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Printed Strain Sensors for Motion Recognition: 
A Review of Materials, Fabrication Methods, 

and Machine Learning Algorithms

Abstract— Recent studies in functional nanomaterials with 
advanced macro, micro, and nano-scale structures have yielded 
substantial improvements in human-interfaced strain sensors for 
motion and gesture recognition. Furthermore, fundamental 
advances in nanomaterial printing have been developed and 
leveraged to translate these materials and mechanical innovations 
into practical applications. Significant progress in machine 
learning for human-interfaced strain sensing has unlocked 
numerous opportunities to improve lives and the human 
experience through healthcare innovations, sports performance 
monitoring, and human-machine interfaces. However, several key 
challenges still must be overcome if strain sensors are to become 
ubiquitous tools for human motion recognition. This review begins 
with a summary of the critical strain-sensing mechanisms 
employed today and how recent works have sought to push their 
boundaries. It then proceeds to cover the primary functional 
materials used in wearable strain sensors from a performance and 
printability perspective. Next is a review of recent advances in 
nanomaterial printing to produce the complex structures 
necessary for functional devices. Next, we summarize machine 
learning approaches for human gesture recognition and the 
myriad applications and use cases for human-interfaced strain 
sensors. Finally, it concludes with a discussion of challenges and 
opportunities for future research in the field. 

Index Terms – strain sensor, printed electronics, wearables, 
machine learning, motion recognition 

Impact Statement – This review summarizes the key advances in 
materials, fabrication methods, and machine learning algorithms 
that are driving exciting progress in human motion recognition 
based on skin-interfaced strain sensors. 
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I. INTRODUCTION  
Strain sensors encompass a broad class of devices that 
transduce mechanical deformations and strains into an 
electrical signal. When attached to the skin, their ability to 
precisely characterize skin deformations makes them an ideal 
sensor for human motion and gesture recognition[1-5]. These 
sensors may be judiciously placed around key joints and 
analyzed with machine learning algorithms for many diverse 
applications, including human machine interfaces, 
rehabilitation, and healthcare[6-14]. For these systems to be 
effective and scalable for clinical and commercial use, several 
key requirements must be met. First, the strain sensors must 
well match the mechanical properties of the skin, allowing them 
to seamlessly stretch and flex during skin deformations[15]. 
They should have a low elastic modulus, the epidermis and 
dermis have elastic moduli of 140-600 kPa and 2-80 kPa, 
respectively, and stretchability suited for the region of interest, 
which can range from 10-80%[16]. The requirements for a low 
elastic modulus and high stretchability are typically achieved 
by integrating a very thin (< 20 µm) metal, conductive polymer 
composite, or conductive nanomaterial dispersion in a 
stretchable substrate, like urethane or fabric[17-19]. Second, 
the sensors must be highly sensitive over the strain region of 
interest, which is controlled primarily by the material properties 
and judicious patterning of the sensor[11, 20, 21]. Third, they 
must be durable over repeated uses[16]. This is determined by 
the mechanical strength of the materials used and the method of 
integration[22, 23]. Fourth, they must be biocompatible, which 
is again controlled by the materials and integration strategy[24, 
25]. The final key requirement for the physical sensors is that 
they may be rapidly manufactured in a scalable fabrication 
process[26, 27]. For instance, photolithographic patterning and 
complex two stage transfer fabrication has yielded exceptional 
strain gauge performance, but such approaches are not suited 
for industrial scales[4, 17]. Instead, fully printed sensors, which 
in many cases may be integrated into mature roll to roll 
manufacturing systems, offer a much more attractive method to 
translate fundamental discoveries in materials and interfaces for 
strain sensors to practical applications[27, 28]. A summary of 
these key requirements is shown in Figure 1.  
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Figure 1. Overview of printed strain sensors for motion 
recognition. Top left reprinted with permission from Appl Phys Lett 
73(26):3845 – 3847. Bottom left reprinted with permission from ACS 
Omega (2021) 6, 14, 9344–9351. Top right reprinted under Creative 
Commons license CC BY 4.0 from Spring Nature. Bottom right 
reprinted from IEEE Access, copyright ©[2019] IEEE. 
 

A variety of materials and fabrication techniques have 
been proposed to develop human interfaced strain sensors, but 
the most promising for scalable systems involve directly 
printing a functional sensing material on a stretchable 
substrate[29-34]. In these approaches, a conductive 
nanomaterial or polymer is typically dispersed in a printable 
ink, which is then deposited using either contact or non-contact 
printing methods[33-36]. Recent advances in printable 
nanoparticle, nanowire, nanotube, polymer, and piezoelectric 
crystal dispersions for strain sensors have greatly improved 
sensor performance and unlocked novel applications in human 
motion recognition[4, 37]. These materials may be printed with 
contact methods, like screen, gravure, and flexographic 
printing, or non-contact methods, like inkjet, aerosol jet, and 
electrohydrodynamic (EHD) printing[33, 34, 38-40]. The 
advantages and limitations of each method will be discussed in 
depth in section 4. Compared to traditional microfabrication 
approaches, all these methods offer much lower material waste, 
lower cost, higher throughput, and simpler integration, making 
them highly attractive for practical strain sensing 
applications[33].  
 Finally, the sensors must be integrated into a 
functional system with wearable electronics capable of either 
detecting motion on-site or broadcasting data to a remote 
processor via Bluetooth[4]. These systems often must be 
minimally obtrusive to the user and highly portable, requiring 
them to either utilize skin-interfaced electronics or electronic 
garments[17, 18]. Furthermore, machine learning algorithms 

must be developed and tuned to classify human motions based 
on the sensor data[6, 41].   
 The purpose of this review is to summarize the key 
advances in materials, fabrication methods, and machine 
learning algorithms that are driving exciting progress in human 
motion recognition based on skin-interfaced strain sensors. The 
review is organized into the following sections: First, Section 2 
summarizes the three primary sensing mechanisms employed 
for these devices. In Section 3, the most promising materials for 
strain sensors are surveyed, with a focus on their performance 
and manufacturing tradeoffs. Section 4 details the various 
printing methods currently under investigation, with a similar 
focus on material ink requirements, manufacturing scalability 
and patterning control. Next, Section 5 presents several 
machine learning approaches for human motion recognition 
based on wearable strain sensor networks. Applications based 
on these fully integrated systems are then explored in Section 
6, and the review concludes with a perspective on the crucial 
challenges and future direction of the field in Section 7.  
 

II. STRAIN SENSOR OPERATING PRINCIPLES 
Strain gauges utilize the unique material properties of an active 
sensing material to transduce mechanical strain into an 
electrical signal. In printed strain gauges, this is usually 
achieved through resistive, capacitive, or piezoelectric effects. 
Although traditional strain gauges have relied primarily on 
purely geometric changes to elicit these three effects, novel 
sensors are being developed that incorporate various 
disconnection, crack propagation, tunnelling, and percolation 
threshold phenomena to increase sensor resistivity. In each 
method, the specific material properties and microstructures, 
pattern thickness and geometry, material loading, substrate 
choice, and post-print processing play crucial roles in 
determining sensor performance. Understanding these key 
parameters will be the focus of sections 3 and 4 of this review; 
first, however, section 3 will briefly detail the three primary 
strain transduction mechanisms used in printed, human-
interfaced strain sensors, and these approaches are furthermore 
characterized in Table 1 and illustrated in Figure 2. 
 

A. Resistive Strain Sensors 
The most common resistive strain transduction mechanism, and 
indeed the most ubiquitous of all three approaches, utilizes the 
piezoresistive effect[24, 42-46]. Quite simply, the electrical 
resistance of a material changes according to Ohm’s Law based 
on the following relationship: 

𝑅 = 	𝜌
𝑙
𝐴 

where ρ is the electrical resistivity, A is the cross-sectional area 
A, and l is the material length. When a material is stretched, the 
length and cross-sectional area change in accordance with the 
material’s Poisson ratio 𝜈: 

𝜈 = 	
−𝑑𝜀!"#$%
𝑑𝜀#&'#(
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where 𝜀!"#$% is the transverse strain and 𝜀#&'#( is the axial strain. 
This geometric alteration based on the Poisson ratio alone, 
however, induces a relatively small gauge factor, which is 
defined as the change in resistance with strain. The sensor’s 
gauge factor, and thus sensitivity, can be greatly improved by 
also incorporating strain dependent changes in resistivity. Thus, 
the gauge factor based purely on intrinsic material properties 
can be defined as:  
 

𝐺𝐹)'*+,"*%'%!'-* =
.///
1

= 	1 + 2𝜈	+ .2/2
1

 
 
where 𝜀 is the applied strain. Whereas traditional strain sensors 
rely solely on these intrinsic material properties, advanced 
sensors can achieve improved gauge factors by inducing 
microstructural changes that affect conductive pathways[25, 
47-53]. One of the most common methods is by embedding the 
conductive nanomaterials in a polymer matrix with a loading 
percentage near the percolation threshold, which is the 
minimum material loading needed to form a highly conductive 
network[42, 54, 55]. Thus, any small changes in the material 
contacts will yield high changes in resistance. For instance, 
embedded silver nanowires (NWs) were embedded in a PDMS 
matrix with an optimized material loading such that 
conductivity is maintained, but greatly reduced with strain[56]. 
Although this method is achievable with all nanomaterials, it is 
best suited to those with high aspect ratios, like NWs and 
nanotubes (NTs) because they can best avoid total 
disconnections because of their long lengths[42, 54, 55].  
 

