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ABSTRACT   Objective: This study addressed the problem of objectively detecting leaks in P2 respirators at point of use, an 
essential component for healthcare workers' protection. To achieve this, we explored the use of infra-red (IR) imaging combined 
with machine learning algorithms on the thermal gradient across the respirator during inhalation.  
Results: The study achieved high accuracy in predicting pass or fail outcomes of quantitative fit tests for flat-fold P2 FFRs. The 
IR imaging methods surpassed the limitations of self fit-checking. 
Conclusions: The integration of machine learning and IR imaging on the respirator itself demonstrates promise as a more reliable 
alternative for ensuring the proper fit of P2 respirators. This innovative approach opens new avenues for technology application in 
occupational hygiene and emphasizes the need for further validation across diverse respirator styles. 
Significance Statement: Our novel approach leveraging infra-red imaging and machine learning to detect P2 respirator leaks 
represents a critical advancement in occupational safety and healthcare workers' protection. 
 
INDEX TERMS   Infra-red imaging, Machine learning, P2 respirators, Occupational hygiene, Respirator leak detection. 
 
IMPACT STATEMENT   This study reveals high accuracy in detecting P2 respirator leaks through infra-red imaging and machine learning, 
offering a more reliable alternative to traditional fit-check methods. 
 
 

I. INTRODUCTION1 
S the COVID-19 pandemic continues to persist into its 
fourth year, with what now appears to yet another new 

wave of infection in the UK and USA as of August of 2023, 
the protection of healthcare workers and the patients they 
care for remains a critical concern(1-3). Central to this 
protection is the use of P2 filtering facepiece respirators 
(FFRs), which provide a crucial barrier against viral 
particles(4-7). However, ensuring a proper fit of these masks 
is often challenging, with leaks posing a significant risk to 
users(8-10). 

 
To ensure that healthcare workers are appropriately 

trained and have selected the correct design/size of respirator 
to fit their specific facial topology without leaks, a 
respiratory protection program that includes fit-testing and 
training is mandatory(5-7,11). However, a formal fit-test is 
only taken annually, and in the year between sessions 
workers are required to self-assess the suitability of their 
respirator by performing a user fit-check to assesses for air 
leak each time a respirator is worn. Multiple studies have 
shown that user fit-checks are inaccurate and unreliable in up 
to 54% of users(12-15).  

 
 

 
In an ideal world, healthcare workers should know the 

efficacy of fit of their respirator in real time, via objective 
measures to inform them of their level of protection when 
working in high-risk environments. Past research has 
attempted to harness the power of infrared (IR) imaging and 
machine learning to detect respirator leaks, with mixed 
success(16-18). These studies encountered issues such as 
overfitting and low accuracy, largely due to data scarcity and 
limitations in their methodologies. Nevertheless, the promise 
of these technologies to advance respirator fit-testing 
suggests further investigation is warranted. 

 
In this context, our study aims to build on previous work 

by using IR imaging and a selection of machine learning 
models to predict the fit-test result of P2 respirators, 
removing the need for expert classification when detecting 
leak. We aim to investigate whether machine learning 
models can accurately predict a pass or fail result based on 
IR imaging alone when validated against gold standard 
quantitative fit-testing methods. Our objective was to train 
and validate multiple machine learning models, and test their 
accuracy on unseen data, to provide a robust and reliable 
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method for predicting respirator fit-test results. By doing so, 
we aim to contribute to the broader efforts to enhance the 
safety and protection of healthcare workers in this 
challenging pandemic context. 

 
 
Hypothesis: That a machine learning algorithm can be 

found that can be used to predict the pass or failure of a P2 
FFR from thermal imaging better than that of self-fit-check.  
 

II. MATERIALS AND METHODS 
 
The methodology for this study is outlined in the following 
sections. Part 1 describes how we collected infra-red imaging 
data and correlated these images with fit-test results. Part 2 
describes the data preparation and processing steps that were 
required prior to applying the machine learning algorithms.  
 
