 features for the PSD, 

and 3×90×106 = 28620 features (due to the used MATLAB® 

implementation), arranged as [90´106] planes of a 3D tensor, 
for the STFT representations. 

It is worth mentioning that the performed division into 
frames was carried out without any reference to the occurrence 
of specific cardiac events, such as valve closure or opening, in 
the processed signals. While the PSD representation contains 
only frequency-related content, making it fairly independent 
from the temporal behavior, the representations in the STFT 
domain depend on the performed frame temporal division. In 
order to properly handle these latter, translation-invariant 
classifiers should be therefore employed. 

E. Classifiers  
An extensive set of binary classifiers was considered to 

evaluate the feasibility of estimating whether or not a subject 
exhibit AS on the basis of non-invasive measurements from 
IMU sensors. Specifically, both classic ML approaches as well 
as DL frameworks were considered in the performed study. 
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As for classic ML algorithm [37], approaches based on support 
vector machines (SVMs) and ensembles of classification trees 
were exploited. In more detail, SVMs with a Gaussian kernel 
were considered, while both random forest (RF) and AdaBoost 
(AB) were employed as tree ensembles. All the considered 
classic ML classifiers were fed with PSD representations of 
SCG and GCG frames. The possibility to jointly exploit SCG 
and GCG signals with classic ML methods was also 
investigated, by using concatenations of the PSD features from 
accelerometer and gyroscope as input of the classifiers. 

As for DL approaches, convolutional neural networks 
(CNNs) were exploited to derive discriminative information 
from the computed STFT representations. In more detail, since 
the employed IMU sensors provide data along three axes, the 
3D tensors with the STFT representation of either SCG or GCG 
signals were used as inputs of networks originally proposed to 
perform image classification, after being resized to comply with 
the requirements of the used architectures. It is worth noting 
that STFT representations can be properly used jointly with 
CNNs even if the segmentation of the original signals into 
frames of L seconds is performed without reference to specific 
events, thanks to the translation-invariant capability that 
characterizes neural networks relying on convolutions. 

Transfer learning is exploited to adapt networks pre-trained 
on ImageNet [38] for the task here considered, fine-tuning them 
on SCG or GCG training data for a binary task, using a cross-
entropy loss function for back-propagation, stochastic gradient 
descent (SGD) with momentum set at 0.9, and a batch size of 
16. To perform a thoughtful evaluation of this approach, several 
effective networks proposed in literature were considered in the 

performed tests, namely ResNet18 (RN18) [39], InceptionV3 
(IV3) [40], and DenseNet201 (DN201) [41]. To adapt the 
aforementioned networks for the considered task, their last 
layer was modified to handle binary classification tasks, and all 
their preceding layers were fine-tuned using the available 
training data. Those specific networks were selected to test 
solutions with different computational complexities, with 
DN201 typically demanding more training and predictive time 
than IV3, which, in turn, has higher computational requirements 
than RN18. 

Pre-trained networks were also employed to design a strategy 
relying on deep learning to jointly exploit both SCG and GCG 
data. In more detail, to achieve this goal, it is not possible to 
combine both sources of information at a feature level as done 
with standard classifiers since it is not possible to use tensors 
with six planes (three for SCG and three for GCG) as input to 
the employed pre-trained networks. Moreover, accelerometer 
and gyroscope data cannot be combined along the other two 
dimensions since such an approach would not result in a proper 
use of CNN properties. A score-fusion strategy was therefore 
adopted by first fine-tuning pre-trained networks on SCG and 
GCG information separately. When a decision has to be taken 
for a probe frame, accelerometer and gyroscope data extracted 
from the same time window are fed to the networks fine-tuned 
on the two kinds of signals, and the two produced outcomes, 
i.e., the two expected probabilities of AS conditions, are 
averaged to produce a single score, used to take a decision on 
the basis of predictions performed on both SCG and GCG data. 

TABLE II 
RECOGNITION PERFORMANCE, IN TERMS OF ACCURACY (MEAN ± STANDARD DEVIATION, IN %), FOR A SINGLE FRAME LASTING 10S 
USED AS PROBE, CONSIDERING SCG AND GCG SENSORS PLACED AT DIFFERENT POSITIONS, AND DIFFERENT CLASSIFIERS. THE BEST 

RESULTS FOR EACH TYPE OF INPUT AND SENSOR POSITION ARE REPORTED IN BOLD. 
 