 
Figure 2. Illustrations of the three primary approaches to strain 
sensing in human interfaced electronics. 𝐶!, 𝑅!, and 𝑉! represent the 
initial capacitance, resistance, and voltage, respectively, while 𝐶", 𝑅", 
and 𝑉" represent the final capacitance, resistance, and voltage, 
respectively. The plots in the lower portion of the figure represent the 
response to an impulse strain.  
In addition to causing disconnections at the nano-scale, 
microscale disconnections may be induced through a cracking 

method[57-59]. Typically, a thin metal is deposited on a 
polymer or fiber substrate, and micro-cracks are induced 
because of the mismatch in material moduli. For instance, an 
Ag ink was printed over a silicone elastomer and used a 
cracking mechanism to observe excellent gauge factors of over 
1000 with up to 75% strain[60]. One key limitation of this 
approach, however, is that these cracks do not self-heal after 
strain, leading to a reduced gauge factor after repeated uses. 
This limitation can be circumvented by using a simple 
disconnection instead of a full crack, although this approach 
tends to exhibit a lower gauge factor[11, 28, 52, 61, 62]. As an 
example, one group used a buckling disconnection mechanism 
to achieve high stretchability (300%) and an acceptable gauge 
factor of 48[63]. In addition, the quantum tunneling effect can 
be used to yield an improved gauge factor. In this mechanism, 
charges may penetrate an energy barrier based on the 
probability density of the charge carrier, and the tunneling 
resistance depends on the tunnel barrier height and width. 
Specifically, the tunneling resistance may be defined as: 

𝑅!3$$*( =	
ℎ4𝑑

𝐴𝑞*4√2𝑚𝜆
𝑒
567
8 √4:; 

where h represents Planck’s constant, d represents distance 
between electrodes, 𝑞* is charge of an electron, m is the mass 
of an electron, and λ represents the tunnel barrier height. 
Electrons confined in the structure experience a high interfacial 
barrier if the material has a large effective mass that causes the 
sub-band to be lowered to near the bottom of the potential well. 
If there is a mismatch in lattice constants within the material 
heterostructure, however, an induced strain can modify the 
bandgap and reduce the barrier height, greatly decreasing the 
tunneling resistance. For instance, a strain sensor was fabricated 
with Au nanoparticles (NPs) with tetra(ethylene glycol) dithiol 
(SH-TEG-SH) linkers to form a covalent 3d network[64]. 
When the system is strained, the linkers stretch, which increases 
the AuNP interparticle distance and exponentially increases the 
tunneling resistance. This allowed them to achieve a gauge 
factor of 126 in a soft, human-interfaced strain sensor[64]. As 
these studies have shown, introducing novel mechanisms to 
increase piezoresistive strain gauge sensitivity can yield gauge 
factors far above those generated by geometric deformations 
alone, often exceeding 100 or more, although the higher the 
gauge factor, typically the lower the linear sensing range. This 
is because the resistance change in highly sensitive devices is 
often due to a change in state (like cracking of a microstructure) 
that occurs at a defined strain, not over a wide range.  

B. Piezoelectric Strain Sensors 
Strain sensors may also be designed to function based on the 
piezoelectric effect[65-67]. As shown in Fig 2, the piezoelectric 
effect occurs when a mechanical deformation creates a dipole 
moment in a material by deforming the underlying crystal 
structure, producing a measurable voltage. Because a small 
deformation can produce a large voltage change in materials 
with a high d33 piezoelectric coefficient, these sensors can be 
highly sensitive[68]. The gauge factor, and thus sensitivity, of 
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a piezoelectric strain gauge is defined as the voltage produced 
per unit force. Because piezoelectric materials are anisotropic, 
this quantity is related to a material’s piezoelectric coefficient 
depending on the force applied and measurement mode. When 
the voltage is measured in the same direction of the applied 
force, as shown in Fig 2, the charge Q is equal to 
 

𝑄 =	𝑑<<𝐹< 
 
where 𝑑<< is the corresponding piezoelectric coefficient for a 
33 direction force-strain relation, and 𝐹< is the applied force. 
This is referred to as the longitudinal mode. When the voltage 
is measured in a direction parallel to the applied force, the 
charge becomes 

𝑄 =	𝑑<=𝐹=
𝑏
𝑎 

 
where b and a correspond to the material length in the direction 
of applied force and measured voltage, respectively. This is 
referred to as the transverse mode. When measuring a voltage 
induced by a shear force, the relation becomes  
 

𝑄 =	𝑑>=𝐹= 
 
In each case, the voltage produced at the electrodes is defined 
as  

𝑉 =	
𝑄
𝐶 

 
where C is the capacitance of the piezoelectric material and is 
defined as  

𝐶 =	
𝜀?𝜀"𝐴
𝑡  

 
where 𝜀? is the permittivity of free space, 𝜀" is the permittivity 
of the material, A is the crystal area, and t is the thickness. We 
thus see that the gauge factor for a longitudinal mode sensor is  
 

𝐺𝐹<< =	
𝑑<<𝑡
𝜀?𝜀"𝐴

 

 
and the gauge factor for a transverse mode sensor is 
 

𝐺𝐹<= =	
𝑑<=𝑡 𝑏 𝑎<
𝜀?𝜀"𝐴

=
𝑑<=𝑏4

𝜀?𝜀"𝑎4𝑙
 

 
where l is the length in the 2 direction, perpendicular to both a 
and b. Finally, the gauge factor for a shear mode sensor is  
 

𝐺𝐹>= =	
𝑑>=𝑡
𝜀?𝜀"𝐴

 

 
In contrast to resistive and capacitive strain sensors, 

piezoelectric strain sensors produce an instantaneous voltage 
and do not require continual powering to operate[69]. However, 

they are often limited by fundamental material properties 
inherent to the sensing materials that are not desirable for 
human-interfaced electronics, like low flexibility and 
stretchability, which in turn limits the sensing range[65, 66]. 
Judicious patterning in serpentine structures can increase the 
stretchability by decreasing the localized strain experienced by 
the sensor, but this in turn decreases the sensitivity[67]. Among 
the most common materials used for piezoelectric sensors are 
ZnO NWs, polylactic acid (PLA), and poly(vinylidenefluoride-
co-trifluoroethylene) (P(VDF-TrEE))[66-69]. For instance, a 
wearable strain sensor  was developed based on ZnO NWs to 
detect finger bending[70]. Because the piezoelectric sensor 
produces an instantaneous voltage based on the deformation, it 
was furthermore possible to determine the bending speed based 
on the integral of the voltage signal[70]. Although piezoelectric 
strain gauges are increasing in prevalence over the last few 
years, they have not garnered as much attention as other strain 
sensing mechanisms for human-interfaced electronics because 
of current limitations in the material flexibility and sensing 
range[65]. However, the high sensitivity, ranging from 100-500 
mV/N makes piezoelectric mode sensors of high interest for 
future applications should these concerns be resolved. 

C. Capacitive Strain Sensors 
Geometric changes in a material not only alter its resistance, but 
they also affect its capacitance. Therefore, it is possible to 
design simple deformable capacitors to act as strain sensors. 
The capacitance of a dielectric material may be determined by 
the following relationship: 

𝐶 =	 𝜀,𝜀"
𝑙𝑤
𝑑  

 
where 𝜀,𝜀" represent the dielectric constants of a vacuum and 
the material and l, w, and d are the length, width, and thickness 
of the dielectric layer, respectively. After experiencing a tensile 
strain, the capacitor dielectric’s length increases to (1 + 𝜀)𝑙, 
whereas the width and thickness decrease to (1 − 𝜈𝜀)𝑤 and 
(1 − 𝜈𝜀)𝑑, respectively. The new capacitance of the material 
after a tensile strain may thus be expressed as: 
 

𝐶$*@ =	𝜀,𝜀"
(1 + 𝜀)𝑙(1 − 𝜈𝜀)𝑤

(1 − 𝜈𝜀)𝑑 = (1 + 𝜀)𝐶 

 
Based on this relationship, it is readily apparent that the 
theoretical gauge factor, here defined as change in capacitance 
with strain, for a capacitive strain sensor based on a simple 
parallel plate capacitor will always be 1 regardless of the 
Poisson ratio. This is quite low in comparison to state of the art 
resistive and piezoelectric strain sensors and may not be 
sufficient for measuring ultra-fine strains from the human body, 
like those produced by pulses or small gestures[71]. Therefore, 
numerous works have sought to improve the gauge factor of 
capacitive strain sensors by utilizing new shapes and 
judiciously manipulating the mechanical properties of the 
chosen materials[37, 54, 72-80]. For instance, an interdigitated 
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electrode structure with AgNW electrodes was embedded in a 
PDMS substrate to double the gauge factor of their sensor [72, 
81]. When the sensor experiences strain perpendicular to the 
electrode comb, the inter-electrode spacing d increases to 
(1 + 𝜀)𝑑, whereas both the sensors length and thickness 
decrease to (1 − 𝜈𝜀)𝑙 and (1 − 𝜈𝜀)𝑤. Thus the new 
capacitance in this structure is defined as  
 

𝐶$*@ =	𝜀,𝜀"
(1 − 𝜈𝜀)𝑙(1 − 𝜈𝜀)𝑤

(1 + 𝜀)𝑑  

 
which results in a theoretical gauge factor of -2. In another 
work, a wrinkled electrode film was employed utilizing a 
buckling phenomenon to achieve a gauge factor of 3.05 [81]. 
Recently, auxetic structures that exhibit a negative Poisson ratio 
have become of increasing interest in the design of highly 
sensitive strain sensors, and another group used this approach 
to increase the gauge factor by several times without sacrificing 
linearity and hysteresis[82]. Another common approach in 
recent works is to manipulate material properties at the nano-
scale to improve the capitors performance. For instance, 
changes in the interparticle coupling of AuNPs were utilized 
and their tunnel junctions to create a parallel plate capacitive 
strain gauge with a gauge factor of 3.5 [83]. Furthermore, Yuan 
et created a nanocomposite of reduced graphene oxide in a 
PDMS dielectric, where the anisotropic flakes would align with 
strain and create microcapacitors that greatly increased in 
permittivity with strain, allowing for an improved gauge factor 
of 13.6 [84].  
  
Table 1. Strain sensing approaches 

 
 
Despite these exciting advances, significant opportunities 
remain to explore advanced mechanical and material properties 
at the nano-scale to improve capacitive strain sensors for 
human-interfaced electronics. Most printed strain sensors 
implemented in practical on-body applications to date have 
been based on printed nanomaterial electrodes with either an 
Ecoflex or PDMS dielectric layer in a parallel plate or 
interdigitated electrode structure [5, 37, 54, 73-80, 85, 86]. 
Compared to piezoelectric and resistive strain sensors, 
capacitive strain sensors are generally highly linear, reliable, 

simple to fabricate, and low in hysteresis, but they are limited 
in sensitivity. Typical gauge factors are below 10, even for 
advanced materials and geometries. As mentioned above, new 
advances in materials and mechanics for capacitive strain 
sensors may offer an exciting way to produce highly linear, 
reliable, and low hysteresis strain sensors that also exhibit 
exceptional sensitivity. 
 

