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Fractional-Order Modeling of Arterial Compliance
in Vascular Aging: A Computational Biomechanical
Approach for Investigating Cardiovascular Dynamics

Mohamed A. Bahloul1, Yasser Aboelkassem2,3, Zehor Belkhatir4, and Taous-Meriem Laleg-Kirati5,6

Abstract—Goal: The goal of this study is to investigate the
application of fractional-order calculus in modeling arterial com-
pliance in human vascular aging. Methods: A novel fractional-
order modified arterial Windkessel model that incorporates a
fractional-order capacitor (FOC) element is proposed to capture
the complex and frequency-dependent properties of arterial
compliance. The model’s performance is evaluated by verifying
it using data collected from three different human subjects,
with a specific focus on aortic pressure and flow rates. Results:
The results show that the FOC model accurately captures the
dynamics of arterial compliance, providing a flexible means to
estimate central blood pressure distribution and arterial stiffness.
Conclusions: This study demonstrates the potential of fractional-
order calculus in advancing the modeling and characterization
of arterial compliance in human vascular aging. The proposed
FOC model can improve our understanding of the physiological
changes in arterial compliance associated with aging and help
to identify potential interventions for age-related cardiovascular
diseases.

Index Terms—Fractional calculus, fractional-order capacitor,
vascular compliance, aortic input impedance.

Impact Statement- Fractional-order calculus improves
arterial compliance modeling for human vascular
aging. Our model accurately estimates blood pressure
distribution and stiffness, advancing the understanding of
cardiovascular disease.

I. INTRODUCTION

VASCULAR compliance pertains to an arterial vessel’s
ability to accommodate blood volume changes. This

property characterizes the vascular wall’s capacity to flexibly
expand and augment vessel volume in response to an elevation
in transmural pressure, or inversely, its propensity to withstand
compression and revert to its original shape [1]–[3]. Recent
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decades have witnessed a marked interest in comprehending
the interplay between variations in arterial compliance and
cardiovascular diseases. The clinical significance of vascular
compliance arises from its pivotal role in pulsatile hemodynam-
ics. Consequently, numerous clinical and experimental research
endeavors have emerged to quantify vascular compliance, lead-
ing to the development of diverse surrogate markers for arterial
compliance [4], [5]. In this context, a spectrum of linear
and non-linear computational techniques for assessing vascular
compliance has been presented in the literature [6], [7]. These
include: 1) The Time Decay method, also recognized as the
linear Windkessel model compliance [8], [9], 2) The Area
method [10], 3) The Stroke Volume over Pulse Pressure method
[11], [12], 4) The Exponential method, and more recently, 5)
The compliance-pressure loop approach [13], [14].

Functionally, arterial compliance manifests through the re-
lationship between fluctuations in stored blood volume and
corresponding alterations in input blood pressure. Analogously,
the concept of total arterial compliance has been introduced as
the summation of compliance components across the entire
arterial system. Thus, the aggregate compliance quantifies the
global arterial capacity for blood storage and is calculated
by dividing the variation in blood volume throughout the
arterial system by the fluctuation in systemic input pressure.
However, this ratio is influenced not solely by total arterial
compliance but also encompasses factors such as pulse wave
reflection. It accurately represents total compliance only at
low frequencies. Therefore, the concept of dynamic arterial
compliance—alternatively termed apparent compliance—was
introduced by Quick et al. [2] to elucidate the accurate esti-
mation of true total compliance through the transfer function
connecting blood volume and input pressure [15]. This concept
addresses the question of whether conventional methods of
estimating arterial compliance fall short of determining actual
arterial compliance. Prior to the advent of the "apparent com-
pliance" notion, the transfer function associating blood volume
with systemic input pressure was considered constant, akin
to the capacitance of an ideal capacitor in electrical analog
modeling. This assumption hinged on the Windkessel concept
embraced by lumped-element modeling principles. Limitations
of this assumption surfaced in compliance estimation methods,
resulting in inaccurate evaluations of true arterial compliance
[16]. The distributed nature of vascular compliance and resis-
tance within the arterial network underscores the frequency-
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Fig. 1. The figure illustrates in a schematic manner the general framework for fractional-order modeling of the arterial system. (A): A
schematic that shows a simplified left ventricle-aortic-arteries sub-domains; (B): A fractional-order model of the apparent arterial compliance
using a fractional-order capacitor; (C): the Fractional-order modified Windkessel (F-MWK) model, and (D): finally an illustration of the
fractional differentiation order as a marker of the arterial stiffness.