Part 1 – Data collection   
 
Participants 
 

The study population consisted of healthcare workers 
from a medium-sized (~1500 employee) community care 
organisation in suburban Southern Adelaide.  

 
The organisation was prepared for COVID-19 outbreaks 

following guidance of the Australian Government Infection 
Control Expert Group, including a respiratory protection 
program. In this respiratory protection program, workers 
attended a structured clinic where quantitative P2 FFR fit-
testing was performed to select and evaluate the appropriate 
size and style respirator for the individual. 

Participants were invited to join the study at the beginning 
of their visit to the clinic by the occupational hygienist/nurse. 

Inclusion criteria included employees required to 
undertake quantitative fit testing as part of routine respiratory 
protection program. Exclusion criteria were those who wore 
beard greater than 2mm.  

The study was conducted in accordance with the principles 
of the Declaration of Helsinki and was approved by the 
SALHN Human Research Ethics Committee (SALHN 
HREC 2021/GEM00074). Participants provided informed 
consent before enrolment. 

 
Selection of P2 filtering facepiece respirator 
P2 FFR’s used for this study were taken from the current 

supply chain within the institution with four different sizes 
available at the time of fit-testing clinic. All respirators were 
flat-fold design with ear-loops that comes with a ‘clip’ that 
is used to tether the loops together on the head for additional 
fixation support. The use of the ‘clip’ that is provided with 
these respirators is required by the manufacturer in 
accordance with their regulatory certification (Therapeutic 
Goods Administration, Australia). It must be noted that not 

all respirators with ear-loops are supplied with this ‘clip’, and 
this is a particular feature of the respirators used in this study.  

 
To select the first respirator to test, the occupational 

hygienist made a visual assessment of the participants facial 
features (nason-menton length, and bi-zygomatic width) 
according with standard process for this role.  

 
Fit testing 
During the visit to the clinic, fit testing was conducted to 

assess the adequacy of P2 FFRs in preventing the ingress of 
microscopic particles like COVID19 virus by a trained and 
experienced occupational hygienist. The fit testing clinic is 
required under that Australian Standard to  assess the 
suitability of a respirator for an individual(3). 

Quantitative fit-testing was conducted using a PortaCount 
8048 device in N95 mode (TSI Inc, Shoreview, USA). In 
N95 mode, the PortaCount measures the concentration of 
microscopic, aerosolized particles (40nm-60nm) in the 
ambient air and compares it to the concentration of particles 
that leak into the FFR through gaps between the face and the 
FFR while it is worn (rather than through the filter medium 
of the FFR). For each fit test conducted in this study, the  
“Modified Ambient Aerosol CNC Quantitative Fit Testing 
Protocol for Filtering Facepiece Respirators” was selected, 
whereby participants are required to: bend at the waist as if 
going to touch toes for 30 seconds, talk out lout slowly and 
loud enough so as to be heard by a test conductor for 30 
seconds, stand in place and turn head side to side for 30 
seconds and finally stand in place and move head up and 
down for 30 seconds.  
 

The occupational hygienist then conducted the fit test and 
recorded the overall result (pass/fail) and the overall fit factor 
achieved. A fit factor of 100 was used as the pass/fail 
threshold for the study. 

 
Infra-red imaging  
Infra-red imaging was performed using commercially 

available camera built for iPhone/iPad (Flir One Gen 3 -iOS, 
FLIR Systems Inc, Oregon USA). This camera has a thermal 
resolution of 160x120 pixels, and thermal sensitivity of 
60mK. For this study, the IR camera was attached to a tablet 
(iPad (8th Generation, Apple Inc, Cupertino, USA) with the 
accompanying software app installed (FLIR ONE, FLIR 
Systems Inc, Oregon USA).  

