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Abstract— Goal: REM Sleep Behavior Disorder (RBD) is a 

REM parasomnia that is associated to high risk of developing ⍺-
synucleinopathies, as Parkinson’s disease (PD) or dementia with 
Lewy bodies, over time. This study aims at investigating the 
presence of autonomic dysfunctions in RBD subjects, with and 
without PD, by assessing their sleep structure and autonomous 
nervous system activity along the different sleep stages. Methods: 
To this aim, an innovative framework combining a sleep transition 
model, by Markov chains, with an instantaneous assessment of 
autonomic state dynamics by statistical modeling of heart rate 
variability (HRV) dynamics through a point-process approach, 
was introduced. Results: In general, RBD groups showed lower 
HRV than controls across all sleep stages, as well as higher 
probabilities of transitioning towards lighter sleep stages. 
Subjects also affected by PD present an even lower HRV, but 
better sleep continuity. Conclusions: RBD patients suffer from 
sleep fragmentation and overall autonomic dysfunction, mainly 
due to lower autonomic activation across all sleep stages. 
Coexistence of PD seems to improve sleep quality, possibly due to 
a sleep-related relief of their symptoms.  
 

Index Terms—Autonomous Nervous System, Heart Rate 
Variability, Markov Chains, Point Process, REM Sleep Behavior 
Disorder. 
 

Impact Statement— The proposed approach for 
instantaneous HRV dynamics provides a more time-resolved 
autonomic assessment that can be directly associated with the 
sleep structure, thus allowing for a more fine-grained assessment 
of the autonomic dysfunction in RBD patients with or without PD. 
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I. INTRODUCTION 
LEEP, which is defined as a transitory state during which we 
are not able to actively interact with the surrounding 

environment [1], plays a key role in people wellbeing. Its 
macrostructure can be divided into rapid eye movements 
(REM) phase and further three sleep stages (N1, N2, and N3) 
of non-REM (NREM) sleep [2]. In absence of any sleep 
disorder, N1 acts as a transition between sleep and wake (W) 
states, paving the way for N2 and, finally, N3, as sleep deepens. 
Lastly, in the last and more active phase of the sleep cycle, i.e., 
the REM phase, bursts of rapid eye movements occur, as well 
as distinct temporal patterns and brain-wave interactions [3]. 
Differently from NREM stages, REM presents more sudden 
variations in the measurable physiological parameters, such as 
abrupt changes in arterial blood pressure, heart rate (HR), 
respiration, and a drop in body temperature. In this stage, 
healthy subjects generally show complete muscle atonia, i.e., a 
type of muscular immobility caused by the total relaxation of 
the muscles [2]. 
 This study focuses on a characteristic parasomnia of the 
REM sleep stage called REM Sleep Behavior Disorder (RBD). 
People affected by this disease lose the normal muscle atonia 
of REM stage and engage in dream-enactment behaviors [4]. 
When it is not associated with other neurodegenerative 
disorders, RBD is defined as isolated or idiopathic (iRBD). 
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RBD patients often develop other peculiar ⍺-synucleinopathies 
like Parkinson’s disease (PD, 41.9%) [5], dementia with Lewy 
bodies (50.5%), and multiple system atrophy (7.5%) [6]. 
Specifically, RBD can be a prodromic non-motor symptom of 
PD. Although the incidence of iRBD only reaches 1% in the 
general population older than 60 years, about 90% of them 
receive a diagnosis for ⍺-synucleinopathy within their 15-year 
follow-up, with PD representing 45% of the cases [7]. 
Currently, PD is the most common disease of the central 
nervous system after Alzheimer. Its main feature is the 
presence of Lewy bodies, aggregates of the ⍺-synuclein protein 
that form at the level of the pars compacta of the substantia 
nigra, one of the five basal ganglia [8]. 
 This study aims at characterizing the presence of autonomic 
dysfunctions during different sleep stages in patients affected 
by iRBD, and in patients affected by both RBD and PD (PD-
RBD). Results were statistically compared together with a 
control group of unaffected people. This objective was pursued 
by evaluating the transition probabilities between different 
sleep stages and by performing statistical comparisons to assess 
the presence of any significant difference among the three 
populations. To associate these differences with possible 
autonomic dysfunction, heart rate variability (HRV) indexes 
have been estimated by statistical modeling of the 
cardiovascular system during the first sleep cycle. 