III. STRAIN SENSOR FABRICATION  

A. Screen Printing 
Screen printing has been used in garment patterning for 
centuries, and it has become a key fabrication method for a 
variety of printed electronics because of its high suitability for 
rapid roll-to-roll manufacturing, ease of prototyping, and 
simplicity[87, 88]. Screen printing involves the active transfer 
of ink from a mesh to a target substrate mediated by pressure 
and sheer applied by a blade termed the squeegee.[89, 90]. 
Printing occurs in six phases, as shown in Figure 3(A)[89, 91]. 
First (I), ink enters the mesh in a process termed flooding with 
the application of gentle pressure[90]. Second (II), the mesh is 
brought into contact with the substrate as a result of applied 
pressure from the squeegee as it travels, and the highly 
pseudoplastic ink thins with applied pressure[92]. Third (III), 
the ink adheres to the mesh and the substrate in a uniform 
liquid[91]. Fourth (IV), the mesh is pulled upwards as the 
squeegee progresses down the print, causing the ink structure 
to rise and stretch[91]. Fifth (V), the ink forms filament 
structures between the mesh and substrate as the mesh is further 
raised[91]. Finally (VI), the filaments collapse and the print 
levels, resulting in a deposition thickness that depends on the 
mesh open area and the ink adhesion to both the mesh and the 
substrate[91, 93]. In traditional screen-printing applications, the 
substrate is placed on a flat plate below the mesh, as shown in 
Figure 3(B)[94]. In roll-to-roll screen-printing, the mesh is 
folded into a cylinder with the squeegee blade positioned inside 
the cylinder[95]. As the substrate is rolled against the mesh and 
the impression cylinder, pressure and sheer are applied 
proportional to the print velocity[95]. This process is depicted 
in Figure 3(C) [95]. In screen printing, the mesh substrate offset 
distance and mesh geometry are crucial parameters, but, 
contrary to popular conception, the squeegee speed and 
pressure have not been shown to correlate highly with print 
quality[96]. This is because the sheer and compressive forces 
in a properly designed ink are sufficient to prevent ink 
hydroplaning before the squeegee, instead operating solely on 
the six aforementioned printing stages[97]. Optimizing ink 
rheology for this complicated fluid dynamics is crucial in 
screen printing[92]. Ink viscosities are generally high (10-30 
PaS), and the inks must be highly pseudoplastic so that they can 
maintain their structure during flooding, flow easily, and 
rapidly coalesce without slumping [90, 98]. 
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Figure 3. Contact printing methods for nanomaterial-based strain 
sensors. (A) Illustration of the six stages of screen printing. (reprinted 
with permission from ACS Omega (2021), 6, 14, 9344–9351. 
Copyright 2021, ACS). Smart Mater. Struct. 27 (2018) 085014. (B) 
Illustration of the screen printing system (Reproduced under a CC-BY 
3.0 license from Intech Open DOI: 10.5772/intechopen.89377). (C) 
Image of a roll-to-roll screen printer used in nanomaterial printing. 
(reprinted with permission from Ind. Eng. Chem. Res. (2019), 58, 43, 
19909–19916. (D) Overview of the gravure printing process (reprinted 
with permission from Flex. Print. Electron 2016 1 023003. (E) 
Illustration of the complete gravure printing apparatus. (reprinted with 
permission from Smart Mater. Struct. 27 (2018) 085014).  
 
In addition, the area that is not to printed in the mesh is blocked 
with an emulsion polymer, which must be highly smooth to 
yield an even print[96]. The minimal resolution achievable in 
screen printing is limited fundamentally by the mesh quality, 
even if many inks with suboptimal rheologies cannot approach 
this limit[90]. Specifically, screen printing meshes are limited 
by lithography resolution in emulsion etching, emulsion 
smoothness, and mesh geometries[99]. A finer mesh with more 
weaves per unit area improves print resolution, but the 
proportional reduction in mesh open area leads to a thinner print 
deposition[99]. In summary, screen printing is highly suited for 
printed strain sensors because it is a mature industrial process 
with significantly lower startup and prototyping costs than 
gravure and flexographic printing, and new innovations in mesh 
or stencil design open new opportunities for increased print 
resolutions. 

  

B. Gravure Printing 
Gravure printing is a mature and widely used manufacturing 
method that has been employed for high throughput image and 
newspaper printing since the 19th century[100]. Gravure 
printing is achieved in four phases, as shown in Figure 3(D), 
with the overall system schematic shown in Figure 3(E)[94, 
100]. First, the ink to be printed is poured on a rotating gravure 
roll and fills the recessed cells in the roll that comprise the 
printing pattern[101]. Second, a doctor blade removes excess 
ink from the gravure roll[101]. Third, the ink is brought in 
contact with the target substrate, which is itself rolled at the 
same speed as the gravure roll, and the ink is pulled from the 
gravure cells onto the substrate as a result of adhesive forces 
between the ink and the substrate and the ink’s intrinsic surface 
tension[100, 101]. Finally, the print stabilizes on the substrate 
and spreads into a uniform film from the deposited beads based 
on the contact angle at the liquid-gas interface on the substrate, 
which is determined by the Young’s equation. 𝐶𝑜𝑠𝜃A =	

B!"CB!#
B#"

, 

where 𝛾%D,	𝛾%(, 𝛾(D are the surface energies for solid-liquid, 
liquid-gas, and solid-gas respectively[30, 100, 102]. In gravure 
printing, the print resolution, quality, and speed are primarily 
limited by the complex fluid dynamics occurring when excess 
ink is removed by the doctor blade, where lubrication residue 
and ink drag out can occur[100, 103].  First, the doctor blade 
always leaves a small residual ink layer on the roll because of 
adhesion between the roll and ink[100].  

This residue’s thickness depends highly on the capillary 
number 𝐶# =	

-'%A,3%	F,"A*%
%3"F#A*	!*$%',$

=	 GH
I

, where µ is the ink 
viscosity, U is the print speed, and 𝜎 is the ink surface 
tension[102]. At high capillary numbers, the residual thickness 
is often unacceptable[100]. Therefore, reducing print speed and 
ink viscosity is essential in limiting lubrication residue. Second, 
the doctor blade can tend to pull ink out of the cells as it passes 
and smear the ink on the roll[103]. This process has been 
analytically and empirically shown to depend primarily on 
capillary flow, which is limited at high capillary numbers[102, 
104]. In practice, achieving a capillary number of Ca≈1 is 
necessary for high quality gravure printing, although the ideal 
capillary number also depends on pattern geometry, orientation, 
substrate wetting, and print thickness[103, 105]. The cell 
pattern is also crucial in achieving high resolution prints[106]. 
Printing continuous lines, which is referred to as Intaglio 
printing, is avoided because the dragout effect is amplified with 
long prints oriented in the printing direction[107]. To produce 
high resolution, level prints, minimizing cell dimensions is 
critical[100, 103, 104]. Traditional print head fabrication 
methods, like electromechanical and laser engraving, however, 
cannot produce cells with dimensions <10 µm, and often cause 
defects in the gravure roll[103, 104]. Therefore, recent works 
seeking to improve resolutions have employed silicon 
microfabrication techniques to design very high-resolution 
gravure rolls[103]. For instance, photolithography was used to 
design a silicon-based gravure roll capable of producing high 
resolution traces <30µm with conductivities >10,000 S/m[103]. 
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In summary, gravure printing is a mature process well suited to 
printing strain gauges, but it also presents very high startup 
costs, incurs high costs to prototype, places rigid requirements 
on ink rheology, and often requires substrate surface 
modifications in order to achieve optimal printing[100, 108, 
109].  
 

C. Inkjet Printing 
Inkjet printing is among the most ubiquitous graphics printing 
methods, with exceptionally rapid prototyping and deposition 
control, making it highly suitable for printed electronics[110-
112]. In inkjet printing, pressurized ink is jetted through a 
nozzle, forming droplets that are deposited onto the substrate 
and collapse due to impact and the substrate wettability[113]. 
There are two main methods for inkjet printing, although drop 
on demand (DOD) printing is greatly preferred over continuous 
inkjet printing (CIJ) for printed electronics because it yields 
higher deposition accuracy and resolutions[109]. Illustrations 
of both methods are provided in Figure 4(A) and (B), 
respectively [114]. In DOD printing, the ink is jetted through 
the nozzle by either a piezoelectric actuator or a thermal 
disturbance that produces a shockwave[110]. A CIJ printer, on 
the other hand, charges ink droplets and passes them through an 
electric field, allowing one to control the ink depositions[110].  
Both inkjet printing processes are illustrated in Figure 4(a). 
DOD printing is attractive because it allows for strong control 
over pattern thickness, high resolution up to 40µm, and 
inexpensive prototyping, but it is also limited by nozzle 
clogging, the uneven flow of material to the edge of the print in 
a process termed the coffee ring effect and reduced throughputs 
compared to contact printing methods.[115-120].   

The fluid mechanics during printing is best 
characterized by three dimensionless quantities, the Weber 
number (We), Reynolds number, and Ohnesorge number (Oh): 

 

𝑊𝑒 =	
𝜁𝜌𝑣4

𝛾  

𝑅𝑒 = 	
𝜁𝜌𝑣
𝜂  

𝑂ℎ =	
√𝑊𝑒
𝑅𝑒 =

𝜂
J𝜁𝜌𝛾

 

 
where η, ρ, and γ are the ink viscosity, density, and surface 
tension, respectively, v is the print velocity, and ζ  is 
characteristic printing length, which is in most cases simply the 
diameter of the print head nozzle[110, 120, 121]. In general, Oh 
must be between 1 and 1/10 to achieve a quality print, as 
illustrated in Figure4(b). At high Oh values, the ink viscosity 
will preclude stable drop formation[119]. When Oh is too low, 
on the other hand. the ink cannot form a single, well defined 
drop.[119], and these tradeoffs are illustrated in Figure 4(C) 
[122]. In addition, the particle size cannot be > ζ/50 in order to 
avoid nozzle clogging[123]. Another critical challenge in inkjet 
printing is the coffee ring effect[118].  

 
 
Figure 4. Inkjet and aerosol jet-based strain sensor 
microfabrication. (A-B) Illustrations of the (A) continuous stream 
and (B) drop on demand inkjet printing methods (reprinted under a 
Creative Commons license from J. Manuf. Mater. Process. 2021, 5(3), 
89). Optimization space for inkjet printing based on the Weber and 
Reynolds numbers. (Reprinted under a Creative Commons license 
from Engineering 1(1), 113-123). ) Example images and illustrations 
of coffee ring formation due to capillary flow in evaporating droplets. 
(reprinted with permission from Langmuir (2015), 31, 14, 4113–
4120).  (F-G) Schematics of (F) pneumatic and (G) ultrasonic aerosol 
jet printing (reprinted under a Creative Commons License from J. 
Manuf. Mater. Process. 2021, 5(3), 89). (H-J) Schematic of (H) 
ultrasonic and (I) pneumatic atomization and (J) the deposition head. 
(reprinted under a Creative Commons License from Int. J. Adv. 
Manuf. Technol. 105, 4599–4619 (2019)).  
 