dependent nature of the blood volume/input pressure relation-
ship [2]. This translates to a temporal delay between arterial
blood volume and input pressure. Over the past decades,
clinical studies have underscored the necessity of introducing
apparent compliance to extract total compliance. Consequently,
a novel lumped-parameter modeling framework, considering
the intricate frequency-dependent properties of apparent arterial
compliance, was proposed [17]. These models posit that the
arterial wall possesses viscoelastic properties as opposed to
pure elasticity. The Voigt cell model (comprising a resistor in
series with a capacitor) emerged as a suitable candidate for
representing total arterial compliance. The resistor embodies
viscous losses linked to arterial wall motion, while the capaci-
tor symbolizes static artery compliance. The synergy between
these resistor and capacitor elements gives rise to complex,
frequency-dependent compliance. However, the Voigt model’s
configuration inadequately captures arterial viscoelasticity, as
it fails to account for stress-relaxation experiments [18]. To
address this gap, the viscoelastic representation’s order was
augmented by introducing additional viscous and elastic in-
terconnected elements [17]. This higher-order configuration
yields heightened accuracy at the expense of complexity,
primarily attributed to an extensive set of unknown parameters,
thereby presenting a challenge. Indeed, higher-order models
necessitate identifying a larger number of parameters, whereas
the available real-world data remains limited and insufficient.
Additionally, it is recognized that reduced-order models are
desirable for their simplicity and ease of exploration, [3], [19].

In the last decades, non-integer differentiation, the so-called
fractional-order differential calculus, became a popular tool for
characterizing real-world physical systems and complex behav-
iors from various fields such as biology, control, electronics,
and economics [20], [21]. The long-memory and spatial de-
pendence phenomena inherent to the fractional-order systems
present unique and attractive peculiarities that raise exciting
opportunities to represent complex phenomena that represent
power-law behavior accurately. Regarding cardiovascular mod-

eling, the power-law behavior has been demonstrated in de-
scribing human soft tissues’ visco-elasticity and characterizing
the elastic vascular arteries. The in-vivo and in-vitro experimen-
tal studies have pointed out that fractional-order calculus-based
approaches are more decent to represent the hemodynamic
precisely; the viscoelasticity properties of soft collagenous
tissues in the vascular bed; the aortic blood rate [22]–[24]; red
blood cell (RBC) membrane mechanical properties [25] and
the heart valve cusp [23], [26]–[28]. In addition, recently, we
developed novel fractional-order arterial Windkessel represen-
tations, [29]–[31]. The proposed framework takes advantage
of the relevant fractional-order calculus tools. Basically, the
fractional-order Windkessel representations are similar to the
well-known Windkessel configurations; however, instead of
representing the arterial compliance with an ideal capacitor
which is purely a storage element, we investigate the use of the
fractional-order element, namely the fractional-order capacitor,
[32]. Our elemental investigations in the frequency domain
showed that the proposed models accurately reconstruct the
arterial impedance and solve the hemodynamic inverse problem
by estimating the different vascular biomechanics determinants.
Moreover, a clear association between the central hemody-
namic parameters and the fractional differentiation order (α)
has been observed. In this context, fractional orders have
been employed to describe and control the transition between
viscosity and elasticity, [33], [34].
In this paper, we present five fractional-order model repre-

sentations to describe the apparent vascular compliance by
representing the active relationship between blood pressure
and volume. Each configuration incorporates a fractional-
order capacitor element (FOC) to lump the apparent arterial
compliance’s complex and frequency dependence properties.
FOC combines both resistive and capacitive attributes within a
unified component, controlled through the fractional differen-
tiation order, α. Besides, the equivalent capacitance of FOC
is inherently frequency-dependent, compassing the complex
properties using only a few numbers of parameters. To show
the added value of the fractional-order element, we compare
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Fig. 2. (a) Circuit diagram of the ordinary resistor and capacitor and the constant phase element is (fractional-order capacitor). It also shows
the current-voltage relationship (Q-P): fractional-order capacitor; Q(t) =Cα(dα/dtα)P(t) where 0 ≤ α ≤ 1 and Cα is the pseudo-capacitance.
The limit values of α, namely for α = 0 and α = 1, correspond to the ordinary elements of the ideal resistor and capacitor, respectively.
(b) Circuit diagram representing the equivalent RC tree circuit of the fractional-order capacitor of any order, 0 < α < 1. (c) Circuit diagram
representing the equivalent RC tree circuit of the fractional-order capacitor when α = 0.5.

the proposed models to the standard integer-order models.
Moreover, the simplest fractional-order representation of the
proposed paradigm has been combined into a global arterial
lumped parameter representation forming a novel fractional-
order modified arterial Windkessel. All models have been
applied and validated using aortic pressure and flow rate data
acquired from three human subjects at different ages, namely
28, 52, and 68 years. The results show the aptitude and flexi-
bility of the fractional-order models in fitting different apparent
compliance dynamics and central blood pressure measurements
while maintaining a low model complexity. Figure 1 illustrates
in a schematic manner the general framework for fractional-
order modeling of the apparent vascular compliance and the
arterial system.