The proposed analysis framework innovatively combines a 
sleep transition model (including the characterization of sleep 
macrostructure) with an instantaneous assessment of 
autonomic state dynamics in a causal way. Such integration 
allows for the identification of biomarkers of the concomitant 
evolution of both sleep and HRV parameters in the populations 
of interest. As a result, the sleep and autonomic features 
highlighted in this study can both characterize RBD in its 
idiopathic and PD-converted forms, and eventually add 
peculiar signatures to allow for their prediction or diagnosis. 

II. MATERIALS AND METHODS  
Participants were enrolled between 2013 and 2021 by the 

Italian Sleep Medicine Centers of Cagliari and Genova (Italy), 
both accredited by the Italian Association of Sleep Medicine. 
The study was conducted in accordance with the Declaration of 
Helsinki and was approved by local Ethics Committee of the 
University Hospital of Cagliari (PG/2018/11699) and IRB of 
University Neurology Clinics at Policlinico San Martino in 
Genoa (IRB approval n. 105/2023 – DB id 13027), and patients 
gave their consent for their data to be anonymously processed. 
In particular, this study was carried out on a retrospective 
collection of clinical and PSG data. Participants with iRBD or 
PD-RBD were diagnosed following the diagnostic criteria of 
the International Classification of Sleep Disorders – third 
edition (ICSD-3) and the Movement Disorder Society Clinical 
Diagnostic Criteria for PD. The Cagliari’s dataset consisted of 
41 polysomnographic (PSG) recordings performed at the 
Interdepartmental Centre for Sleep Medicine of the University 
of Cagliari with the Morpheus EEG and PSG Holter 

(Micromed S.p.A., Treviso, Italy). The Genova’s dataset 
consisted of 37 PSG recordings performed at the Sleep and 
epilepsy center of the IRCCS San Martino Hospital of the 
University of Genova with the BE Plus LTM and MizAR 40 
(EBNEuro S.p.A., Firenze, Italy). From an engineering 
perspective, the different equipments of the two laboratories 
were comparable and did not introduce any bias in the analysis. 
For both centers, sleep scoring was performed manually in 30-
second epochs, according to the American Academy of Sleep 
Medicine scoring criteria [9] whose procedure is also included 
in the last guidelines for video-PSG-based diagnosis of RBD 
from the International RBD Study Group [10]. 

Inclusion criteria in common across all three populations 
were: the presence of an electrocardiographic (ECG) signal of 
acceptable quality in each sleep stage (regardless of its 
duration) during the first sleep cycle; absence of arrhythmias, 
cardiac pacing, sleep apneas, or sleep-related breathing 
disorders according to ICSD-3; absence of pharmacological 
treatments that alter HR or HRV. While for the affected groups 
no other neurological or sleep diseases other than RBD and PD 
were admitted, for the inclusion of participants into the control 
group, the absence of any neurological or sleep disease was 
required. Furthermore, since levodopa medications are proven 
to affect EEG synchronization [11], sleep quality [12], and 
HRV, and in particular it might be associated with less or more 
disruptive self-regulatory processes, in ON and OFF states 
respectively, as observed in PD patients exhibiting motor 
symptoms like freeze-of-gait [13], in this study all recruited 
PD-RBD patients were naïve from dopaminergic therapy. 
Based on these premises, the study population consisted of a 
cohort of 27 patients with iRBD (age 67±7, 63% males), 27 
patients with PD-RBD (age 68±8, 74% males), and 24 
unaffected people forming a control group (CG, age 60±10, 
46% males). Furthermore, their Apnea-Hypopnea Index (AHI) 
values were 2.96±3.07, 3.85±5.34, 5.01±4.18 events/h, 
whereas their Periodic Limb Movement Index (PLMI) values 
were 12.67±17.11, 13.29±15.38, 12.78±15.81 events/h, for the 
CG, iRBD, and PD-RBD groups respectively. 

A. Sleep Structure Analysis 
To delineate the sleep structure from the hypnograms, 

Markov chains were employed to model the transition 
probabilities of passing from one stage to another. While 
continuous-time Markov chains were successfully used to 
characterize sleep structure [14], in this work we considered a 
time-homogeneous Markov chain, as the one described in [15], 
to be applied to full-night hypnograms previously synchronized 
on the sleep onset, up to their last sleep stage different from 
wake. Given that all participants had at least five hours of sleep, 
we limited the analysis to five hours of data for each patient. 