This occurs when the edge of a droplet on a substrate is fixed in 
place and capillary flow induced by evaporation of the drop 
causes material to flow from the interior towards the edge[118]. 
This process is typically alleviated by Marangoni flow within 
the drop, but many printing surfactants tend to have very week 
Marangoni flows[124]. There are many mechanisms under 
investigation to prevent coffee ring formation, including careful 
control of the surfactant mediated interactions between 
particles and the liquid-gas interface[124, 125], mixing high 
and low boiling point solvents[116], heating the substrate[126], 
depinning the contact line (which reduces print 
definition)[127], alternating voltage electrowetting[117], and 
dual drop inkjet printing[128]. For instance, surfactants were 
mixed with colloids with opposite charges and observed that 
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this process produced hydrophobic particles, giving them a 
greater affinity to the liquid gas interface[125]. These particles 
on the drop surface prevented capillary flow from collapsing 
the structure, leading to a uniform deposition, as shown in 
Figure 4(C-D)[125]. Overall, inkjet printing is highly attractive 
for printing bioelectronics because complex systems can be 
very rapidly prototyped during development, then easily scaled 
to mass production, but there are also very strict requirements 
on nanomaterial ink properties, lower demonstrated 
throughputs than alternative methods, and key challenges 
relating to nozzle clogging that complicate high throughput 
fabrication.  
 

D. Aerosol Jet Printing 
Aerosol jet printing involves the aerosolization of a printable 
ink in a carrier gas through either pneumatic or ultrasonic 
atomization[109, 129-136]. The operating principles of 
pneumatic and ultrasonic aerosol jet printing are illustrated in 
Fig 6(E) and (F), respectively[136]. As the illustrations show, 
nanomaterial ink droplets are atomized, then delivered to the 
ceramic nozzle attached to the print head with a vacuum 
generated by means of a (typically nitrogen) sheath gas and 
jetted onto the substrate[136].  The specific atomization 
mechanisms in ultrasonic and pneumatic atomization are 
further illustrated in Fig 6(G) and (H), respectively[135, 136]. 
Finally, the deposition through the nozzle is illustrated in Fig 
6(I)[135]. In both mechanisms the jet produced is comprised of 
many droplets with a diameter of 2–5 μm forced through the 
nozzle by the carrier gas[135]. In addition to the carrier gas, a 
sheath gas is used to constrain and constrict the aerosol stream 
within the nozzle shear. The ratio of the sheath gas flow rate to 
the carrier gas flow rate is one of the key parameters in aerosol 
printing, and it must be carefully controlled to prevent 
overspray and yield high resolution patterns[130]. Similar to 
inkjet printing, aerosol jet printers are highly susceptible to 
clogging concerns, placing a critical limitation on ink 
design[134]. In general, pneumatic atomization is preferred for 
clogging prevention because it is suited for higher loading 
percentages (75 vs 50 wt%) and larger particles (50nm vs 
500nm), but it is likewise still best by the need for frequent, 
difficult cleaning that limits throughput[135]. Despite these 
limitations, aerosol jet printing has been used to demonstrate 
exceptional spatial control in fine depositions. For instance, one 
team demonstrated large scale fabrication of complex 3D 
structures, including spirals and pillars with minimum 
dimensions of 20 um using aerosol jet deposition of AgNPs 
dispersed in EG and DI water[137]. Furthermore, well 
dispersed CNTs, NWs, and graphene may be printed via aerosol 
jet printing[138-143]. In one example, carboxyl 
functionalization was used to disperse CNTs with SWCNTs 
and MWCNTs at a ratio of 80 to 20. They printed the resultant 
ink using ultrasonic atomization with drop sizes of 1-5 um to 
yield highly conductive (3 µΩ/cm) traces with widths of only 
13 um[138]. Although aerosol jet printing is significantly lower 
throughput than alternative printing methods and places 

stringent limitations on ink design, its ability to produce very 
high-resolution patterns with excellent spatial control, rapid 
prototyping, and overall deposition quality make it very 
attractive for printed strain sensor fabrication.  

 

E. Electrohydrodynamic Printing 
EHD printing utilizes an electric field to force ink to eject from 
a conductive nozzle. The overall operating principle of EHD at 
the nozzle is shown in Fig 5(A)[144]. As the illustration shows, 
the ink does not eject until some force overcomes the surface 
tension[136, 144]. Here, this force is produced via 
electrostatics. Specifically, an electrical potential is applied that 
causes charge to migrate to the ink meniscus, creating a 
potential between the meniscus and the grounded substrate. In 
addition, a tangential electric potential is used to produce a 
uniform jet, termed the Taylor cone[144]. The electric potential 
distribution is shown in Fig 5(B) [145]. In order for this method 
to work, the ink must be suitably dielectric to produce proper 
charge distributions, or else the resultant jet will be highly non-
uniform[146]. Unlike inkjet printing, the Taylor cone in EHD 
printing can produce a jet smaller than the nozzle head, which 
greatly assists in producing high resolution patterns when using 
large nanomaterials that can induce clogging[144]. An 
illustration of the EHD system is provided in Figure 5(C) [147]. 
EHD printing is affects strongly by a wide range of printing and 
ink parameters, which must be optimized in tandem to produce 
a quality deposition[44, 148-154]. 

 
Figure 5. Electrohydrodynamic strain sensor microfabrication. 
(A) illustration of  the physics of EHD printing at the nozzle (reprinted 
with permission from J. Appl. Phys. 120, 084903 (2016). (B) model 
showing the spatial distribution of the electric potential during EHD 
operation around the tip, with the scale bar indicating field strength 
(reprinted with permission from Nanoscale 2016, 8, 6028). (C) 
Schematic diagram of the electrohydrodynamic printing system 
(reprinted with permission from J. Phys. D: Appl. Phys. 46 255301.  
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For instance, the ink’s surface tension, viscosity, and dielectric 
nature in addition to the printer’s substrate offset height, electric 
potential distribution, nozzle width and length and flow rate are 
all essential parameters. As a result, stringent requirements are 
placed on the ink synthesis[44, 148-154]. These inks must have 
low surface tensions (<50 mN/m) and high viscosities (1-10 Pa 
S), although increasing both parameters tend to cause print 
smearing after deposition and reduce resolution[150, 152]. 
Furthermore, increasing conductivity can increase sensor 
sensitivity, but it complicates printing by limiting precise 
surface charge control[148]. Similar to other printing methods, 
the ink must also be optimized for quality wetting on the 
substrate, but this is complicated by the need to limit surface 
tension for EHD printing[149].  
 In one notable example, a team ball milled a lead 
zirconate titanate (PZT) powder and prepared a solution of 
titanium (IV) isopropoxide zirconium (IV) propoxide, lead (II) 
acetate trihydrate, 1-propanol, and glacial acetic acid with a 
material loading of 46.7% to yield a printable PZT ink for a 
piezoelectric strain sensor capable with a  d33 of 
∼66 pC/N[153]. Furthermore, they demonstrated exceptional 
resolution of 100 um prints with only 5 um inter-line distances. 
Overall, EHD printing is a very intriguing printing method 
because the electric field can focus jets to produce very high-
quality depositions, but the complicated fabrication method 
tends to limit printing speed and deposition height while 
simultaneously complicating ink design. Therefore, additional 
studies are needed to realize EHD’s full potential.  
 
Table 2: Summary of strain sensor fabrication approaches 

 
 

IV. MATERIALS FOR HUMAN-INTERFACED STRAIN SENSORS 

A. Conductive Nanoparticles 
NPs are spherical nanomaterials with radii of 10-100 nm that 
are often formed via wet chemistry methods[155]. In general, 
NPs tend to agglomerate strongly because of their large surface 
areas and strong interparticle attractions, which requires the 

surface to be functionally modified to aid in dispersion[11, 156-
158]. Another key limitation of the low aspect ratio is the 
requirement to have high material loadings to form a 
conductive network compared to NWs and NTs, which can be 
a challenge in designing printable inks. However, the low 
aspect ratio makes sintering at low temperature possible, 
enabling easy formation into conductive films[64, 156, 159, 
160]. The core material can be either a metal, like Au, Ag, Cu, 
Pt, or Pd, or metal alloy, like  Eutectic gallium–indium (EGaIn). 
Because NPs may be fabricated from many cores and in many 
geometries and also can be modified in-situ via sintering or 
other chemical processes, they offer excellent degrees of 
freedom in design [161]. Indeed, the full potential of NPs for 
strain gauges has perhaps has not yet been fully explored as a 
result, and new studies pushing the design boundaries are of 
great interest. For instance, EGaIn NPs can use a self-healing 
mechanism based on a passivating oxide skin that protects an 
internal liquid core to achieve both high sensitivity and 
reliability [162].  

The typical material loadings used for strain gauges 
are 40–88% dispersed with high concentrations of dispersants, 
like a 1:1 PVP mixtures[52, 62, 163, 164]. However, the 
addition of such dispersants alters the ink’s printability and 
lowers the viscosity often below an acceptable level[11, 156-
158]. To overcome this challenge, a team mixed a 0.3 M 
solution of PVP and ethylene glycol (EG) to increase the ability 
of PVP to bind to the AgNP surface, allowing them to disperse 
NPs with a 1:2 PVP/AgNO3 ratio[165]. After mixing 60mL of 
0.3M PVP-EG solution and 40mL 0.29M AgNO3-EG, the 
solution was mixed with N, N-dimethylformamide, 
hydroxyethyl cellulose, and EG to demonstrate a 45 wt% ink 
with viscosity and rheology suitable for screen printing. After 
printing on a PI substrate, and sintering at 220⁰C, the inks 
demonstrated a low resistivity of 8.3 × 10− 6 Ω·cm, which is 
only 5 times greater than that of bulk silver[165]. Compared to 
NWs and NTs, NPs are highly attractive for inkjet printing 
because of their low aspect ratios, which can avoid nozzle 
clogging, and they have thus been carefully studied[121]. For 
instance, Figure 6(A-D) show optical and FFSEM images of an 
inkjet printed strain gauge along with its performance[140]. In 
a further example, one group assessed the printability and 
conductivity of AgNP inks with a variety of solvents and 
additives, and they determined that a EG, ethanol, 
ethanolamine, and hyperdispersant (Solsperse 20000) ink with 
5.25 mPa.s viscosity resulted in the greatest printability due to 
the addition of humectants (i.e., ethylene glycol and 
ethanolamine) combined with low resistivity (1.6 × 10-4 Ω
.cm)[166]. After printing, NP depositions are cured remove any 
solvents and often sintered to form conductive sheets[167]. 
Although these sheets are not intrinsically stretchable, they may 
be utilized for strain gauges based on percolation threshold, 
cracking, buckling, or disconnection methods [24, 42-46]. 
Overall, NPs are a simple and low-cost material for strain 
gauges that can be effectively printed using various methods. 
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Figure 6. Nanoparticles and nanowires as strain sensing materials 
(A) Optical image of an aerosol jet printed strain gauge, (B) FESEM 
image of a silver nanoparticle film after sintering, (C) Change in the 
normalized resistance with bending radius, and (D) change in 
normalized resistance strain on the printed sensor. (A-D reprinted 
under Creative Commons license CC BY 4.0 from IEEE Access. 
(2018) 6: 63080-63086.)  (E) SEM image of AgNWs printed in a strain 
gauge. (F) performance of the strain gauge with NWs in (E) during 
finger bending. (E-F reproduced with permission from Inorg. Chem. 
Front., 2019,6, 3119-3124).  
 