II. PRELIMINARIES
A. Apparent Compliance

The apparent compliance, Capp, refers to the arterial bed’s
capacity to store blood dynamically. Functionally, it corre-
sponds to the transfer function between the blood volume
(V ) and input blood pressure (Pin). Here, we present its
mathematical derivation. Based on the conservation mass, the

arterial blood flow pumped from the heart to the vascular bed
(Qin) which can be written as:

Qin = Qstored +Qout , (1)

where Qstored is the blood stored in the arterial tree, and Qout
corresponds to the flow out of the arterial system. In the
frequency domain Qout can be expressed as:

Qout(w) =
1

Rapp(ω)
Pω(w). (2)

where ω corresponds to the angular frequency and Rapp is the
apparent arterial resistance [2]. Qstored is defined as the rate of
flow by taking the first derivative of the volume equation for
the time.

Qstored(t) =
dV
dt

=
dV (t)
dPin(t)︸ ︷︷ ︸

Capp

dPin(t)
dt

, (3)

Hence in the frequency domain Qstored can be expressed as:

Qstored = jωPinCapp (4)

Aortic input impedance Zin defines the capacity of the vascular
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Fig. 3. The figure illustrates in a schematic manner five representations of the proposed fractional-order apparent compliance models. All
structures use fractional-order capacitor element that combines the complex and frequency-dependence characteristics of arterial compliance.
The FOC modeling approach accounted for both resistive and capacitive properties.

system to impede the blood rate dynamically. It corresponds
to the left ventricular afterload. Functionally, it is expressed in
the frequency domain as the ratio between the arterial blood
pressure (Pin) and flow (Qin) at the aortic level of the systemic
vascular system that is:

Zin(ω) =
Pin(ω)

Qin(ω)
, (5)

Substituting equations (2) and (4) into equation (1) gives:

Qin = jωPinCapp +
1

Rapp(ω)
Pω(w). (6)

Rearranging the above equation yields an expression for Capp
in terms of Zin and Rapp as follow:

Capp =
Rapp −Zin

jωRappZin
(7)

B. Fractional-order capacitor

Fractional-order capacitor (FOC), known as the constant
phase element [35], is a fractional-order electrical element
representing the fractional-order derivative through its curent-
volatge characteristic. In fact, the relationship between the
current, Q(t), passing through an FOC and the voltage, P(t),
across it with respect to time, t, can be written as follow:

Q(t) =Cα

dα

dtα
P(t), (8)

where Cα is a proportionality constant so-called pseudo-
capacitance, expressed in units of [Farad/second1−α], [36]. The
conventional capacitance, C, in unit of Farad is related to Cα as
C =Cαωα−1 that is frequency-dependent. The fractional-order
impedance (Zα) is expressed as follow:

Zα(s) =
1

Cαsα
=

1
Cα

ω
−α cos(φ)︸ ︷︷ ︸
Zr

− j
1

Cα

ω
α sin(φ)︸ ︷︷ ︸
Zi

, (9)

where s corresponds to the Laplace variable and φ denotes the
phase shift expressed as: φ=απ/2 [rad] or φ=90α [degree or ◦].
Zr and Zi are the real and imaginary parts of Zα corresponding
to the resistive and capacitive portions, respectively. From (9),
it is apparent that the transition between resistive and capacitive
parts is ensured by α. If 0 ≤ α ⩽ 1, the bounding conditions
of α will correspond to the discrete conventional elements:
the resistor at α = 0 and the ideal capacitor at α = 1). As
α goes to 0, (Zi) convergence to 0, and thus the fractional
element looks like that of a pure resistor, whereas as α goes
to 1, (Zr) converges to 0 and hence, the fractional element
serves as a pure capacitor, [37]. Figure 2A. represents the
schematic diagram for a FOC, along with the ideal resistor
and capacitor. Many studies have shown that FOC is equivalent
to a resistor ladder network (RC tree circuit), [38], [39]. This
structure is similar to the electrical analogy of the general-
ized Kelvin–Voigt viscoelastic model. Figure 2B. presents the
equivalent RC tree circuit of FOC of any order, and Figure
2C. shows the equivalent RC tree circuit of FOC of order
0.5. Bearing these properties in mind, the fractional-order
α parameter allows extra versatility in modeling viscoelastic
systems [40]. As shown in the previous section, the FOC offers
extra flexibility via its fractional differentiation order α, and it
permits the smooth transition and control between the resistive
and capacitive parts, which might be investigated to model the
arterial system properties. By rewriting (3) in the fractional-
order domain as:

Qstored(t) =
dαV
dtα

=
dαV (t)
dαPin(t)︸ ︷︷ ︸

Cαapp

dαPin(t)
dtα

. (10)

The FOC can be an inherent lumped element that can catch
vascular compliance’s complex and frequency-dependent be-
havior. In fact, as expressed in (10), the pseudo compliance,
Cαapp , should be expressed in the unit of [l/mmHg .sec1−α] that
makes, naturally, the standard compliance (CC), in the unit of
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[l/mmHg], frequency-dependent as:

CC =Cαapp( jω)α−1. (11)

Hence the fractional-order capacitor presents physical bases
in portraying the complex and frequency dependency of the
apparent vascular compliance. Besides, based on the variation
of the fractional differentiation order α, the real and imaginary
parts of the resultant FOC’s impedance can possess various
levels, so by analogy, α can control dissipative and storage
mechanisms and hence the viscous and elastic component
of the arterial wall. Furthermore, it is worth remarking that
the equivalent circuit representation of FOC can be seen as
an infinity of Voigt cells branches joined in parallel. Con-
sequently, FOC simplifies the representation of the complex
arterial network’s mechanical properties by employing only
two parameters (α and Cα). In the following, we present the five
fractional-order representations of arterial compliance shown in
Fig. 2. In addition, as in this study, the proposed models were
compared with generalized ordinary (integer-order) vascular
compliance models; we also present their expressions following
the fractional-order ones.

III. MODELS

A. Fractional-order Models

Model A: As shown in Figure 3A., this representation
consists of a single fractional-order capacitor. Accordingly, as
mentioned previously, the apparent arterial compliance formu-
lated in the unit of [l/mmHg] can be expressed as follows:

CA
app =Cα( jω)α−1. (12)

Model B: As shown in Figure 3B., this representation
consists of an ideal integer-order capacitor (Cstat ) accounting
for the static compliance connected in series to and FOC.
The apparent arterial compliance formulated in the unit of
[l/mmHg] can be expressed as follows:

CB
app =

CαCstat( jω)α

Cα( jω)α +Cstat( jω)
. (13)

Model C: As shown in Figure 3C., this representation
consists of an ideal resistor (R) connected in series to FOC.
The apparent arterial compliance formulated in the unit of
[l/mmHg] can be expressed as follows:

CC
app =

Cα( jω)α−1

1+RCα( jω)
. (14)

Model D: As shown in Figure 3D., this representation
consists of an ideal resistor (R), an ideal integer-order capac-
itor (Cstat ), and FOC, all connected in series. The apparent
arterial compliance formulated in the unit of [l/mmHg] can be
expressed as follows:

CD
app =

CstatCα( jω)α

Cstat( jω)+Cα( jω)α +RCαCstat( jω)α+1 . (15)

Model E: As shown in Figure 3E., this representation con-
sists of an ideal resistor (R1) connected in parallel to a branch
of a FOC in series with an ideal resistor (R2). The apparent

arterial compliance formulated in the unit of [l/mmHg] can be
expressed as follows:

CE
app =

1+(R1 +R2)Cα( jω)α−1

R1(1+R2Cα( jω)α)
. (16)

B. Integer-order Models

Model F: This model expresses the apparent compliance
based on the general viscoelastic model [41]. It is formulated
as follows:

CF
app =Cstat

∏
N
n=1 an( jω+bn)

∏
N
n=1 bn( jω+an)

, (17)

where an and bn correspond to imperial constants that can
be adapted to fit any special case. Cstat expresses the static
compliance. Goedhard et. all pointed out that this model could
fit real experimental data with N=4, which we adopt in our
comparative study.

Model G: It corresponds to the Voigt-cell based-
representation. It consists of an integer-order, ideal capacitor
(Cstat ) accounting for the static compliance in series to a
resistor (Rd), accounting for viscous losses.

CG
app =Cstat

1
1+( jω)RdCstat

(18)

IV. METHOD & MATERIAL

A. In-vivo human dataset

In order to validate the proposed approach, in this study,
we use real data for human aging. The in-vivo human data
was extracted and digitized from aging studies (Nichols et al.,
[42], [43]). The data consists of measured aortic blood flow rate
(Qa) and aortic blood pressure (Pa) at various ages, specifically
28, 52, and 68 years whose cardiac cycle is T = 0.95 Sec.

B. Parameters fitting of the models

To fully identify the proposed fractional-order model and
the integer-order-based apparent compliance representations,
the parameters, and the fractional differentiation orders have
to be estimated using the measured flow and pressure wave-
forms. The estimation process was based on a non-linear
least square minimization routine applying the well-known
MATLAB−R2020b, the function fmincon. Regarding the stop-
ping criteria for the optimizer, we have imposed a fixed final
number of iterations that was selected based on a trial and
error process so that it is enough to allow convergence of
the optimization. The parameters to estimate for each model’s
representation CModel

c are refereed as ΘModel where Model =
{(A),(B),(C),(D),(E),(F),(G)} denotes to the index of the
model’s structure.

Θ
Model =



CαA ,αA if Model = A
CstatB ,CαB ,αB if Model = B
RC;CαC ,αC if Model =C
RD;CstatD ,CαD ,αD if Model = D
R1E ;R2E ,CαE ,αE if Model = E
CstatF ,ai |i=1,2,3,4,bi |i=1,2,3,4 if Model = F
Rd ;Cstat if Model = G
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TABLE I. RMSE & AICC calculated based on the developed fractional-order representation and standard ones for each subject.