A discrete Markov chain {𝑋!} is defined as a stochastic 
process satisfying the following criteria [16]: the state space 𝑆 
is a finite and countable set, in our case corresponding to 𝑆 =
{𝑊,𝑁1,𝑁2,𝑁3, 𝑅𝐸𝑀}; the time index set is defined as 𝑇 =
{0,1,2, … }; and the conditional transition probability only 
depends on the current state: 
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Pr{𝑋"#$ = 𝑗|𝑋% = 𝑖%, … , 𝑋"&$ = 𝑖"&$, 𝑋" = 𝑖} = 
Pr{𝑋"#$ = 𝑗|𝑋" = 𝑖} (1) 
 
for all 𝑛 ∈ 𝑇 and all states 𝑖%, … , 𝑖"&$, 𝑖, 𝑗. Markov chains 
require the transition probabilities to be constant. One way to 
overcome this limit is to test whether the transition probabilities 
reported in the matrices are time-independent, as in [17]. 
Instead, we opted for dividing the 5-hour hypnograms into non-
overlapping segments to pursue stationarity in the transition 
probabilities. The length of such segments was fixed to 60 
minutes, after a preliminary analysis to find such optimal value 
(data not shown), and discrete Markov chains [7] [8] were 
computed in each one. Transition probabilities 𝑝'( from state 𝑖 
to state 𝑗 of Markov chain {𝑋!} can be computed as 
 
𝑝'( =

"!→#
∑ "!→##

 (2) 

 
where 𝑛'→( represents the number of transitions from state 𝑖 to 
state 𝑗, while the denominator represents the total number of 
transitions starting from state 𝑖. In this way, the overall 
probability to jump from state 𝑖 to all the other possible states 
sums to one. For our sleep macrostructure analysis, these 
probabilities are ordered in a 5 × 5 matrix: 
 

⎣
⎢
⎢
⎢
⎡
𝑝+→+ 𝑝+→,$ 𝑝+→,- 𝑝+→,. 𝑝+→/01
𝑝,$→+ 𝑝,$→,$ 𝑝,$→,- 𝑝,$→,. 𝑝,$→/01
𝑝,-→+ 𝑝,-→,$ 𝑝,-→,- 𝑝,-→,. 𝑝,-→/01
𝑝,.→+ 𝑝,.→,$ 𝑝,.→,- 𝑝,.→,. 𝑝,.→/01
𝑝/01→+ 𝑝/01→,$ 𝑝/01→,- 𝑝/01→,. 𝑝/01→/01⎦

⎥
⎥
⎥
⎤
 (3) 

 
Once the normality of distributions was rejected by the 

Lilliefors test, transition probabilities were tested by the 
unpaired Mann-Whitney U test, followed by the correction via 
the false discovery method (FDR) [18], to investigate the 
presence of any pairwise difference in sleep continuity between 
groups. Test significance was set at p-value < 0.05. 

B. Cardiovascular Characterization 
 To assess autonomic changes during sleep, ECG signals 

were extracted from PSG recordings and up-sampled, when 
needed, to the highest available sampling frequency in the 
dataset (i.e., 512 Hz), to provide a homogeneous temporal 
resolution for the identification of the R-peaks. For each 
participant, ECG waveforms were analyzed with a custom Pan-
Tompkins-based QRS-detection software [19], which extracted 
the sampling instants associated with the R-peak events in the 
signal. The resulting tachograms were automatically analyzed 
and then manually reviewed to correct for missing beats and 
extrasystoles. During this phase, extra beats originated by 
ectopic sources other than the sinoatrial node, such as 
premature ventricular contractions, were excluded from the 
analysis, since misleading with respect to the underlying 
activity of the autonomic nervous system (ANS). Statistical 
modeling of the resulting inter-beat interval series was then 

computed and used to estimate HRV indexes. 
The time-varying nature of the proposed modeling approach 

allows to pause the statistical estimation in the presence of 
irregular RR segments and resume it slightly after, thus 
avoiding the generation of erroneous frequency contents due to 
non-sinus rhythms. 