 
The thermal camera was turned on and allowed to self-

calibrate prior to any images taken. Using a floor-mounted 
stand, the tablet and thermal camera was manipulated into 
position by the hygienist to position it in front of the 
participant’s face at a distance between 40cm-60cm [Figure 
1]. Immediately prior to commencing a fit-test with an 
individual (ie after tubes connected, PortaCount system 
prepared and the participant had donned their chosen 
respirator according to instruction), the hygienist used the 
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FLIR ONE app to record an image of the respirator on end-
inspiration. Images were saved to the tablet’s internal 
memory and given a unique identification number for cross-
referencing fit-test results on analysis.  

 
 
Part 2 – Data preparation and analysis using ML 
 
Thermal Image Data Pre-processing 
Native infra-red images were exported from the study 

tablet to a study PC with software packages ImageJ 
(Rasband, W.S., ImageJ, U. S. National Institutes of Health, 
Bethesda, Maryland, USA) with loaded function for 
processing FLIR images (Glenn J. Tattersall. (2019). 
ThermImageJ: Thermal Image Functions and Macros for 
ImageJ) and computational programming language (Matlab 
2022a, Matlab Inc, USA). All FLIR images were imported 
to imageJ in native .jpg format and converted to thermal .tiff 
format for analysis in Matlab [Figure 2]. In Matlab, thermal 
images were separated into separate folders for ‘pass’ and 
‘fail’ categories according to the results of the corresponding 
quantitative fit-test.  

 
Region of Interest 
A suite of custom Matlab scripts where used to create 

semi-automated region of interests (ROI’s) within the 
thermal images around the boundary of the respirator on the 
nose and cheeks (where majority of leaks occur in P2 
FFR’s)(17). To achieve this, images were displayed on the 
computer screen and an experienced occupational hygienist 
was instructed to trace around the upper boundary of the 
respirator to the zygomatic roll-off location, and then close 
the ROI making an approximately 2cm wide strip across the 
cheeks and nose [Figure 3, Panel A]. To control the creation 
of this ROI as far as possible, the ‘AssistedFreehand’ 
function was used in Matlab to automatically follows edges 
in the underlying image. As the morphology of each ROI is 
determined by underlying facial geometry and not 
standardised, we used a normalization process to map the 
upper edge of the ROI to a vertical line to normalise the 
morphology of the images as far as possible [Figure 3, Panel 
C].  

 
Feature Extraction 

For each normalized ROI, image feature extraction was 
completed using grey-level co-occurrence matrix analysis 
(18). In short, a gray-level co-occurrence matrix (GLCM) is 
a statistical representation of the spatial relationships 
between pixel intensities in an image. It quantifies the 
occurrence of pairs of pixel values at specified distances 
and angles, providing information about texture, patterns, 
and relationships within an image. In the context of 
detecting air leak from the P2 FFR, the spatial relationships 
between pixel intensities (i.e., thermal gradient) permit the 
quantitative detection of distinct temperature changes along 
the respirator's boundary, which could signal a leak. 

 
 
 For each ROI, we extracted 8 GLCM features; Contrast, 

Energy (or Angular Second Moment), Homogeneity, 
Correlation, Entropy, Dissimilarity, Autocorrelation (ASM), 
based on their consistent use and proven efficacy in texture 
pattern variations in prior research. It is worth noting that the 
GLCM method can generate a larger set of features, yet we 
focussed on eight to reduce the issues related to issues 
relating to dimensionality, reducing potential overfitting and 
computational costs, and enhancing the interpretability of 
our model. 

 
Machine Learning for Leak Detection Classification 
Machine learning (ML) techniques were implemented to 

classify respirators as either 'passing' or 'failing' based on 
quantitative fit test result. A comprehensive ML pipeline was 
developed, encompassing data pre-processing, model 
selection, training, performance evaluation, and deployment, 
all within a graphical computing environment (Classification 
Learner, Matlab). 