Model (A) Model (B) Model (C) Model (D) Model (F) Model (E) Model (G)

RMSE
68-yr 1.64 1.63 1.51 1.54 1.42 1.16 1.55
52-yr 1.4 1.38 1.16 1.18 1.1 1.07 1.21
28-yr 5.44 5.29 2.85 3.96 2.36 2.85 4.31

AICC

68-yr 4.34 4.35 8.18 8.14 13.02 107.7 4.45
52-yr 4.65 4.7 8.7 8.66 13.52 107.87 4.95
28-yr 1.95 2 6.9 6.25 12 105.9 2.41

Algorithm 1 summarizes the different steps applied to identify
the different representations and estimate the model’s parame-
ters. To analyze the ability of the developed models to repro-

Algorithm 1 Parameter calibration of the models

1: Load the datasets of the aortic blood pressure (Pin) and
flow rate (Q)

2: Evaluate the Fast Fourier Transform (FFT) of both P and
Q

3: Select the frequency range (Hz) f ∈ [0 12]
4: Calculate the aortic input impedance Zin

▷ Using equation (5)
5: Calculate the in-silico apparent compliance Capp

▷ Using equation (7)
6: Select the model to fit with the data
7: Include and Initialize the parameter to estimate Θ

8: Solve the optimization problem

Θ̂ = arg min
Θ

RMSE (19)

RMSE =

√√√√√√∑
Ns
i=1

([
Re− R̂e
max(Re)

]2

+

[
Im− ˆIm
max(Im)

]2
)

Ns
(20)

Where Ns denoting the number of explored frequency
samples, Re and Im denoting the real and imaginary parts
of the exprmental Capp, and Im, evaluated in step (5), and
R̂e and ˆIm corresponds to the real and imaginary parts
of CModel

app (Θ), respectively. θ̂ denotes the estimates that
minimize RMSE

duce the apparent arterial compliance dynamic, we evaluate
the RMSE. In addition, because the model representations
possess various numbers of parameters, to conduct a legitimate
measurement and comparison, in addition to the RMSE, we
assess the Corrected Akaike Information Criterion (AICC):

AICc =−2 · ln(RMSE)+
2 ·P ·Ns

Ns −P−1
. (21)

where, P corresponds to the number of parameters and RMSE
is defined in equation (20).

V. RESULTS & DISCUSSION

A. Model calibration
The evaluated RMSE and AICc, values after applying the

proposed model and integer-order ones to the in-vivo human-

aging data, are presented in Table 1. Analyzing these results
reveals that the fractional-order model representations grant an
acceptable reproducing of the real arterial apparent compli-
ance with a minimum number of parameters. Generally, the
comparison between the proposed fractional-order models and
the integer ones, namely Model (F) and (G), confirms that as
the models differ in terms of performance, there is a trade-
off between complexity induced by the number of parameters
per representation and accuracy. Indeed, high-order models
deliver high precision, however, at the expense of complexity.
In order to take into account this compromise, the AICc has
been evaluated.
For the 68 years old subject, Model F and Model C represent
the lower error among the proposed fractional-order models
and thus a better fit of the modulus and phase of the ap-
parent arterial compliance. Although the integer-order model
represents the lowest RMSE, it is complex as it requires nine
parameters to be identified. This can be observed by analyzing
the corrected Akaike Information Criterion (AICc), which is
considered very high in all the studied subjects. The difference
between the values of AICc of Model F and any other models is
more than −2. Hence, the fractional-order representations can
be considered significantly better than this model. It is worth
noticing here that in this article, we present only the AICc. Still,
in our analysis, we have calculated the Bayesian Information
Criteria (BIC) and the Akaike’s Information Criteria (AIC).
However, as the number of the studied samples is extremely
small, we adopt the AICc. In fact, AICc is advocated when the
sample size is relatively low.
For the 52 years old and 28 year old subjects Model F Model
C and Model C represent the lower error among the proposed
fractional-order models. Their RMSE values are lower than the
one of the integer-order Model G that represents the conven-
tional Kelvin-Voigt model. For all the subjects, by examining
the AICc values of all the models and evaluating the difference
between AICC values of two models being compared, we can
approve that: Model A can be considered as a reasonable
candidate in describing the complex and frequency-dependent
behavior of the apparent arterial compliance. Table 2. presents
the estimates of the unknown parameters of each fractional-
order representation for each human and animal subject. Using
Model (A) and Model (B), for all the subjects, the fractional-
order, α, is less than 1. These results demonstrate the fractional-
order behavior within the apparent compliance. As in the
estimation process, the estimate of α was only constrained
to be positive, larger than zero (the lower bound is set to be
0 or the upper bound left unconstrained, equal to infinity).
Therefore, this effect intends that the vascular system presents
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TABLE II. Parameter estimates of the fractional-order models for each subject.