Standard, window-based HRV methods have been already 
used in this field [20], [21], [22], [23] but they present some 
limitations due to the uneven sampling of the tachogram, which 
usually requires resampling by interpolating functions, thus 
overlooking the intrinsic point process nature of the RR interval 
series, and to the lack of a goodness-of-fit metric when 
parametric approaches (e.g., autoregressive estimates) are 
considered. Importantly, none of the existing methods provide 
an instantaneous estimate of HR and RR interval variance, thus 
requiring the analysis of long signal segments, typically longer 
than five minutes, which is cumbersome in this application, as 
some sleep stages could exhibit a shorter duration and faster 
dynamics. 
 To overcome these limitations, we applied a model that 
exploits the stochastic structure of the heartbeat intervals by 
modeling it as a history-dependent inverse Gaussian (HDIG) 
process as shown in [24]. The HDIG model is defined as: 
 

𝑓D𝑡F𝐻2$ , 𝜃I = J 3%&'
-4(!&2$)(

K
'
) exp O− $

-

3%&'7!&2$&89:*$ ,3<=
)

89:*$ ,3<
)
(!&2$)

Q (4) 

 
where 𝐻2$ is the history of previous RR intervals up to the R-
peak 𝑢>, and the average RR interval 𝜇 is obtained as a 
regression over the past 𝑝 RR intervals (being 𝑝 the order of 
the autoregressive model). The shape parameter of the inverse 
Gaussian (𝜃?#$) and its variance (𝜎-), along with 𝜇, can vary 
over time. A local maximum likelihood method is used to 
estimate the set of unknown parameters 𝜃(𝑡).  

The use of this probabilistic framework allows for the 
instantaneous estimation of the average RR interval (𝜇), 
internal variance (𝜎), and of the indexes derived from the 
spectral analysis. In sleep studies, the advantages of applying a 
point-process approach consist in providing continuous 
estimates for the HRV indexes, thus accounting for the strong 
non-stationarity of HRV oscillations during sleep. Continuous 
estimates for these time-varying parameters allowed us to not 
restrain our analysis to segments longer than 5 minutes. Based 
on a preliminary analysis (data not shown), we empirically set 
the order to 𝑝=9, and the temporal resolution to 0.05s. 
 In the frequency-domain, it is possible to identify the very 
low frequency (VLF, 0.01-0.04 Hz), low frequency (LF, 0.04-
0.15 Hz), and high frequency (HF, 0.15-0.4 Hz) components. 
Physiological interpretation of the VLF component is still 
under scrutiny [25], even though in healthy adults it seems to 
reflect long-term autonomic control related with circadian 
rhythms and hormonal changes, among others [26]. The LF 
component reflects the activity of both sympathetic (SNS) and 
parasympathetic (PNS) nervous system activity as modulated 
by the baroreflex, a homeostatic mechanism that helps us 
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balancing the arterial blood pressure values. The HF 
component is associated with the faster modulation of PNS 
[27], mainly affected by respiration through Respiratory Sinus 
Arrhythmia [28]. The ratio between the LF and the HF 
component is known as the sympathovagal balance, although 
the interpretation of this value must always consider the context 
in which the signal was acquired and the health status of the 
subject [29]. 
 For each sleep stage (i.e., N1, N2, N3, and REM) in the first 
sleep cycle, we considered only the first occurrence, and 
computed the following parameters: RR interval (𝜇//), 
variance (𝜎//- ), power in the LF band (𝐿𝐹//), power in the HF 
band (𝐻𝐹//), normalized LF power (𝐿𝐹𝑛//), normalized HF 
power (𝐻𝐹𝑛//), and ratio between the power in the two bands 
(𝐿𝐹 𝐻𝐹⁄ //). The normalized values were obtained by dividing 
the corresponding power band by the difference between the 
total power and the power in the VLF band, for every time 
instant. 
 For each parameter and sleep stage, continuous estimates of 
HRV indexes have been averaged for statistical analyses. The 
confidence bounds for such parameters can be seen in Table I. 
After rejecting the normality of the distributions by using the 
Lilliefors test, the non-parametric Kruskal-Wallis test was used 
to assess the presence of significance among all populations, 
while between-group differences were assessed by unpaired 