 
Preliminary Assessment for Model Selection 
A wide variety of algorithms were deployed to identify 

candidates that provide high accuracy in classifying 
respirator IR image as either 'pass' or 'fail'. The data matrix 
of 8 GLMC features were divided using an 80%/20% 
partition for training and testing. This stratified partitioning 
guarantees the model's performance evaluation would be 
conducted on a separate set of data not used during the model 
training, providing a more objective measure of its predictive 
capabilities.  An array of 22 models were trained and tested 
including Decision Trees, Support Vector Machines (SVM), 
Ensemble Methods (such as Bagged Trees, Boosted Trees, 
Random Forests, and Gentle Boost), Discriminant Analysis 
techniques (Linear, Quadratic, Regularized), Nearest 
Neighbours (k-NN), Naive Bayes, Generalized Linear 
Models (GLM, including Logistic Regression, Poisson 
Regression, Gaussian Regression), Deep Learning (Neural 
Networks), Gaussian Process, Hidden Markov Model 
(HMM), K-Means Clustering, and Self-Organizing Map 
(SOM).  Models were evaluated using cross-validation with 
k-folds on 80% of the dataset, with 20% of the dataset 
reserved as an unseen test set. For all 22 models, the 
validation accuracy and validation total cost was reported in 
table form.   

 
Model Sub-selection 
To further evaluate model performance and 

generalizability, we selected the best performing model from 
each of model type: Decision Tree, Discriminant, Logistic 
Regression, Naïve Bayes, Support Vector Machines, Nearest 
Neighbour, Kernel Approximation, Ensemble Classifiers 
and Neural Network Classifiers.  

 
Learning curves were used to evaluate the performance of 
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well performing models with the augmented combined with 
original dataset and divided into training and validation sets 
using k-fold cross-validation. The training error and 
validation error were calculated for each iteration, where the 
size of the training set increased incrementally. The learning 
curves were plotted to visualize the change in error with 
increasing training examples. Learning curves were 
inspected to assess average model error over the folds, 
providing insights into the model's ability to generalize as the 
training set size varies. 

III. RESULTS 
A total of 48 participants (75% female) were recruited 

with thermal image taken during end inspiration while 
wearing their professionally selected P2 FFR.  There 27 
PortaCount failures and 21 passes. All IR images passed 
visual inspection for suitability (screening for out of focus 
images, objects obscuring (ie hair) the respirator). All 
participants wore the same style of flat-fold P2 FFR (D95, 
Detmold Medical, Adelaide, Australia).  
 

 
Figure 1, Infra-red setup for data collection showing key 
components and positioning.  

Image processing 

All 48 thermal images were converted to .tiff file format 

containing only per-pixel temperature values and exported 

using ImageJ for custom processing [Figure 2]. 

 
Figure 2, processing of FLIR image to thermal using ImageJ 

 

Region of interest (ROI) windows were made and 
exported for all images, with all final ROI data flattened to a 
rectangular window of 60x 138 pixels [Figure 3]. Data 
augmentation was performed on all rectangular ROI images 
[Figure 3, Panel C] by flipping along the short axis extending 
the dataset size to 96 images.  
 

 
Figure 3, Process of making the ROI for analysis. 

GLCM features were extracted for each dataset using the 
following parameters: 

• Offset of:  10x 2 pixels  
• Number of Levels = 50 

 
Figure 4, implementation of the ML model on mask fringe region of 
interest.  

Preliminary Assessment  

Twenty two machine learning models were investigated 
using the full augmented dataset of 96 cases each with 8 
GLCM features and classified as ‘pass’ or ‘fail’ according to 
the quantitative fit test result obtained during fit testing.  

With 100% of the dataset used for model validation with 
5 layer k-fold cross-validation, the highest accuracy was 
found to be with the Ensemble (Bagged Trees) model, with 
an accuracy of 90.5% at a cost of 17 and the lowest accuracy 
was found with Ensemble (Boosted Trees) model, with 
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accuracy of 56.8% at a cost of 32.  
 