Model (A) Model (B) Model (C) Model (D) Model (E)
Age CαA αA CstatB ,CαB αB RC CαC αC RD CstatD ,CαD αD R1E R2E CαE αE
68-yr 2.93 0.2 3.45 0.18 0.14 0.44 1.36 0.12 1.27 1.43 1.8 320 4.41e-5 1.49
52-yr 3.85 0.34 5.14 0.27 0.08 0.85 1.29 0.07 2.1 1.43 0.88 179.42 2.37e-4 1.25
28-yr 7.88 0.35 10.65 0.27 0.04 0.92 1.63 0.04 4.36 1.47 0.43 57.17 5.47e-4 1.39

a viscoelastic behavior, not a purely elastic one. Actually, the
fact that α ̸= 1 means that the fractional-order component
involves both resistance and capacitance parts, as demonstrated
mathematically in Eq. (9). The contributions from both the
resistive and capacitive parts within the fractional-order capac-
itor are controlled through the fractional-order, α, allowing a
profound physiological characterization. As the α moves to 1,
the capacitance component becomes predominant and, hence
the vascular mechanism functions as a pure elastic system, and
as α goes to 0, the resistive portion expands, and so the vascular
mechanism operates as a pure viscous system. By examining
the estimates of the fractional orders of Models (C), (D) and
(E), it is noticeable that for all the subjects, α̂ is higher than 1.
Functionally, as α beats 1, the real part of the fractional-order
capacitor impedance, Zr, converts negative, and hence it has the
characteristic of a negative resistor producing power. Having
a negative resistance in these models appears as compensation
for the added static resistance in those representations. It is
worth mentioning that the interest of constant resistor and/or
capacitor in these fractional-order models is to account for
the static viscosity and/or elasticity, respectively, while the
fractional-order capacitor represents the ability of the arterial
vessel to store blood dynamically.

B. Physiological consistency of the fractional differentiation
order parameter

The fractional-order paradigm affords a concise alternative
to characterize and quantify the biomechanical behavior of
membranes, cells, and tissues. In fact, many studies have found
that the fractional-order framework is particularly relevant in
the area of biorheology characterization. This is because many
tissue-like materials present power-law responses to applied
stress or strain. The power-law response has also been observed
within the viscoelastic characterization of the aorta. In-vivo
and in-vitro experiments and analysis showed the convenience
of using fractional order viscoelastic model rather than the
integer-order ones [25]. As shown previously, fractional dif-
ferential order provides extra flexibility to model the apparent
arterial compliance. It appears that the changes in the compo-
sition of the viscoelasticity of the whole vascular system are
conveniently described in the fractional differentiation order
of the model system. Based on the model formulation, the
fractional parameter is convenient for describing the transition
between viscosity and elasticity levels. Although the lack of
enough real data, we investigate the interpretability and physio-
logical consistency of the fractional differentiation order in this
part. By checking the values of the fractional differentiation
order estimates, it is clear that αA and αB increase as the
age decreases. This result is in coherence with what has been

demonstrated in several human-aging studies. In fact, it is well
recognized that the arterial vessel becomes stiffer with age [44].
Moreover, vascular stiffening provokes an increase in arterial
pulse pressure, which deeply affects the blood vessels and heart
functions. Physical stiffening of the arteries is recognized as
the structural determinant of vascular aging. On the other hand,
as we explained before when α goes to 0, the resistive part
increases within the fractional-order element, and the system
behaves as a viscous element. For the other models based {αC,
αD, and αE} where their values exceed 1, we can notice that
from 68 years old subject to 52 years old one, the values of α

decrease; however, the 28 years old subject presents the highest
value.

The analysis of the variation of the fractional differentiation
order and its association with different ages points out the
potential of this parameter to be adopted as a surrogate measure
of the arterial stiffness or marker of cardiovascular diseases.
Future clinical and experimental validations are required to
prove the concept within a wide spectrum of normal and
pathological cardiovascular conditions. To show the added
value of the fractional-order element and its interaction with
other compartments in a global arterial representation, in the
following, we present a fractional-order arterial Windkessel
model. The developed model includes the simplest fractional-
order structure Model A of the apparent arterial compliance
to take into account the effect of the proximal and distal
compliance.

VI. EXAMPLE OF ARTERIAL WINDKESSEL MODEL USING
FRACTIONAL-ORDER COMPLIANCE

In order to evaluate the effect of integration of the proposed
fractional-order compliance representations within a complete
arterial lumped parameter model, in this section, we present
a fractional-order Modified Windkessel model based on a
fractional-order capacitor. We validate the output pressure
waveforms through the forward fractional-order framework.