Still, they are limited for wearable strain-sensing by low aspect 
ratios that limit their intrinsic stretchability. This necessitates 
clever patterning and utilization of advanced strain sensing 
methods (like the crack mechanism mentioned above) to yield 
both high sensitivity and effective range.  

 

B. Conductive Nanowires 
NWs are high aspect ratio nanomaterials composed of a variety 
of intrinsic or oxidized metals and semiconducting materials. 
Typically, their lengths are on the order of 1000 times their 
widths or greater[168-170]. An image of a NW forest in a 
printed strain sensor along with the resultant sensor and its 
performance are shown in Figure 6(E-F)[140]. NW depositions 
exhibit several highly attractive properties for printed strain 
gauges based on these aspect ratios[8, 56, 65, 67, 80, 171-181]. 
When oriented in random directions within a polymer matrix, 
they easily form conductive networks with low material 
loadings, greatly simplifying ink design and decreasing 

bending stiffness, exhibit excellent yield strength near the 
fundamental limit of E (Young’s Modulus) / 10, very high 
optical transmittance, strong conductivities driven by quantum 
effects, high stretchability while maintaining conductivity, and 
potential to tune the strain sensing region based on material 
loadings[109, 182, 183]. Furthermore, NW inks are 
significantly easier to synthesize than those comprised of NPs 
because NWs in random orientations are much more resistant 
to agglomeration[169]. NW dispersions are also intrinsically 
stretchable, while sintered NP dispersions are not, but this 
comes at the cost of lowered conductivity[182]. To overcome 
this challenge, NWs may be laser welded to form connections 
only at the wire joints, maintaining stretchability and optical 
transparency while yielding a highly conductive, sintered 
connection[169]. For instance, one group used laser welding to 
demonstrate a highly conductive (5.0–7.3x105 S/m) AgNW 
printed film on a flexible PET substrate with similar optical 
transmittance (>90%) compared to a pure AgNW film[184].  
NW inks are primarily fabricated through the polyol method, 
but the template method is also utilized[30, 169, 170]. In polyol 
synthesis, the solution temperature, PVP molar ratio to ionic 
precursor, stirring rate, introduction of platinum seeds or other 
nucleation agents, and the addition of chloride or bromide ions 
are key factors to control the NW dimensions and quality[170, 
185, 186]. During polyol synthesis, NWs are typically produced 
from metal seeds reduced from an ionic precursor, like AgNO3, 
and these seeds are capped by PVP[185, 186]. More studies are 
needed to create a definitive model for NW growth, but it is 
theorized that the differential affinity of PVP to the <100> plane 
than <111> plane in the seed leads to unidirectional 
growth[187]. Despite a rigorous theoretical model, however, 
empirical findings allow for precise control of material aspect 
ratios and purities[186].  
 Because NWs can achieve conductivity with 
significantly lower material loadings than NPs (5-15% vs 
>75%) NW inks can be optimized for high resolution printing. 
For instance, researchers demonstrated high resolution screen 
printing of an AgNW ink based on a careful study of material 
loading and binding and rheological agents[169]. AgNWs with 
aspect ratios of 500 were mixed with (hydroxypropyl)methyl 
cellulose (HMC), Zonyl FC-300, and defoamer MO-2170 in a 
distilled water solution and sonicated[169]. HMC was 
employed as a viscoelastic polymer with hydroxy groups that 
bind well to the surface of AgNWs to aid in dispersion and 
serve as an emulsifier and thickening agent[169]. Zonyl FC-300 
decreased the ink’s surface tension and promoted substrate 
wettability, while defoamer MO-2170 was necessary to prevent 
foaming. It was determined that a 6.6 wt% AgNW ink had the 
greatest pseudoplasticity and lowest viscoelasticity (i.e. the ink 
had the highest difference in viscosity during low and high 
sheer and recovered viscosity the quickest after applied shear 
was removed), which allowed for screen printing of highly 
conductive (4.67x104 S/cm) 50 µm width traces[169]. 
Researchers conducted a similar study in gravure printed inks 
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to determine that a 5 wt% ink could yield < 50 µm width traces 
and 5.34x104 S/cm conductivity[30]. 
 One key challenge of NWs is that the high aspect 
ratios can lead to nozzle clogging in inkjet and aerosol jet 
printing[182]. To overcome this challenge, one work, for 
instance, sonicated NWs to reduce particle length, dispersed 
them in IPA, and optimized inkjet parameters to yield sheet 
resistances of 8 Ω/□ and conductivities of 105 S/m in traces with 
widths of 1-10mm and thickness of 0.5-2µm after curing at 110 
⁰C [188]. To reduce clogging, a Dimatix printer with 16 nozzles 
of diameter 21.5µm spaced 254µm apart was used to create 
10pL droplets at 5kHz with a spacing of 20µm and 50% overlap 
[188]. In summary, NWs are highly attractive for printed strain 
sensors because of their excellent mechanical stretchability and 
reliability, high printability and conductivity, and optical 
transparency, but further work is necessary to unlock their full 
potential, including careful studies of NW welding and 
composite structures with NPs, conductive polymers and/or 
polymer matrices.  
 

C. Carbon Based Materials 
CNTs are of great interest for a variety of printed electronics 
applications, including strain gauges, because of their high 
elasticity, surface area, aspect ratios, strength, and conductivity, 
but very strong van der Waals interactions create strong particle 
agglomeration forces[10, 14, 25, 42, 58, 59, 189-208]. CNTs 
are comprised of rolled graphene sheets with either one tube 
(single walled CNT, or SWCNT) or multiple tubes (multi 
walled CNT, or MWCNT) held together with Van der Waals 
attractions[209]. An example of grown CNTs is provided in the 
SEM image in Figure 7(A) [210]. The direction in which CNTs 
strongly affects the material’s properties[211]. “Armchair” 
CNTs are highly preferred for strain sensors because their 
identical chiral indices create highly uniform 
conductivity[212], but zigzag or chiral CNT orientations are 
widely employed for their semiconducting effects in transistor 
applications [213]. CNTs are primarily fabricated through three 
processes: CVD, arc discharge, and laser ablation, although 
CVD is the most common. In CVD, metal NP seeds of the CNT 
diameter are used as a catalyst in the presence of a carbon based 
gas, like CO2, to form CNTs, and an illustration of this method 
is provided in Figure 7(B) [213, 214]. To remove the NPs and 
other impurities, the CNT powder is often sonicated or treated 
with an acid because CNT purity is key to achieving optimal 
material properties[35, 189]. 

As previously mentioned, dispersing CNTs in a 
printable ink is a key challenge because of their high tendency 
to agglomerate due to strong interparticle attractions (owing to 
their highly non-polar surfaces)[212]. This can be overcome by 
binding an amphiphilic agent to the CNTs that produces a polar 
region on the CNT surface, allowing the CNTs to be dissolved 
in a polar ink matrix. For instance, a group dispersed CNTs in 
an ethanol SDS solution optimized to 7.5 wt%, then added 
various PVP loadings and assessed printability[35].  
 

 
Figure 7. Carbon nanotube, graphene, and bulk carbon-based 
strain sensors. (A) SEM images of a CNT forest (reprinted with 
permission from Appl Phys Lett 73(26):3845 – 3847). (B) Schematic 
representation of the CVD process for CNT synthesis, with 
illustrations of the base growth (bottom left) and tip growth (bottom 
right) CNT synthesis methods. (reprinted under a Creative Commons 
4.0 License from Chem. Biol. Technol. Agric. (2016), 3(17). (C) (A) 
Mean-density model of surfactant heads for the dispersion of carbon 
nanotubes (CNTs) with sodium dodecyl sulfate (SDS) with 
analytically derived potential of mean force for SDS coverage of 70%, 
reproduced with permission from Appl. Surf. Sci. 2018, 439, 1133-
114222). (D) AFM images of screen-printed graphene (reprinted with 
permission from J. Colloid Interface Sci. (2021), 582. (E) SEM images 
of a carbon black structure (reprinted from permission from 
Wikimedia Commons).  
 
They found that PVP weights equal to half that of the CNTs 
were most suited for screen printing[35]. In addition, 
researchers demonstrated that sonication is crucial in CNT 
dispersion in the presence of SDS as an amphiphilic agent 
because the sonication breaks apart CNT clusters, exposing the 
CNT surface to SDS[215]. An illustration of amphiphilic CNT 
dispersion is shown is shown in Figure 7(C) [216]. Although 
developing printable CNT inks is a key challenge, the endeavor 
is worthwhile because CNTs are among the most highly 
conductive and durable materials, and their unique properties 
offer great freedom and new opportunities in strain sensor 
design, many of which have not been fully explored. In one 
example, researchers developed a printable CNT ink that 
showed negative piezoresistivity and low strains and  positive 
piezoresistivity at high strains with very low hysteresis, 
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enabling them to produce a gauge with high sensitivity in both 
low and high strain regimes[200]. They hypothesized that these 
two different operating regions may be attributed to 
reorientation of CNTs at low strains, followed by separation at 
high strains[200]. In summary, CNT ink printing is highly 
attractive for strain gauge fabrication because of their excellent 
material properties and low cost, and new continued 
investigations into high throughput fabrication methods are 
essential in translating these novel discoveries to industrial and 
clinical use. 