Signal Position Classifier 
SVM RF AB RN18 IV3 DN201 

SCG 

PV 80.8±5.6% 77.7±6.0% 77.3±6.8% 78.1±6.2% 75.7±7.7% 77.5±6.8% 
AO 77.7±7.1% 67.4±6.0% 69.4±6.9% 72.9±5.6% 68.7±6.8% 69.1±7.8% 
X 74.5±6.9% 67.1±5.9% 62.7±8.5% 69.1±6.6% 67.3±7.1% 62.7±7.6% 

MV 92.3±3.9% 86.2±2.7% 84.6±3.3% 86.5±3.9% 84.1±3.6% 85.8±4.3% 
TV 75.5±6.6% 72.9±6.3% 75.9±6.2% 77.4±6.1% 73.7±7.4% 73.4±6.7% 

GCG 

PV 92.1±3.4% 82.1±3.8% 82.4±5.5% 84.1±4.6% 83.2±3.9% 84.5±4.2% 
AO 83.4±6.8% 79.1±5.2% 78.5±5.8% 79.6±4.7% 78.9±4.0% 78.1±5.2% 
X 84.7±5.4% 78.4±7.3% 75.4±8.0% 79.2±3.3% 78.9±3.8% 81.9±3.6% 

MV 74.9±4.5% 72.4±2.6% 76.2±3.5% 78.3±6.3% 78.1±7.7% 75.5±8.7% 
TV 83.9±3.4% 79.5±6.2% 79.0±4.8% 85.1±4.9% 84.8±5.3% 83.8±5.6% 

SCG+
GCG 

PV 92.8±3.2% 83.1±3.4% 85.5±4.7% 85.7±5.1% 89.8±4.1% 86.9±4.4% 
AO 84.6±5.6% 79.8±5.4% 78.7±5.7% 82.3±4.8% 82.8±4.5% 81.2±5.4% 
X 85.0±4.9% 80.2±5.8% 78.4±7.2% 79.6±3.8% 81.4±4.1% 79.9±4.2% 

MV 93.5±2.6% 86.8±1.9% 87.1±2.8% 87.6±4.5% 85.5±4.2% 86.7±4.8% 
TV 84.1±3.6% 81.9±4.9% 84.6±4.4% 86.1±4.1% 87.6±5.9% 86.4±5.8% 

SVM: Support Vector Machine, RF: Random Forest, AB: AdaBoost, RN18: ResNet18, IV3: InceptionV3, DN201: DenseNet201 
AO: Aortic valve, MV: Mitral valve, TV: Tricuspid valve (TV), pulmonary valve (PV), and with the xiphoid process (X) 
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III. RESULTS  
The collected database, with acquisitions taken from 15 AS 

patients and 15 healthy subjects, was used to evaluate the 
capability of estimating AS by means of a user-convenient 
setup based on wearable inertial sensors.  

The first objective of the performed test was to assess the 
effectiveness of using SCG or GCG signals for the proposed 
task and evaluate the improvements achievable by resorting to 
both of the considered kinds of data. To this aim, a 5-fold cross-
validation evaluation strategy was used in the performed test by 
selecting from the available dataset, for five different iterations, 
80% of the AS and healthy subjects to provide data for training 
and validation (10% of considered data used for validation), and 
the remaining ones for the testing samples. This way, disjoint 
sets of subjects were always considered for training and testing 
purposes, thus guaranteeing the generalizability of the obtained 
results. In more detail, each iteration was carried out 56×(30×0.8) 
= 1344 frames from 24 subjects for training and validation 
purposes, and 56×(30×0.2) = 336 frames from 6 subjects for 
performance evaluation. 

Table II reports the accuracies obtained when employing 
SCG and GCG from sensors placed in different positions and 
exploiting different classifiers. From the obtained results, it can 
be seen that, in general, the best performance can be obtained 
when considering SCG signals recorded at the MV position and 
GCG data collected at the PV position. For the other sensor 
locations, considering GCG data typically allows us to achieve 
better results than using SCG signals. It is, therefore, evident 
that selecting the place where to locate the employed inertial 
sensors has significant effects on the reliability of the performed 
predictions.  

The reported accuracies also show that combining SCG and 
GCG data allows for further improvement in the achievable 
performance. In more detail, jointly exploiting accelerometer 
and gyroscope information allows for reducing the performance 
variability among different positions, with PV and MV 
locations still preferable over the others. However, the results 
obtained are significantly more uniform between the distinct 
sensor placements. 