A. Fractional-order modified Windkessel Model

The modified Windkessel model (MWK) is one of the
simplest arterial representations that lumps the arterial
network into two main compartments, proximal and distal,
[45]. Taking into account that the proximal arteries close to
the heart have different properties in comparison to the distal
ones, MWK splits the total arterial compliance used in the
original arterial Windkessel into two capacitances: proximal
capacitor represents the compliance of the large arteries,
which are commonly elastic and distal capacitor depicts
the compliance of muscular arteries that are stiffer. Clinical
studies demonstrated that distal compliance is very sensitive
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Fig. 4. Estimated proximal blood pressure using the proposed fractional-order modified Windkessel model along with the experimental in-vivo
human-aging. A, C, and E represent the model input aortic-valve blood flow rate for each validation case of study, 28, 52, and 68 years old,
respectively. B, D, and F represent The pressure waveform validation results.

to vasodilatory experiments, a property apparent in distal
arteries. Other investigations have also shown that proximal
compliance is reduced with aging and hypertension. The latest
properties make these capacitances potential indicators of
cardiovascular risk.

Figure 1C. shows the circuit model of the fractional-order
modified arterial Windkessel (F-MWK), which is similar to the
MWK; however, instead of using integer-order ideal capacitors
to represent the arterial compliances, simple fractional-order
capacitors are employed. In this arterial lumped model, Cα

represents the compliance of large arteries close to the heart,
while Cβ represents that of muscular arteries further away from
the heart. L represents the inertance of the flowing blood. Rp
represents the peripheral resistance. Q(t) corresponds to the
arterial blood flow and Pap(t) and Pad(t) denotes the proximal
and distal pressure respectively.

B. F-MWK mathematical model

As the model comprises two fractional-order capacitors and
an inductor, a state space representation with three states are
written to describe the dynamic of the arterial system. Based on
Kirchhoff’s voltage and current laws, we obtain the following
three equations:

Dq
t x(t) = Ax(t)+u(t), (22)

where,

Dq
t = [

dα

dtα
,

d1

dt1 ,
dβ

dtβ
]tr (23)

is the fractional-order derivative operator for all the states and

x(t) = [Pap(t),Q1(t),Pad(t)]
tr (24)

represents the state vector, (·)tr denotes the transpose of the
row vector. A represents the parameters and is expressed as:

A =


0 − 1

Cα

0

1
L

0 −1
L

0
1

Cβ

− 1
RpCβ

 (25)

u(t) =
[

Q(t)
Cap

0 0
]tr

(26)

To implement the fractional-order derivative we used the
following Grünwald–Letnikov (GL) formula [46], [47]:

dα

dtα
f (t) = lim

h→0

1
hα

∞

∑
i=0

c(α)i f (t − ih), α > 0, (27)

where h > 0 is the time step, c(α)i (i = 0,1, ...) are the binomial
coefficients recursively computed using the following formula,

c(α)0 = 1, c(α)i =

(
1− 1+α

i

)
c(α)i−1. (28)
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TABLE III. Parameter estimates of the fractional-order modified Windkessel arterial models along with the P−RMSE and the relative error
Re(%) for each subject.

Parameters estimates Performance
Age Cα L Cβ Rp α β P−RMSE R.E.(%) ρ

68-years 0.72 0.00013 0.73 2.00 1.00 0.43 3.51 3.26 0.98
52-years 1.51 0.03600 1.05 1.86 1.03 0.46 2.29 2.33 0.99
28-years 8.94 0.01200 2.00 0.16 1.09 0.85 1.52 1.67 0.99

C. Validation

The time validation of the proximal pressure waveforms Pap
was performed through the proposed F-MWK using the in-vivo
human-aging database described in section 4.1. The optimizer
algorithm uses the measured aortic root flow rate as input and
computes the required model parameters, {Cα,L,Cβ,Rp,α,β},
which minimize the pressure root mean square error (P-RMS),
i.e., the difference between measured and calculated aortic root
pressure as:

P−RMSE =

√
1
N

Σn
i=1(Papi − P̂api)

2 (29)

Where N denotes the number of samples per Pap pressure sig-
nal. To evaluate the performance of the estimation, we calculate
the relative error, R.E.(%) and the correlation coefficient, ρ

defined as:

R.E.(%) =
||Pap − P̂ap||2

||Pap||2
×100%

ρ =
∑

n
i=1(Pap − P̄ap)(P̂ap − ¯̂Pap)√

∑
n
i=1(Pap − P̄ap)2

√
∑

n
i=1(P̂ap − ¯̂Pap)2

,

(30)

where .̄ represents the average operator.