 
The 6 Top performing models were selected for extended 

analysis of generalizability and accuracy: 
 

Model Type 
Accuracy % 
(Validation) 

Total Cost 
(Validation) 

Ensemble (Bagged Trees) 90.5 7 

Fine Tree 86.5 10 

Neural Network (Bilaryered) 86.5 10 

SVM (Fine Gaussian) 85.1 11 

KNN (Weighted) 83.8 12 

Ensemble (RUSBoosted Trees) 83.8 12 
Table 1, Top 6 performing models all demonstrated an accuracy of 
greater than 80% with a cost no greater than 13 when the models 
were trained on 100% of the dataset, and evaluated with 5 levels 
of  k-fold cross verification.  

 
To investigate the generalisability of the models, training 
was performed again on these select 6 with data partitioned 
at 90% for training and 10% as un-seen test data.  

 

Model 
Number Model Type 

Accuracy % 
(Validation) 

Total Cost 
(Validation) 

Accuracy 
% (Test) 

Total 
Cost 
(Test) 

1 Tree 83.13 14 77.78 2 

2 SVM 87.95 10 100 0 

3 KNN 84.33 13 100 0 

4 
Ensemble 
(Bagged Trees) 89.15 9 100 0 

5 
Ensemble 
(RUSBoosted) 75.90 20 55.56 4 

6 Neural Network 89.16 9 100 0 

 
 

By testing the models on an unseen dataset reduces the 
likelihood of overfitting to the data. Based on these results, 
four of the models returned 100% accuracy of predicting if a 
participant would fail a PortaCount fit test; SVM, KNN, 
Ensemble Bagged Trees, and Bilayered Neural Network. 
From these data, the Ensemble RUSBoosted Tree was 
overfitting in the validation data and resulted in only 55.5% 
accuracy on the unseen data. Similarly, the Fine Tree model 
returned only 77.8% accuracy on the unseen data, compared 
to 83% in the validation. Of note, the total validation cost of 
both the Ensemble RUSBoosted Tree and the Fine Tree were 
higher than the other models, at with a cost of 20 and 14 
respectively. Of note, the total cost of the test data was 
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highest in these two models, at 4 and 2 respectively, whereas 
the cost of all other models was 0.  
 

IV. DISCUSSION  
 

We have conducted a thorough investigation in to the 
utility of using machine learning classification algorithms to 
predict the binary fit-test result of P2 FFR wearing healthcare 
workers.  

 
Key findings of this study: 
 

1. Machine learning algorithms are able predict 
whether a P2 respirator passes or fails a quantitative 
fit test when using the Detmold D95 Flat-fold 
respirator.  

 
2.  Multiple machine learning algorithms return very 

high accuracy with cross validation for predicting 
pass or fail quantitative fit test. 

 

 
3.  SVM, KNN, Neural Networks and Ensemble 

Bagged Trees were able to predict fit-test result 
with 100% accuracy when tested on unseen data. 

 
Comparison to prior literature  
The gold standard for point-of-care respirator assessment 

is the self fit-check where a user is required to evaluate if the 
respirator they are wearing leaks by a series of blowing out 
and feeling for air flow with their hands, and assessing 
pressure changes behind their respirator(19). Fit-checking 
however, has been shown to be inaccurate(12,13,15,20-23). 
Due to the number of studies reporting the accuracy of fit-
check, we conducted a rapid literature review and meta 
analysis to determine the pooled accuracy of fit-checking 
compared to the gold-standard quantitative fit-testing. A total 
34 results were returned using keyword searching in PubMed 
(((((Accuracy) OR (performance) OR (Sensitivity))) AND 
((N95 respirator) OR ("N95 mask") OR (n95 masks) OR 
(N95 Respirator))) AND (((fit check) OR (fit-check)) OR 
("fit check")). Full text was retrieved for 9 articles based on 
abstract data meeting inclusion criteria (reporting on fit-
check and PortaCount testing). After review of full text, 
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further 4 studies were excluded due to inadequacy of data 
presented (not presented as proportion of participants.   5 
studies met the inclusion criteria of reporting the proportion 
of participants that passed user fit-check but went on to fail 
quantitative fit testing. In this meta-analysis results of 5 
studies investigating the proportion of participants who 
believed that their N95 Filtering Facepiece Respirators 
(FFR) was not leaking when tested using a user seal check 
but subsequently failed a PortaCount fit test. The results 
show considerable heterogeneity across studies, suggesting 
that differences in study conditions or populations may 
influence the outcomes. The random effects model, which 
accounts for this variability, estimates the average proportion 
of those who pass the user seal check but fail the PortaCount 
fit test to be approximately 24.03%. This suggests that 
roughly a quarter of users who believe their N95 FFR is 
properly fitted could be wearing a respirator with leak, 
emphasizing the limits of user self-checks for N95 FFR fit.  
 