A statistical analysis was also performed to draw more 
significant information from the results obtained. In more 
detail, ANOVA tests were conducted on the results obtained 
considering SCG and GCG collected at different position, to 
evaluate whether the achieved performance shows significant 
differences among different classifiers. Considering SCG 
signals, a p-value at 2.18% was obtained for the MV position, 
with subsequent Tukey's honest significant difference (HSD) 
tests revealing relevant differences at 5% significance level 
when comparing SVM against AB, IV3, and DN201. For GCG 
signals, a p-value at 1.15% was obtained for ANOVA tests on 
the PV position, with HSD tests revealing relevant differences 
when comparing SVM against all the other classifiers. When 
jointly exploiting SCG and GCG data, p-values at 1.84% and 
2.79% were respectively obtained for ANOVA tests on the PV 
and MV positions, with significant differences between SVM 
and RF for PV, and between SVM and all the other classifiers 
apart from RN18 for MV. Tests performed using CNNs 
therefore do not show improvements when selecting networks 

with a computational complexity higher than RN18. This 
behavior may be since the amount of data available for training 
purposes is relatively limited and probably not enough to 
perform an effective fine-tuning of complex frameworks.  

Further ANOVA tests were conducted to evaluate whether 
there are significant differences among the results obtained 
when placing sensors at different positions. For SCG, the 
ANOVA test performed provided a p-value at 0.14%, with 
subsequent HSD tests revealing significant differences between 
MV and all the other locations. For GCG, a p-value at 1.45% 
was obtained in the ANOVA test, for differences between PV 
and MV locations. The use of both SCG and GCG resulted in a 
p-value at 1.28% for differences of PV and MV against AO. 

In order to evaluate whether further enhancements could be 
attained, tests were performed to evaluate the effectiveness of 
jointly exploiting two classifiers. With no claim for optimality, 
we selected SVM and RN18 for this analysis, and evaluated the 
performance achievable when summing the prediction scores 
independently produced by both of them, after having 
performed a normalization to the same range, before taking a 
decision. Table III reports the performance in terms of 
accuracy, precision, recall, and F1-score obtained for sensors 
placed in different positions, jointly using SCG and GCG data 
and combining the outcomes of SVM and RN18 classifiers. 
Significant differences were still found when comparing PV 
and MV positions against AO, for a p-value at 0.96% in an 
ANOVA test on accuracies. 

It is worth mentioning that the results so far reported are 
referred to predictions carried out based on SCG and GCG 
frames lasting 10 s. Nonetheless, when longer acquisitions are 
available, it would be possible to exploit multiple frames to 
estimate the patients’ conditions, by leveraging on a score-level 
information fusion approach, that its, performing a decision 
over the available probe based on the average prediction scores 
computed for each processed frame. Following such approach, 
the behavior reported in Fig 3 can be achieved. As can be seen, 
accuracies above 95% can be attained by considering 
acquisitions taken at PV or MV positions and lasting 40 s.  

For the same durations, data collected at X or TV positions 
allow us to achieve accuracies greater than 90%, while signals 
associated with the AO position provide the worst results in the 
performed tests. 

 

 
TABLE III 

RECOGNITION PERFORMANCE, IN TERMS OF ACCURACY (MEAN 
± STANDARD DEVIATION, IN %), FOR A SINGLE FRAME LASTING 

10S USED AS PROBE, CONSIDERING SENSORS PLACED AT 
DIFFERENT POSITIONS, JOINTLY EXPLOITING SCG AND GCG 
SIGNALS, AND BOTH SVM- AND RN18-BASED CLASSFIERS. 

 

Position Accuracy Precision Recall F1-score 

PV 93.9±3.2% 95.37±2.0% 92.1±4.8% 93.5±3.5% 
AO 85.2±5.1% 86.35±6.1% 87.1±5.6% 85.6±4.5% 
X 87.2±5.7% 86.03±5.9% 89.5±4.9% 87.7±5.4% 

MV 93.7±2.7% 96.18±2.1% 90.9±4.4% 93.3±2.9% 
TV 87.5±3.8% 87.24±5.1% 89.2±3.3% 87.8±4.0% 
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Fig. 3. Mean recognition accuracies obtained in the performed cross-validation 
tests for increasing probe durations, obtained jointly exploiting SCG and GCG 
signals, used as inputs to SVM- and RN18-based classifiers. The outcomes 
obtained from analyzing different frames are fused at a score level. 

IV. DISCUSSIONS 
In this work, heart-induced linear acceleration and angular 

velocities data were acquired in healthy volunteers and AS 
patients with five IMU sensors directly attached to the skin at 
the AO, MV, TV, PV, and X levels. The objective was to 
evaluate the suitability of SCG and GCG in distinguishing 
healthy volunteers from AS patients. Also, the measurements 
of SCG and GCG in the five body sites allowed us to further 
investigate optimal sensor position to record data for 
classification purposes. 