Table 3. summarizes the parameter estimates of the proposed
F-MWK for each age. It also shows the results of the root
mean square error (P−EMSE), the relative errors (R.E.(%)),
and the correlation coefficient (ρ) of the estimated aortic
blood pressure values for each subject. Figure 4. shows
the reconstructed blood pressure using the proposed F-MWK
model along with the measured in-vivo blood waveform for
each case of study, namely, 28, 52, and 68 years. The proposed
model is able to reconstruct the aortic blood pressure and
capture the main features during the different phases of the
cardiac cycle (systolic and diastolic phases).
Arterial compliance is an important measure of cardiovascular
function, and it is determined by the ability of blood vessels to
expand and contract in response to changes in blood pressure.
In this study, we examined the fractional differentiation orders
(α, β) and pseudo-capacitances (Cα, Cβ) of the proximal and
distal compliances of three subjects. These parameters provide
a quantitative measure of arterial compliance, and they are
often used to assess changes in arterial function with age. Our
results indicate that there is a negative correlation between
age and arterial compliance. Specifically, as individuals age,
the values of α and β decrease, indicating a reduction in the

Fig. 5. (A) Pseudo-capacitance estimate of the proximal compliance Cα left y-axis and Fractional differentiation order estimates, α, of the
proximal compliance right y-axis, (B) Pseudo-capacitance estimate of the distal compliance Cβ, left y-axis and Fractional differentiation order
estimates, β, of the distal compliance right y-axis.
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compliant part of arterial function. Similarly, the values of Cα

and Cβ also decrease with age, which suggests a reduction in
the capacity of the blood vessels to store energy. These findings
are consistent with previous clinical studies that have shown
that arterial compliance decreases with age. The decrease in
arterial compliance is thought to be due to a combination of
factors, including changes in the structural and mechanical
properties of the arterial wall, alterations in the composition of
the extracellular matrix, and changes in the function of smooth
muscle cells and endothelial cells. In particular, the decrease in
arterial compliance that we observed is indicative of an increase
in the resistive part of arterial function. This suggests that blood
vessels become stiffer and less able to accommodate changes
in blood pressure as individuals age. This is a concerning
finding, as decreased arterial compliance has been associated
with an increased risk of cardiovascular disease, including
hypertension, stroke, and heart attack. Overall, our results
provide important insights into the mechanisms underlying
age-related changes in arterial function and highlight the need
for interventions to promote healthy aging and prevent the
development of cardiovascular disease. Future research should
focus on identifying the specific factors that contribute to
the decrease in arterial compliance with age and developing
targeted interventions to address these factors.

VII. CONCLUSION

Arterial compliance is a vital determinant of the ventriculo-
arterial coupling dynamic. Its variation is detrimental to car-
diovascular functions and is associated with heart diseases.
Accordingly, assessment and measurement of arterial compli-
ance are essential in diagnosing and treating chronic arterial
insufficiency. Indices and surrogate measurements of arterial
compliance present a non-invasive assessment of the vascu-
lature’s health and can provide appropriate knowledge about
an individual’s future risk of morbidity and mortality. The
fractional-order behavior by means of the power-low response
has been shown in the characterization of the collagenous
tissues in the arterial bed, the arterial hemodynamic, the red
blood cell membrane mechanics, and the heart valve cusp.
This paper investigates the fractional-order framework to char-
acterize vascular compliance. Accordingly, we introduce five
fractional-order lumped parametric representations to assess
apparent arterial compliance. The proposed models vary in
terms of the number of elements to characterize compliance’s
dynamic. Every configuration contains a fractional-order ca-
pacitor (FOC) that accounts for the complex and frequency-
dependence characteristics of the compliance. FOC lumps both
viscous and elastic properties of the vascular wall in one
component, controlled through the fractional differentiation
order (α) of FOC. To fully identify the proposed models, the
unknown parameters and the fractional differentiation order
were estimated using real hemodynamic data collected from
human aging subjects. The developed parametric models pro-
duce an accurate reconstruction of the real data.

In order to verify the proposed concepts within a global ar-
terial pattern, A novel fractional-order modified arterial Wind-
kessel model that incorporates a fractional-order FOC element

was proposed to capture the complex and frequency-dependent
properties of proximal and distal compliances. The results us-
ing real human aortic blood pressure and flow data show a good
reconstruction of the proximal blood pressure. In addition, the
values of the compliances and their fractional differentiation
orders were in agreement with the clinical results of the aging
implications. Conclusively, our investigation attests that the
fractional-order modeling framework conveniently captures the
dynamic capacity of the vascular system to store blood. In
addition, it shows that the fractional-order paradigm has a
prominent potential to afford an alternative to assessing arterial
stiffness.
In future work, it is imperative to procure an expanded
dataset of human aging data to substantiate the viability
of our proposed proof of concept. Additionally, we intend
to conduct an exhaustive investigation into the influence of
specific cardiovascular pathologies on variations in dynamic
arterial compliance, elucidated through the utilization of the
fractional-order capacitor model. The incorporation of this
supplementary data and analysis is anticipated to augment
the overall comprehensiveness and robustness of our scientific
study.
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