The two primary carbon-based materials used in strain 
gauges are graphene and carbon black. Graphene is a zero-gap 
semiconductor with exceptional conductivity and high 
mechanical strength, but it suffers a similar tendency to 
conglomerate as CNTs due to its highly nonpolar surface[103, 
217-219]. An SEM image of printable graphene in shown in 
Figure 7(D)[36]. Graphene is often formed through exfoliation 
from graphite, but it may also be synthesized via 
electrochemical synthesis, chemical vapor deposition, laser 
processing and sodium ethoxide pyrolysis[217]. To effectively 
disperse graphene, it can either be oxidized or modified in a 
manner similar to CNTs. To create a screen printable ink, a 
team dispersed 5g of graphene nanoplatelets (GNPs) in 50mL 
EG and 0.5g PVP to aid in dispersion and printed traces on PI 
with conductivities of 8.81 × 104 S/m[218]. In a gravure 
printing application, researchers utilized ethyl cellulose (EC) as 
a dispersion agent to create a highly printable ink[103]. 
Graphene was exfoliated from graphite in ethanol with EC, and 
the graphene-EC precipitate was then redispersed in ethanol 
and terpineol. The loadings of each material were carefully 
optimized to yield inks with various viscosities, and the 
optimized ink could be printed with trace widths of <30 µm 
with conductivities >10,000 S/m[103]. For inkjet printing, 
researchers exfoliated graphene from graphite in 
dimethylformamide (DMF), and the toxic DMF was distilled in 
a terpineol solution[219]. EC was added to protect the graphene 
from agglomeration. After performing a solvent exchange, the 
graphene/toluene dispersion was mixed in ethanol in a volume 
ratio of 3:1 to yield a printable viscosity and rheology. Finally, 
the resultant ink was printed in 80µm traces on both plastic and 
silicon substrates to yield supercapacitors with a specific 
capacitance of 0.59mF cm−2, which is highly attractive for 
capacitive strain sensing[219].  

Carbon black is comprised of over 97% amorphous 
carbon with a much less carefully arranged structure than that 
seen in graphene[220]. The carbon is formed into discrete 
nanoparticles of various sizes and geometries which 
agglomerate into micro-scale chains and clusters, as seen in the 
SEM image in Figure 7(E)[221]. These chains and clusters can 
be highly complex, and their optimization is crucial in 
controlling dispersion, wettability, conductivity and viscosity 
when forming printable carbon black inks[221]. Carbon black 
for printed electronics is typically formed through the furnace 
black process, although it may be produced as a biproduct of 
numerous industrial applications[222]. In this process, oil is 

heated in a furnace, and the temperature, air-to-oil ratio and oil 
spray position are controlled to partially combust the oil and 
control the fundamental properties of the carbon black[222]. 
Because carbon black production is a mature industry requiring 
expensive equipment, numerous companies have developed 
printable carbon black inks, but insufficient research into novel 
carbon black structures, despite the many degrees of freedom 
in carbon black chain formations, is conducted within 
academia[78, 222-224]. Regardless, carbon black has been 
successfully used a strain sensing material in many applications 
based primarily on commercial inks[19, 57, 78, 223-227]. For 
instance, one group printed a carbon-black based capacitive 
strain sensor, where a commercial carbon black ink was printed 
upon a porous TPU dielectric with sufficient sensitivity to 
detect micro-strains originating from the human pulse[226]. 

D. Polymer Based Conductive Materials 
Conductive polymer composites (CPCs) are formed by 
embedding a conductive filler within a stretchable elastomeric 
polymer. When the polymer undergoes strain, the internal 
conductive pathways formed by the filler particles are altered 
due to increased interparticle spacing, resulting in a change in 
resistance. Typically, an elastomer with a low Young’s 
Modulus, low hysteresis, and excellent mechanical reliability, 
like poly(dimethylsiloxane) (PDMS), thermoplastic 
polyurethane (TPU), silicone, or Ecoflex, is selected as the 
carrier polymer [228]. Then, a conductive filler, like CNTs, 
carbon black, graphene, NPs, NWs, or a conductive polymer 
(e.g. PEDOT:PSS, Polyaniline (PANi), or Polypyrrole (PPy)), 
is introduced to form a conductive network [50, 116, 172, 229]. 
These fillers are typically introduced either during ink synthesis 
via mixing in the presence of dispersion agents or during 
printing by either allowing a printed ink to diffuse throughout 
an uncured polymer or vice versa or in-situ nanomaterial 
formation [84, 198, 229]. Material loading during ink synthesis 
has become the dominant approach in recent works because of 
the complexity of the diffusion method for mixing during 
printing; however, both approaches pose significant challenges 
in material integration [230].  

Primarily, all of the aforementioned printing methods 
have strict rheology requirements and integrate poorly with inks 
that adhere strongly to the printing apparatus. Therefore, the 
design of printable inks is of paramount concern, and non-
contact printing methods are generally preferred over contact 
methods because they are less affected by an ink’s adhesive 
properties [229]. For instance, one group created a 
PEDOT:PSS-MWCNT composite for aerosol jet printing by 
carefully controlling material fractions to promote aerosol 
generation, coalescence of the aerosol droplets after deposition, 
fast drying, and stability [229]. Specifically deionized water, 
glycerol, and ethylene glycol were mixed in a ratio of 8:1:1 
(w/w/w), and the surfactant and adhesion promoter (3-
glycidyloxypropyl)trimethoxysilane (GOPS) and the emulsifier 
carboxymethyl cellulose (CMC) were added to ensure the 
stability of the structures. The result was an ink printable to 20 
µm resolution with a conductivity of 323 S/m. Likewise, a team  
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formulated a AgNW-Ecoflex composite for inkjet printing and 
used this approach to fabricate a strain gauge with high 
sensitivity (a gauge factor of 13.7), a broad strain sensing range 
over 30%, excellent stability and reliability (>1000 cycles), and 
low monitoring limit (<5% strain) [231]. In their approach, 
NWs were formed in-situ by printing potassium halide 
(KBr:KI:95:5 volume based) and silver nitrate (AgNO3) in the 
composite ink, which was then exposed to halogen and a D-72 
chemical development agent. Further examples of CPCs for 
strain gauge applications include a carbon black/TPU 
composite with a GF of 39 [232], a PDMS/CNT composite with 
a GF of 142 [233], an Ecoflex/PtNP composite with a GF of 42 
[234] and an Ecoflex/CNT composite with a GF of 48 [235]. 
Although significant progress has been made in CPC printing 
for strain gauges, much remains to be done if their full potential 
is to be unlocked. The introduction of functional materials 
offers tremendous degrees of freedom in design, and advanced 
strain gauge operating principles beyond percolation threshold, 
crack formation, and wrinkling should be explored (like 
capacitive and tunneling, for instance). Furthermore, new 
studies in material integration should be conducted to improve 
on printable ink design to facilitate high-throughput and high 
resolution CPC printing beyond what has previously been 
demonstrated 
 

V. MACHINE LEARNING ALGORITHMS  
This section aims to cover the current state of machine learning 
for motion recognition using strain sensors. Motion recognition 
is an essential component of numerous applications, such as 
healthcare monitoring, sports performance analysis, and 
human-computer interaction. The field of machine learning 
offers a diverse range of techniques that can be effectively 
applied to motion recognition tasks. For instance, traditional 
machine learning methods, including support vector machines 
(SVM), linear discriminant analysis (LDA) and hidden Markov 
models (HMM), have demonstrated their effectiveness in 
processing high-dimensional and time-series data. 
Convolutional neural networks (CNNs), originally developed 
for computer vision tasks, have been adapted for motion 
recognition by treating time-series data from strain sensors as 
input. recurrent neural networks (RNNs) and their advanced 
counterparts, such as long short-term memory (LSTM) 
networks and gated recurrent units (GRU), are explicitly 
designed to handle time-series data and excel at learning long-
term dependencies within motion data. In this section, the 
techniques will be organized into four primary machine 
learning approaches, each exhibiting unique properties: 
traditional machine learning, CNN, RNN and Variants, and 
hybrid models. In order to provide a comprehensive overview, 
Table 4 presents a comparison of various deep-learning 
algorithms, focusing on their practical applications and 
constraints. 
 

A. Traditional Machine Learning  
Traditional machine learning, a critical subset of artificial 
intelligence, includes both supervised and unsupervised 
learning methods. These techniques have been transformative 
across various fields, effectively discovering patterns and 
making informed decisions from data. They hold particular 
value in the wearable sensing sector, where they have been 
utilized extensively for tasks such as motion recognition. The 
models are trained using labeled data in supervised learning, 
where the desired output is already known. This method is 
typically used for classification and regression tasks and 
includes techniques such as Support Vector Machines (SVM), 
Linear Discriminant Analysis (LDA), and Hidden Markov 
Models (HMM). On the other hand, unsupervised learning 
doesn't rely on labeled data. Instead, it uncovers hidden patterns 
and structures from the input data, making it ideal for clustering 
and dimensionality reduction tasks. Techniques under this 
category include Principal Component Analysis (PCA) and t-
Distributed Stochastic Neighbor Embedding (t-SNE). 

Supervised learning, such as SVM, LDA, and HMM, 
have been widely used in motion recognition tasks involving 
strain sensors. SVM is a supervised learning technique used for 
classification and regression tasks. The main principle behind 
SVM is to find a decision boundary, called a hyperplane, that 
best separates different classes in the feature space. The 
hyperplane is chosen to maximize the margin between the 
classes, which is the distance between the hyperplane and the 
nearest data points from each class (called support 
vectors)[236]. For linearly separable data, the optimal 
hyperplane can be found by solving an optimization problem 
that minimizes the norm of the weight vector while ensuring 
that a margin separates the data points from different classes. 
For non-linearly separable data, SVMs use kernel functions, 
such as the Radial Basis Function (RBF) kernel, to map the data 
into a higher-dimensional space where it can be separated 
linearly[237]. LDA is another traditional machine learning 
approach that has been applied in motion recognition tasks with 
strain sensors. LDA is a supervised learning technique used for 
dimensionality reduction and classification tasks. It works by 
projecting the original high-dimensional feature space onto a 
lower-dimensional space that maximizes the separability 
between different classes [238]. The projection is achieved by 
finding a set of linear combinations of the features that best 
discriminate between the classes[239].  HMM is a probabilistic 
modeling technique used for time-series data analysis. HMMs 
consist of a finite set of hidden states and a set of observations 
associated with each state. Transitions between states and 
observations follow Markovian properties, which means the 
probability of the next state or observation depends only on the 
current state. The model parameters, which include the initial 
state probabilities, state transition probabilities, and 
observation probabilities, are learned using the Expectation-
Maximization (EM) algorithm or other optimization 
techniques[240].  
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Figure 8. Machine learning approaches for human motion 
recognition from strain  measurements.  (A) Schematic Diagram of 
the real-time system with DAG-SVM classifier for gesture recognition 
(reprinted under Creative Commons license CC BY 4.0 from IEEE 
Access). (B) CNN with a LeNet-5 based architecture to classify finger 
movement (for reprinted under Creative Commons license CC BY 4.0 
from Spring Nature). (C) Schematic Diagram of the real-time system 
with LSTM network for Human Computer Interaction (HCI) 
application (reprinted under Creative Commons license CC BY 4.0 
from Spring Nature). (D) Schematic Diagram of the system process 
with CNN-LSTM hybrid model architecture (reprinted from IEEE 
Access, copyright ©[2020] IEEE). 