For the binary classification, both classic ML and DL 
classifiers have been implemented and tested. Specifically, 
SVM, RF, and AB were employed as classic ML algorithms, 
while RN18, IV3, and DN201 were used as DL approaches. A 
5-fold cross-validation method was employed, involving five 
separate iterations where 80% of AS patients and healthy 
subjects from the available dataset were chosen for training 
purposes, with the rest used for testing. This approach ensured 
that different sets of subjects were used for training and testing 
in each iteration, thereby enhancing the reliability and 
generalizability of the obtained results.  

As reported in Table II, the best classification accuracy 
among the evaluated classifiers is obtained with SVM and 
RN18. Also, the tests carried out with the other CNNs indicate 
that choosing networks with greater computational complexity 
does not lead to improved results. Considering the SCG, the 
best classification is obtained when the data are collected at MV 
level with an accuracy of 92.3±3.9%. Differently, GCG exhibits 
better accuracy (92.1±3.4%) when recorded at the level of PV. 
Both these results are obtained considering SVM classifier. The 
performance improves by combining SCG and GCG data, with 
PV and MV locations still preferable over the others and an 
accuracy of 92.8±3.2% and 93.5±2.6%, respectively.   In both 
cases, the AO position does not demonstrate optimal 
performance, even though it might be expected to be the ideal 
body landmark for identifying alterations of angular velocities 
and linear accelerations between healthy individuals and AS 
patients. However, this can be explained by the fact that in 

hearts with AS, the developing hypertrophy of the left ventricle 
causes a slight rotation of the heart towards the right, meaning 
that the left ventricle becomes more anterior and central 
compared to normal. The obtained accuracy values are slightly 
lower compared to those of [42], which reached an accuracy of 
98% with a sensor on the chest, but using a CNN with a leave-
subject-out cross-validation. However, are in line with those of 
[23] where the classification is based on SCG and GCG 
morphological characteristics and heart rate variability 
parameters. This result offers new insights compared to 
previous studies where sensors were positioned near the center 
of the sternum. 

Focusing on the joint use of SCG and GCG signals, 
classification results improve for all the sensor positions, in 
accordance with [27]. Our results show that even in this case, 
SVM was the most powerful classifier. As reported in Table IV, 
no other study has identified SVM and RN18 as the best 
classifiers, although it should be clarified that often this 
classifier was not even analyzed due to the complexity of the 
datasets and the features used for classification. 

Lastly, by merging results obtained in position analysis and 
classifiers, Fig 3 shows the classification accuracies obtained 
jointly using SCG and GCG data and combining the outcomes 
of SVM and RN18 classifiers. With only 40 s of data recorded 
by the user, accuracies above 95% can be attained by 
considering acquisitions taken at PV or MV positions, with 
greater values from PV (97.2%).  

It is worth mentioning that a concern regarding the reliability 
of the performed study may derive from the notable differences 
in age between the AS and control groups. To evaluate whether 
such variations could produce potential bias in the AS decision-
making process, we performed tests to assess the feasibility of 
predicting a subject’s age leveraging on the availability of SCG 
and GCG measurements. As for the considered classic ML 
classifiers, we used the PSD representations of SCG and GCG 
frames as age predictors and employed both support vector 
machine (SVM) and least-squares (LS) as regression methods. 
Tests were performed selecting, for five distinct iterations, 80% 
of the available AS and healthy subjects to train the regressors, 
and the disjoint set with the remaining subjects for testing them. 
The obtained results are reported in terms of obtained root mean 
square error (RMSE) in Table IV, testifying that the considered 
signals have limited predictive capability regarding subjects’ 
age, with a proportionate reduction of error (i.e., gain in 
predicting age when analyzing the collected signals) ranging 
from 2% to 47%, with better results achieved by jointly using 
both SCG and GCG data. The obtained results testify that, while 
the collected measurements allow to effectively distinguish 

 

TABLE IV 
AGE REGRESSION PERFORMANCE, IN TERMS OF RMSE, FOR A 

SINGLE FRAME LASTING 10S USED AS PROBE (RMSE = 27.8 USING 
MEAN AGE AS PREDICTED VALUE). 

 

Pos. Least-squares SVM 
SCG GCG SCG+GCG SCG GCG SCG+GCG 

PV 24.6 27.3 22.4 22.8 26.6 21.3 
AO 26.8 21.9 22.3 26.1 20.8 20.7 
X 27.5 20.5 20.9 26.5 20.5 20.5 

MV 20.7 27.3 20.3 20.5 27.7 20.3 
TV 25.3 24.1 26.1 25.4 23.2 24.1 
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between AS and healthy subjects, they may be scarcely 
correlated with their age, suggesting the relevance of the 
performed study on AS predictability also with the limits of the 
considered database. 