Mann-Whitney U test and corrected via the FDR method. For 
this analysis, we studied both the absolute parameter values and 
the differences between REM and NREM values (∆) for each 
parameter. Conversely, within-group differences were 
evaluated by the paired Mann-Whitney U test between all the 
possible combinations of REM and NREM sleep stages. Again, 
adjusted p-values were considered. 
 Finally, to merge information coming from sleep structure 
and ECG-derived features and correct for confounding effects, 
generalized linear models have been developed. Indeed, we 
employed regression models to predict the outcome of a subject 
given the value of an HRV feature in a specific sleep stage, 
while correcting for confounding effects such as their age, sex, 
and the center where the PSG took place. Conversely, linear 
mixed-effects models were used to see if the information 
regarding the population and sleep stages was significant in 
characterizing the feature value. 

Analyses of both sleep structure and HRV have been carried 
out in MATLAB v2022a. 
 
 

TABLE I 
HRV PARAMETERS 

Group Sleep 
stage 𝜇!! [msec] 𝜎!!"  [msec2] 𝐿𝐹!! [msec2] 𝐻𝐹!! [msec2] 𝐿𝐹𝑛!! [-] 𝐻𝐹𝑛!! [-] 𝐿𝐹 𝐻𝐹⁄ !! [-] 

CG 

N1 928.±164 492±179 345±267 162±74 0.593±0.213 0.346±0.173 6.9±3.3 

N2 943±175 445±190 261±105 156±78 0.561±0.269 0.373±0.241 3.5±1.9 

N3 950±134 410±169 296±150 176±92 0.517±0.215 0.422±0.187 2.5±1.6 

REM 932±97 481±211 425±287 130±45 0.691±0.205 0.253±0.196 7.5±5.3 

iRBD 

N1 952±146 151±82 65±25 63±36 0.444±0.224 0.504±0.162 1.6±0.7 

N2 962±141 162±121 93±85 71±45 0.482±0.160 0.466±0.146 2.5±0.8 

N3 977±177 208±114 92±68 97±71 0.489±0.230 0.465±0.225 2.3±0.9 

REM 961±144 203±126 121±93 58±34 0.600±0.231 0.338±0.187 5.0±1.6 

PD-RBD 

N1 934±141 94±58 53±35 42±27 0.464±0.227 0.480±0.260 2.8±1.3 

N2 941±154 110±63 57±34 50±33 0.504±0.230 0.446±0.219 2.1±1.2 

N3 956±104 193±101 125±50 76±59 0.473±0.231 0.474±0.316 2.3±0.7 

REM 945±104 291±102 166±61 111±25 0.584±0.206 0.354±0.177 3.0±1.7 
The table shows the confidence bounds for each HRV parameter computed by the point process, according to the sleep stage and group, expressed as mean 

value ± the standard deviation. 

TABLE II 
SIGNIFICANT SLEEP TRANSITIONS 

Hour of 
sleep From To Probability for 

CG 
Probability for 

iRBD p - value 

3rd W W 0.800 0.847 0.002 
3rd N1 W 0.068 0.164 0.005 
3rd N2 REM 0.023 0.010 0.038 
3rd N3 N3 0.963 0.936 0.031 
3rd REM REM 0.955 0.920 0.038 
4th REM REM 0.940 0.906 0.036 

The table shows the statistically significant sleep transition differences during the 5-hour sleep, with their respective probability and resulting corrected p-value, 
in the three pairwise comparisons. 
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III. RESULTS  

A. Sleep Structure 
The analysis between the CG and the iRBD group is the only 

one presenting statistically significant transitions after 
correcting the p-values by the FDR method, specifically during 
the third hour of sleep. Overall, the iRBD group moves more 
easily towards lighter sleep stages: in the transition from stage 
N2 to wake, the probability was higher for the iRBD group (i.e., 
𝑝,-→+ = 0.054) than for the CG (𝑝,-→+ = 0.029), despite 
statistical significance being lost when FDR correction is 
considered. At the same time, probabilities of maintaining a 
sleep stage were lower for the iRBD (e.g., during the third hour 
of sleep, 𝑝,.→,. = 0.963 for the CG, and 0.936 for the iRBD 
group, with p < 0.05). 