 
SVM, LDA, and HMM have found applications in various 
motion recognition tasks using strain sensors, such as 
recognizing different gestures or postures in wearable devices 
and smart textiles. For instance, one study presented a wrist-
worn device equipped with machine learning capabilities and a 
wearable pressure sensor array for monitoring various hand 
gestures by tracking tendon movements around the wrist as in 
Figure 8(A). The array of PDMS-encapsulated capacitive 
pressure sensors is utilized to capture wrist movement, and the 
data is processed using a LabVIEW program to visually 
reconstruct the gestures on a computer. To overcome the 
uncertainties of tendon movements when the wristband is re-
worn or used by a different person, a calibration step based on 
the SVM learning technique is implemented. The sequential 
minimal optimization algorithm is also applied to generate 
SVM classifiers efficiently in real-time. This study 
demonstrates that the device can accurately classify three 
distinct gestures with high accuracy (>90%) during real-time 

gesture recognition[241]. Another study applied SVM to 
classify various human activities effectively, such as finger and 
elbow bending and gestures, captured from a strain sensor 
based on a single-walled carbon nanotube (SWCNTs) and 
carbon black (CB) synergistic conductive network. After 
preprocessing the raw sensor data, the SVM algorithm achieved 
a high accuracy of over 90% in motion recognition tasks, 
demonstrating its potential in wearable motion recognition 
applications[225]. Also, the SkinGest system integrates filmy 
stretchable strain sensors and machine learning algorithms 
including LDA, KNN, and SVM classifiers, successfully 
identified American sign language 0-9 with an average 
accuracy of 98% [13]. Other researchers used stretchable strain 
gauge sensors to detect hand gestures, and was validated using 
two machine learning algorithms, LDA and SVM, achieving 
reproducibility rates of 98% and 94%, respectively[242]. 
Finally, a study presented a modified barometric pressure 
sensing approach for wearable hand gesture recognition using 
LDA, SVM and KNN and finger angle estimation using 
Random Forest, achieving 90-94% classification 
accuracy[243]. Furthermore, a master-slave hand operation 
cooperative perception system using flexible strain sensors and 
an HMM classifier was developed to achieve a 94.58% 
accuracy rate in recognizing nine different grasping states with 
less than two degrees of error in joint angle measurements[244]. 
Despite their strengths, SVM, LDA, and HMM have 
limitations. SVMs can be computationally expensive and 
require careful parameter tuning for optimal performance [245, 
246]. LDA has limitations in dealing with non-linear 
relationships in the data and may not perform well in scenarios 
where the classes are not clearly separable [247]. On the other 
hand, HMMs can struggle with complex dependencies in data 
due to their Markovian property and can also be 
computationally expensive when dealing with large state spaces 
or long sequences[248, 249]. 

Unsupervised machine learning methods, including 
PCA and t-SNE, have been employed in wearable sensing for 
motion recognition as well. PCA is an unsupervised learning 
algorithm used for dimensionality reduction and data 
visualization. It works by finding orthogonal directions, called 
principal components, in the original feature space along which 
the data varies the most[250]. The data can then be projected 
onto these principal components, reducing its dimensionality 
while preserving as much of its variation as possible[251]. t-
SNE, or t-Distributed Stochastic Neighbor Embedding, is 
another unsupervised learning algorithm used for data 
visualization and exploration. It is especially useful for 
visualizing high-dimensional data in two or three 
dimensions[252]. t-SNE works by finding a low-dimensional 
representation of the data that preserves the relative distances 
between data points as much as possible. It does this by 
minimizing a cost function that measures the divergence 
between the distributions of distances in the original and low-
dimensional spaces[253]. Researchers have utilized PCA and t-
SNE in tasks related to motion recognition. Leveraging PCA, 
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researchers have developed a high-performance, biomimetic 
flexible fiber strain sensor inspired by a fish's lateral line scale, 
capable of accurately monitoring and recognizing 
micromotions in wearable electronics[254]. Also, the PCA 
algorithm aided in the management of high-dimensional data 
from highly sensitive and robust flexible strain sensors, thus 
improving system performance and achieving over 98% 
accuracy in sign language recognition[255]. In other research, 
PCA and a modified t-SNE algorithm were both utilized for 
fault detection in high-dimensional data, where the latter not 
only extracted latent data features but also proved superior in 
preserving local structure and visualizing detection processes, 
as evidenced by a 100% fault detection rate in specific 
scenarios[256]. Additionally, t-SNE was effectively applied for 
dimensionality reduction, where a smart glove equipped with a 
polyurethane-encapsulated reduced graphene oxide strain 
sensor precisely recognized ten different gestures, thereby 
achieving flawless accuracy in a machine learning task using an 
SVM model[257]. Despite their strengths, unsupervised 
learning methods also have limitations. PCA assumes that the 
principal components are orthogonal and therefore may not 
capture complex dependencies in the data[258]. t-SNE can be 
sensitive to the choice of tuning parameters and may produce 
different results for different runs of the algorithm[259]. In 
conclusion, both supervised and unsupervised learning 
techniques have their strengths and limitations and have found 
application in the field of wearable sensing for motion 
recognition. Future research should continue to explore the 
utility and applicability of these methods in this rapidly 
evolving field. 

B. Convolutional Neural Networks  
Convolutional neural networks (CNNs) are feedforward neural 
networks designed to process grid-like data, such as images or 
time-series data. The architecture of a CNN typically comprises 
several layers, including the input layer, convolutional layers, 
pooling layers, fully connected layers, and an output layer. Each 
layer is responsible for transforming the input data into a more 
abstract representation, ultimately leading to the final output. 
Convolutional layers are the core building blocks of CNNs. 
They apply convolution operations to the input data, detecting 
local patterns and features such as edges, corners, or textures. 
These layers utilize filters or kernels, which are slid across the 
input data, generating a feature map. The application of 
multiple filters in a single convolutional layer allows the 
network to learn various features simultaneously. Pooling 
layers reduce the spatial dimensions of the feature maps, 
aggregating information and reducing computational 
complexity. The most common pooling operations are max 
pooling, which selects the maximum value within a defined 
region, and average pooling, which calculates the average value 
within the same region. Fully connected layers integrate the 
extracted features from the previous layers and make 
predictions based on the learned representations. The final 
output layer typically employs an activation function, such as a 

SoftMax function, to produce probabilities for each class or a 
linear activation function for regression tasks[260]. 
  The unique properties of CNNs that make them 
suitable for strain sensor data analysis include local 
connectivity, weight sharing, and hierarchical feature learning. 
Unlike traditional machine learning algorithms, CNNs have a 
local receptive field, meaning that each neuron is only 
connected to a small region of the input data, allowing the 
network to learn local patterns effectively, which is especially 
important for spatial or temporal data. CNNs also use the same 
weights and biases for each filter across the entire input data, 
significantly reducing the number of trainable parameters and 
contributing to the network's ability to generalize. This weight 
sharing property enables the network to detect patterns 
irrespective of their location within the input data[261]. 
Furthermore, by stacking multiple convolutional and pooling 
layers, CNNs can learn complex hierarchical features from the 
input data. Lower layers capture basic patterns, while deeper 
layers learn more abstract and high-level features. This 
hierarchical learning capability enables CNNs to effectively 
model the complexities of strain sensor data[262]. 
  CNNs have become increasingly popular in recent 
years due to their exceptional performance in image and signal 
processing tasks. As a result, they have been successfully 
applied to strain sensor data analysis, providing more accurate 
and efficient solutions to various challenges. Figure 8(B) 
illustrated the use of unimodal strain sensors made of 
piezoelectric poly L-lactic acid films. These were designed to 
detect and differentiate individual forces and stresses in human 
joints, and a CNN with a LeNet-5 based architecture was 
employed for the classification of finger movements. The 
resulting system exhibited a mean classification accuracy of 
90.2% for seven finger motions and in a finger-air writing 
application, the classification accuracy was 89.4%. This 
innovative approach demonstrated the potential for advanced 
machine learning techniques to improve motion recognition 
using unimodal strain sensors [263]. In a different study, a deep 
CNN was applied for golf swing classification. The data 
originated from smart golf clubs equipped with integrated 
sensors, including two orthogonally affixed strain gage sensors, 
a 3-axis accelerometer, and a 3-axis gyroscope. The CNN-
based model achieves an accuracy of 95.0[264]. A smart glove 
was the subject of another study, utilizing ten graphene-coated 
silk-spandex fabric strain sensors and a LeNet-5 convolutional 
network for gesture recognition, achieving 96.07% accuracy. 
The preprocessing included converting sensor signals to joint 
bending statuses and using real-time visualization with Unity 
3D to adapt to a public sign language dataset format[7]. 
Moreover, other researcher designed a strain sensor using 
carbonization and polymer-assisted copper deposition 
combined with a CNN algorithm, which effectively detects and 
classifies various human body movements, such as normal 
breathing, tachypnea, and tachypnea with cough, achieving 
93.3% real-time accuracy, emphasizing its potential in 
healthcare applications[265]. 
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Despite their success, CNNs have some limitations. CNNs 
often face challenges such as requiring large, labeled datasets, 
and having high computational demands for training, 
particularly with deep architectures. Additionally, they are 
prone to overfitting when trained on smaller datasets, leading 
to poor generalization, and may struggle with task specificity, 
as their performance may not easily transfer to other tasks or 
domains. Transfer learning is a powerful technique that helps 
address some of the limitations of CNNs, such as the need for 
large datasets, high computational requirements, overfitting, 
and task specificity. Transfer learning can be applied to CNNs 
by using the pre-trained weights and architecture from a model 
trained on a large-scale dataset, such as ImageNet, as a starting 
point[266]. The CNN's lower layers, which have learned 
general features like edges, textures, and shapes, are typically 
kept fixed, while the higher layers are fine-tuned or replaced to 
adapt the model to the new task. This approach allows for faster 
training and often better performance compared to training a 
CNN from scratch, especially when dealing with smaller 
datasets or related problems. 