On the other hand, results comparable with the performance 
we achieved were reported in similar studies that either required 
additional signals for classification (e.g., electrocardiogram or 
photplethysmogram), or used SCG and GCG, even if collected 
through a single sensor placed at the center of the sternum (see 
Table V). 

On the basis of our previous results demonstrating the 
possibility to accurately extract respiratory and cardiac 
information from GCG [28], [43], [44] without using ECG for 
segmenting the signal, further studies will be devoted to the use 
of additional features (e.g., respiratory rate, HR, linear and non-
linear heart rate variability indexes) in the classification 
algorithms to improve the overall classification performances. 
Additionally, in our research, we carried out a binary 
classification. Gathering data from a broader patient pool with 
varying degrees of AS, such as severe, moderate, and mild 
cases, would be beneficial for evaluating our proposed 
framework in a multi-class classification context. This would 
also aid in predicting specific hemodynamic parameters (like 
AVA) using SCG and GCG data. 

V. CONCLUSION 
The innovative approach of classifying AS patients using 

multi-site, multi-dimensional, ECG-independent measurements 
of cardiac-induced accelerations and angular velocities directly 
from the skin has shown promising results. By strategically 
placing just one or two sensors at the MV and PV levels, we can 
capture significant data. Our findings reveal that measurements 
taken from the X, AO, and TV levels offer limited insights 
compared to those from the MV and PV. 

Interestingly, GCG data prove to be more insightful than 
SCG data. By combining these two types of signals and 
leveraging the unique strengths of both SVM and ResNet18 
classifiers, our approach substantially boosts both the accuracy 
and reliability of patient classification. Recording data for just 
40 s at the PV level, while simultaneously utilizing SCG and 
GCG data and combining the insights from both SVM and 
RN18 classifiers, leads to a remarkable 97.2% accuracy in 
identifying patients with AS. This study is a step forward in the 
detection of AS and is essential for preventing irreversible 
disease progression and mortality because most patients with 
AS are asymptomatic. 

TABLE V 
COMPARISON WITH PREVIOUS WORK 

Ref. Signal Sensor 
Position Classifier # of Subjects Instances Accuracy 

[%] 

[23] SCG+GCG+ECG* Center of 
the sternum XGBoost 45  

(13 healthy, 32 AS) 
training: 1868 

test: 468 96.4 

[24] SCG+GCG+ECG* Center of 
the sternum RF 40  

(20 healthy, 20 AS) 
total: 480, 10-fold 
cross validation 99.4 

[25] SCG+GCG+ECG*+ 
PPG* 

Center of 
the sternum RF 40  

(20 healthy, 20 AS) 

training: 960 
test: 176, 10-fold 
cross validation 

98.9 

[25] SCG+ECG*+PPG* Center of 
the sternum RF 40  

(20 healthy, 20 AS) 
total: 540, 10-fold 
cross validation 95.9 

[27] SCG+GCG ND XGBoost 33  
(13 healthy, 21 AS) 

total: 910, leave-
subject-out 93.0 

[26] SCG+ECG* Center of 
the sternum RF 36  

(20 healthy, 16 AS) 

training: 11398 
test: 1266, 10-fold 

cross validation 
99.4 

[42] SCG+GCG+ECG* ND CNN 71  
(51 healthy, 20 AS) 

total: 34476, leave-
subject-out 98.4 

 
 
 
 

Our 
work 

Jointly SCG+ 
GCG 

PV, AO, X, 
MV, TV 

Jointly SVM+ 
RN18 
(10 s) 

30  
(15 healthy, 15 AS) 

training: 1344 
test: 336, 5-fold 
cross validation 

 
PV: 93.9 
AO: 85.2 
X: 87.2 

MV: 93.7 
TV: 87.5 

 
Jointly SCG+ 

GCG 
PV 

Jointly SVM+ 
RN18 
(40 s) 

30  
(15 healthy, 15 AS) 

training: 1344 
test: 336, 5-fold 
cross validation 

97.2 

ND: Not Declared; RF: random forest; XGBoost: extreme gradient boosting; CNN: convolutional neural network; SVM: support vector machine; AV: 
aortic valve; MV: mitral valve; TV: tricuspid valve; PV: pulmonary valve; X: xiphoid process; *: used for signal segmentation; CVDs: cardiovascular diseases; 

ECG: electrocardiogram; PPG: photoplethysmogram. 
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