Comparing PD-RBD with CG, the former has also lower 
self-transitions for wake (𝑝+→+ = 0.724, versus 0.800), N3 
(𝑝,.→,. = 0.932, versus 0.956), and REM (𝑝/01→/01 = 0.879, 
versus 0.955), even though no statistical significance was 
obtained after FDR correction. 

Regardless of statistical significance, when it comes to the 
two RBD groups, the PD-RBD patients present higher 
probabilities of maintaining a sleep stage (e.g., N2 both during 
the second and the fourth hour of sleep). Conversely, iRBD 
patients showed a tendency of moving towards lighter sleep 
stages (e.g., 𝑝,$→+ = 0.164 for the iRBD group during the third 
hour of sleep, and 0.061 for the PD-RBD group), and 
maintaining the wake, as suggested by their higher probability 
in the third hour of sleep (𝑝+→+ = 0.847, 0.724 for the PD-
RBD group). 

The resulting significant sleep transitions after FDR 
correction are reported in Table II. 
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B. Cardiovascular Characterization: Between-Group 
analysis 

  

  
 
Fig. 1. Results for variance 𝜎!!" , power in the low frequency band 𝐿𝐹!!, normalized low frequency 𝐿𝐹𝑛!!, power in the high frequency band 𝐻𝐹!!, normalized 
high frequency 𝐻𝐹𝑛!!, and sympathovagal balance 𝐿𝐹/𝐻𝐹!! for the three populations analyzed (CG, iRBD, PD-RBD) across the four sleep stages. For the sake 
of clarity, results are reported in restricted ranges. For 𝜎!!" , the range is [0,1050], outliers up to 3380 msec2 are not depicted. For 𝐿𝐹!!, the range is [0,1050], 
outliers up to 2060 msec2 are not shown. For 𝐻𝐹!!, the range is [0,400] and the outliers up to 980 msec2 are not reported. For 𝐿𝐹/𝐻𝐹!!, the range is [0, 25] and 
the outliers up to 82 are not depicted. 𝐿𝐹𝑛!!, 𝐻𝐹𝑛!!, and the 𝐿𝐹/𝐻𝐹!! are unit-less due to their computations. Significance for the within-group analysis is 
represented as follows: *:<0.05; **:<0.01. In each box, the median of the distribution is represented by the central line, while the 25th and the 75th percentiles are 
the bottom and top edges of the box, respectively. Extreme values that are still considered to fall into the distribution are represented by the whiskers, while 
outliers are indicated by the circles. 
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Among the developed generalized linear models, we have 
verified that the simplest one, which considers the covariates 
but excludes the interactions between them, is able to yield the 
same results as the more complex models, while maintaining a 
lower computational cost and assuring easier interpretability. 
For this reason, such model and the related findings are 
described hereinafter, while the remaining models and their 
results are reported in the supplementary material, Sections 
II.B-E. 

The following logistic regression model was implemented, 
for each sleep stage separately: 
logit(y)	~1 + X + A + S + C              (5) 

where y represents the outcome (i.e., the population), X the 
HRV feature value, A the age of the subject, S the sex of the 
participant (Male: 0, Female:1), C the center (i.e., Cagliari or 
Genova, respectively encoded as 0 and 1). 

When considering the CG and the iRBD groups, most of the 
models returned p < 0.05 associated with age, which is justified 
by the fact that iRBD people in our dataset are, on average, 7 
years older than the controls. For 𝐿𝐹//, feature value X was 
statistically significant (p < 0.05) during N1, N2, and REM, 
with negative estimates of the feature’s coefficient, i.e., a 
decrease in the value of X translates into a higher probability of 
being an iRBD participant. During N1, we also have significant 
results for the parameters 𝐿𝐹𝑛// (with a negative estimate of 
the feature’s coefficient, so an increase in its value points 
toward a higher probability of belonging to the CG) and 𝐻𝐹𝑛// 
(with a positive estimate of the coefficient, so an increase in its 
value gives a higher probability of being an iRBD participant). 

By testing the models between the CG and the PD-RBD 
group, we obtained significant results during N1 and N2 for 
𝜎//- , 𝐿𝐹//, 𝐻𝐹//, all with negative estimates of the 
corresponding coefficient. This means that we have a lower 
probability of being a PD-RBD participant when their values 
increase. 𝐿𝐹// is also significant during REM, always with a 
negative estimate for X. 