 
Other groups have reported on infrared imaging to predict 

respirator leak, however with varied success. In 2011, 
Roberge et al reported  the first use of infra-red imaging for 
leak detection on N95 FFR’s(18). In this comprehensive 
study, they authors were able to detect leaks using IR which 
correlated with quantitative fit-testing (p< 0.001), and they 
even reported on observed leaks with IR when the subject 
achieved a resounding pass (fit factor >200) on quantitative 
fit testings. These authors suggested that IR may be more 
sensitive to leaks than quantitative test, yet the authors had 

no methods to verify their findings, yet overall, the authors 
were not confident that their methods were substantially 
reproduceable en-masse to supplant condensation nuclei 
counters.  

In 2015, Harber et al re-visited the potential for infra-red 
imaging to detect respirator leak (16). Building on work by 
Roberge et al, these authors used video imaging of tidal 
respiration while holding the head fixed in a gig to allow for 
their image analysis techniques that were sensitive to motion. 
In this study, IR was again able to detect leak, however even 
wit these advanced methods, the ability to provide a 
continuous variable to match that of condensation nuclei 
counting methods was not reliable. 

Then in 2022, during COVID pandemic, Siah et al 
reported on the use of modern machine learning algorithms 
to predict respirator leak from infra-red images (17). Armed 
with a state of the art high resolution infra-red camera, 
multiple images were taken of N95 FFR’s of participants 
who had failed fit testing (qualitative). Images were cropped, 
reshaped and augmented and processed by a convolution 
neural network (CNN).  It was found that with their CNN, 
accuracy of between 20%-30% (dependent on camera 
angles) was achieved. However, the authors conclude that 
overfitting was a possibility due to the small size of their 
dataset.  

Our study, using single-frame IR images with 
simultaneous quantitative fit test results was able to train 
multiple machine learning algorithms to predict quantitative 
fit test pass or failure with very high accuracy which cross 
validated and then tested on un-seen data.  Our study builds 

Figure 5, Literature review and meta analysis of articles reporting accuracy of self-fit-check when measured with 
quantitative fit-testing. 
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on the work of these previous pioneers in the field if infra-
red imaging for leak detection, yet with the fortunate timing 
of technology convergence of computer vision and machine 
learning to remove the barriers that existed for previous 
groups. Furthermore, in contrast to our peers, we observed 
the thermal gradient in the respirator itself and not the 
surrounding skin, which has been reported to be insensitive 
to small temperature changes like those where a small leak is 
present.  

V. CONCLUSIONS  
In this study, we successfully employed infra-red (IR) 

imaging and machine learning to detect leaks in P2 
respirators, overcoming the limitations of traditional self fit-
checking methods. Our technique, which focuses on the 
thermal gradients of the respirator, demonstrated high 
accuracy, suggesting a novel and more reliable method for 
leak detection compared to skin gradient measures used by 
others in the past. 

These findings have substantial implications for 
enhancing healthcare worker safety, and has promise to  
provide an objective point-of-use leak detection system for 
high risk workers. While our study was specific to flat-fold 
P2 FFRs, these results lay groundwork for broader 
investigation across various respirator types and populations. 
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