We did not obtain significant results when considering the 
two RBD groups: the only significant coefficient in most of the 
cases was the center. 

To assess the potential impact of other covariates, the AHI 
and the PLMI have been added to the regression model. 
Interestingly, in such analyses, age and sex lose their 
significance in several parameters when comparing CG and 
affected populations, and a similar trend is seen for the center 
covariate in RBD populations, thus strengthening our findings. 

The obtained HRV results are comparable with those that 
can be obtained by a standard statistical approach such as the 
unpaired Mann-Whitney U test followed by the FDR 
correction, which can be found in the supplementary material, 
Section II.A. 

The statistical analysis performed on the ∆ values didn’t 
provide any statistically significant result. However, the 
interested reader may refer to the supplementary material, 
Section II.F, for these findings. 
 

C. Cardiovascular Characterization: Within-Group analysis 
Within-group differences were found only when considering 

the REM phase and the NREM sleep stages. 
For the CG, 𝐿𝐹𝑛// and 𝐻𝐹𝑛//, were significantly different 

between REM sleep stage and N3 (p < 0.05 and p < 0.01, 
respectively). Specifically, 𝐿𝐹𝑛// showed an increase of 
median value from REM to N3, and 𝐻𝐹𝑛// showed instead a 
decrease of median value from N3 to REM, as it can be seen 
from Figure 1. 

In the iRBD group, significant differences are found between 
the REM and the N1 sleep stages for the parameters 𝐿𝐹// and 
𝐿𝐹𝑛//, which showed an increase from N1 to REM (p < 0.05), 
and 𝐻𝐹𝑛//, which conversely exhibited a decrease from N1 to 
REM (p < 0.01). For 𝐻𝐹𝑛//, also N2 and N3 differ 
significantly from the REM sleep stage with the same trend (p 
< 0.05).  

For the PD-RBD participants, 𝜎//-  and 𝐿𝐹// significantly 
differed between N1 and REM sleep stages (p < 0.04), with an 
increased median value during the REM sleep stage. 

IV. DISCUSSION  
Sleep analysis highlighted how both RBD groups, when 

compared with controls, showed a more fragmented sleep. This 
is revealed by statistically significant lower probabilities of 
maintaining a given sleep stage and higher probabilities of 
transitioning towards lighter sleep stages. This is in line with 
previous studies conducted by Christensen et al. [30], whose 
results point to a less stable REM sleep phase in both iRBD and 
PD-RBD subjects, with respect to controls. Also, even if the 
CG subjects show a more stable sleep when compared to the 
pathological groups, it has been previously demonstrated that 
they still exhibit a significant degree of asymmetry in sleep-
stage transitions, meaning that the number of transitions going 
from stage 1 to stage 2 doesn’t match the number of transitions 
going in the other way. This characteristic asymmetry of the 
healthy subjects gets lost with sleep disorders [31]. 

Furthermore, between the two RBD groups enrolled in our 
study, participants affected also by PD (i.e., PD-RBD) suffered 
from less fragmented sleep than iRBD ones, with a lower 
tendency to maintain the wake stage. This aspect should be 
carefully considered in light of the manual sleep staging that 
has been performed in this study. Indeed, even though several 
automatic data-driven sleep scoring algorithms have been 
developed and could better emphasize sleep fragmentation in 
PD [30], further studies are needed to validate these tools on 
large subject cohorts and to integrate them into scoring 
recommendations. For this reason, only manual sleep staging is 
nowadays clinically recognized. 

In this regard, there is still no definite explanation of the 
interaction between sleep and motor functions for the PD-RBD 
group. As some patients report an improvement in motor 
function upon awakening, thanks to the release of dopamine 
[32], the alleviation of these symptoms could be the reason why 
they manage to have less fragmented sleep. 

Results of the analysis of HRV parameters showed reduced 
variability in the RBD groups, with lower median values across 
all sleep stages with respect to the controls. In the iRBD group, 
𝐿𝐹// values were lower during the REM stage than N1 and N2. 
Both iRBD and PD-RBD groups presented a reduction in 𝐻𝐹// 
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when passing from N3 to REM, but not as strong as the one 
reported for the control group, suggesting a general reduction 
in the variability in their autonomic regulation. By looking at 
the median values for the sympathovagal balance, we can 
notice how the range was narrow for the iRBD group (going 
from 0.877 during N2 to 1.112 during REM), while a higher 
variability was evident for the PD-RBD group (range 
0.631÷2.051), and an even higher one in the CG (range 
1.362÷3.670), supporting the hypothesis that an overall lower 
variability characterizes RBD groups. 

These findings are not in contrast with the scientific 
literature. A study by Sorensen et al. demonstrated that the 
mean RR interval was not significantly different among the 
three analyzed populations [33], as in our analyses. In [20], 
Bugalho et al. demonstrated the presence of a lower variance 
across all sleep stages in subjects affected by RBD with respect 
to controls. They also demonstrated how 𝐻𝐹// tends to 
decrease during REM sleep stage in the CG while keeping a 
value closer to the one during NREM sleep in the iRBD group 
[34]. 

Given these previous findings, it can be speculated that the 
missing LF variability activation in the RBD groups might be 
due to a shorter duration of the considered sleep stage, 
indicating that the impaired ANS of these subjects is not able 
to follow the ideal changes in such a fragmented and rapidly 
evolving sleep. 

To the best of our knowledge, the present study is the first to 
model the statistical properties of the inter-beat interval series 
of people affected by RBD and PD and relate the resulting 
instantaneous HRV indexes with the sleep structure. In this 
regard, the developed models may help in providing an 
evolving sequence of snapshots of the dynamic evolution of 
sleep and the autonomic system in CG, iRBD, and PD-RBD 
populations, due to the precise match allowed between 
hypnograms and HRV estimates, thus resulting in a probability 
of population outcome. The main innovation of the adopted 
methodology is that it allows to monitor time-varying changes 
in the physiological state of the subject, focusing on sleep 
stage-by-stage transitions of ANS control throughout the night, 
overcoming typical standard window-based HRV analysis 
limits. 
Further studies will explore the obtained results on the 
cardiovascular characterization (particularly focusing on blood 
pressure control) during the entire night of sleep, to have a 
comprehensive interpretation of the HRV parameters change 
throughout the night given a specific sleep stage. This 
assessment, along with the Markov-based transition model 
introduced in this work, might support the prediction of sleep 
scoring. More data is also needed to validate the generalized 
linear models, with the ultimate goal of developing a predictive 
model for the early detection of RBD and its possible 
phenoconversion into PD-RBD. Remarkably, even though we 
considered only the first sleep cycle and an offline analysis, our 
sleep and autonomic features can provide even more accurate 
assessments when exploited in full-night PSG, and eventually 
prove to be considered as novel digital biomarkers: indeed, 
such data-driven models may lead to a significant shift in RBD 
diagnosis and management in online monitoring and for the 

introduction of new technologies for sleep study in the 
operating room and the intensive care unit. 

V. CONCLUSION 
We developed a methodology to investigate the presence of 

statistically significant differences in both nocturnal sleep 
continuity and autonomic regulation, between patients affected 
by RBD and patients affected by both RBD and PD, with 
respect to control subjects. 

This study demonstrates that RBD patients suffer from both 
sleep fragmentation and overall autonomic dysfunction, mainly 
due to a lower SNS activation during the REM sleep stage, 
which translates into lower values for the power in the low-
frequency band. Overall, RBD patients also present a lower 
variability across all sleep stages with respect to unaffected 
controls. 

 Sleep structure is altered in the RBD groups due to the 
lower probabilities of keeping a specified sleep stage, but when 
comparing the two groups it was noticeable how PD-RBD 
patients exhibit a more regular sleep, possibly due to a sleep-
related relief of their symptoms. 
 In conclusion, as it is possible to observe autonomic 
dysfunction prior to the occurrence of the first symptoms, this 
study holds a significant clinical relevance. An accurate 
assessment of autonomic state changes in specific sleep 
transitions could be exploited to compute a marker for early 
diagnosis of RBD, or PD, potentially resulting in a better 
quality of life for the affected patients. 

SUPPLEMENTARY MATERIALS  
The readers are encouraged to read the Supplementary 

Materials to have a more comprehensive view of the developed 
generalized linear models for this study, as described in the 
Methods section, and of the obtained results, as well as 
additional statistical tests that were performed. 
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