Transfer learning can be applied to various types of data and 
problems, including those involving strain sensors. Strain 
sensors measure the deformation or elongation of materials, and 
they can produce complex and nonlinear data. If a pre-trained 
model has already learned features or representations relevant 
to strain sensor data, it can be fine-tuned for a new task 
involving strain sensors, potentially leading to faster training 
and better performance compared to starting from scratch. For 
instance, one work presented a low-cost, real-time sleeping 
posture recognition system utilizing a strain sensor array 
bedsheet and a shallow CNN. By employing transfer learning-
based subject-specific methods, the system achieves an 
accuracy of 91.24%, providing a lightweight and cost-effective 
solution for monitoring sleep postures while maintaining high 
performance and privacy[267]. In comparison to other sensor 
domains, the application of transfer learning for strain sensors 
has been relatively limited. The primary reason for this is that 
strain sensor research predominantly revolves around material 
properties, resulting in considerable variability in the data 
produced by different types of strain sensors[268]. This leads 
to a scarcity of pre-trained models or datasets that can be 
efficiently repurposed for new tasks related to strain sensors. 
Nevertheless, as the availability of strain sensor data increases 
and machine learning techniques continue to advance, the 
potential for transfer learning applications within the strain 
sensor field is expected to expand in the future. 

C. Recurrent Neural Networks and Variants 
Recurrent Neural Networks (RNNs) are a class of neural 
networks that are designed to handle sequential data by 
maintaining an internal memory state[269]. They are composed 
of a series of interconnected nodes, where each node receives 
input from previous nodes in the sequence, as well as from 
external input data. This allows RNNs to learn and model 
temporal dependencies in time-series data.  Long Short-Term 
Memory (LSTM) networks are an advanced variant of RNNs to 

overcome the vanishing gradient problem, which hinders the 
learning of long-range dependencies in standard RNNs[270]. 
The LSTM architecture consists of a unique cell state and three 
gating mechanisms: an input gate, which controls the extent to 
which new input information is allowed to modify the cell state; 
a forget gate, which regulates the degree to which the previous 
cell state is retained; and an output gate, which determines the 
amount of information from the cell state that is incorporated 
into the hidden state and passed onto the next node in the 
sequence. These gates work together to manage the flow of 
information through the network, allowing LSTMs to 
effectively capture long-range dependencies within time-series 
data. Gated Recurrent Units (GRUs) are another RNN variant 
that offers a simplified architecture compared to LSTM[271]. 
They have fewer trainable parameters, making them more 
computationally efficient. GRUs combine the cell state and 
hidden state into a single hidden state and utilize two gates to 
control the flow of information: a reset gate, which determines 
how much of the previous hidden state is retained when 
computing the candidate hidden state, and an update gate, 
which balances the contribution of the previous hidden state 
and the candidate hidden state when computing the new hidden 
state. A group found that the simplified gating mechanism in 
GRUs allows them to learn and model temporal dependencies 
in time-series data with comparable performance to LSTMs but 
at a lower computational cost[271]. 

In summary, RNNs and their variants, such as LSTMs 
and GRUs, have unique architectures designed to capture 
complex temporal dependencies in time-series data. Their 
structures enable them to effectively process and analyze 
sequential data, making them well-suited for strain sensor 
machine learning research involving time-series data. As 
depicted in Figure 8(C), one research developed a novel 
electronic skin integrated with a deep neural network, utilizing 
a single-channeled sensor and an LSTM network to capture 
complex hand motions with 96.2% average accuracy. They 
designed a Rapid Situation Learning (RSL) system that 
employs transfer learning to adapt the model to new users or 
different sensor placements in a short time. The system has 
potential applications in health-monitoring, motion tracking, 
and soft robotics[6]. Further work has resulted a wearable 
seamless multimode sensor that accurately recognizes joint 
motion states with a 97.13% precision using LSTM. This 
unique sensor decoupled pressure and strain stimuli, offering 
potential applications in soft robotics, electronic skin, 
healthcare, and sports systems[12]. In some studies, LSTM 
network have been utilized to improve the predictability of a 
soft gold nanowires strain sensor's electrical responses for joint 
angle measurement applications. The LSTM algorithm enabled 
the sensor to achieve high accuracy, with an error of less than 
2°, for applications such as personal health monitoring and skill 
assessment[272]. For GRU application, a semi-supervised deep 
learning method was proposed for calibrating soft microfluidic 
sensors using only two strain sensors and a GRU-based 
sequential encoder network. The proposed method was shown 
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to generate more accurate gait motion with smaller calibration 
datasets compared to other methods based on supervised deep 
learning[273]. 
  RNNs, LSTMs, and GRUs, while effective for 
sequential data, face limitations such as vanishing and 
exploding gradients, which hinder learning long-range 
dependencies. They also have high computational complexity 
and slower processing speeds due to their sequential nature, 
which can limit performance on modern hardware. 
Furthermore, these models are task-specific, and their 
performance may not generalize well across different tasks or 
domains without additional fine-tuning. Transfer learning 
which helps address some of the limitations of 
RNN/LSTM/GRU can be utilized for strain sensor machine 
learning applications by leveraging pre-trained models from 
similar tasks to improve performance on a target strain sensor 
task with limited data. This process typically involves fine-
tuning the pre-trained model on the strain sensor dataset, 
initializing the embedding layer with pre-trained embeddings 
from related sensor data, and experimenting with different 
LSTM/RNN architectures. Freezing early layers can help 
prevent overfitting and optimize transfer learning performance, 
making it an effective approach for enhancing the efficiency of 
strain sensor machine learning models. For example, one study 
explored transfer learning for modeling soft strain sensors in 
soft robotic applications using LSTM-based recurrent neural 
networks. This method expedites adaptation to new tasks by 
minimizing free parameters and training efforts, proving 
promising for increased sensor dimensionality and data-limited 
situations[274]. Also, other research presented a wearable 
sensing brace design and calibration method based on 
musculoskeletal simulations and LSTM/RNN transfer learning, 
resulting in improved accuracy, repeatability, and 
computational efficiency [275]. 
 

D. Hybrid Models 
CNN-RNN, CNN-LSTM, and CNN-GRU hybrids are all 
variations of the CNN-RNN hybrid model, combining the 
strengths of CNNs and RNNs/LSTMs/GRUs to capture both 
spatial and temporal features in data. In the CNN-RNN hybrid 
model, the convolutional layers of the CNN extract spatial 
features from the input data, which are then fed into the RNN 
to learn and model temporal dependencies. In the CNN-LSTM 
hybrid model, LSTM cells are used instead of traditional RNN 
cells, which can better handle long-term dependencies in the 
input data. Similarly, in the CNN-GRU hybrid model, GRU 
cells are used instead of RNN cells to improve the model's 
computational efficiency. The CNN component of the hybrid 
model can extract important features from the raw sensor data 
and create meaningful representations of the input data. This is 
particularly useful in strain sensor data, where the data may 
contain complex patterns that are difficult to discern through 
traditional feature extraction methods. The RNN/LSTM/GRU 
component of the hybrid model can capture the temporal 
dependencies in the input data and model the sequence of 

events over time. This is important in strain sensor data, where 
the strain readings are often taken at regular intervals and the 
changes over time can be critical for understanding the behavior 
of the sensor. For instance, researchers proposed a wearable 
gait motion data acquisition system that uses accelerometers, 
gyroscopes, and strain gauge sensors to identify gait activities 
through machine learning. The proposed CNN + RNN hybrid 
algorithm achieved an accuracy of 98.9%, precision of 96.8%, 
sensitivity of 97.8%, specificity of 99.1%, and F1-score of 
97.3%, showing potential for monitoring gait disorder patients 
and improving their quality of life[276]. As shown in Figure 
8(D), another study developed a highly sensitive, stretchable, 
and low-cost strain sensor enabled by a conductive thin film for 
human posture detection with loose-fitting smart garments. 
They implemented a CNN-LSTM hybrid model to overcome 
the noise induced by the loose-fitting of the sensors and 
evaluate the system's feasibility in three case studies. The 
results show that the proposed E-Jacket smart garment system 
is capable of recognizing different postures with accuracies 
ranging from 84.4% to 91.7%, depending on the specific 
application[277]. Moreover, researchers proposed a deep 
learning-based calibration and mapping method for full-body 
motion sensing using a stretchable fabric sensing suit with 20 
soft strain sensors. The CNN-LSTM hybrid model named 
DFM-Net showed a higher accuracy than traditional methods 
based on mathematical estimation, such as linear regression, 
with an RMSE of 29.5 mm for overall motions and 38.7 mm for 
the worst-case motion[41]. A recent study introduced a new, 
low-cost data glove system based on multiwalled carbon 
nanotube strain sensors and a hybrid CNN-LSTM model for 
accurate gesture recognition. The proposed model achieves an 
average recognition accuracy of 97.5% of 30 gestures with an 
average recognition time of 2.173 ms based on only five 
sensors[278]. Lastly, researchers demonstrated an approach 
using bioinspired multifunctional sensing systems and a 
modified machine learning algorithm, including a GRU-CNN 
model, to identify the softness of objects with high accuracy 
(98.95%) based on piezoelectric signals, and enable adaptive 
grasping in response to objects with various softness 
ranges[279]. 
  However, these hybrid models can still be 
computationally expensive and require a large amount of 
training data. To address these issues, researchers have 
explored various techniques, such as model compression and 
transfer learning. Model compression techniques aim to reduce 
the number of parameters in the model, leading to reduced 
computational cost without sacrificing performance. Transfer 
learning involves using pre-trained models on large datasets 
and fine-tuning them for specific tasks, allowing for more 
efficient training and improved accuracy on smaller datasets. 
However, Transfer learning and model compression are not 
commonly used in strain sensor research due to the specific 
trends of this field, as discussed in the CNN and RNN transfer 
learning sections. 
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Table 4. Machine learning approaches for strain-based 
human motion recognition 

 
 

VI. APPLICATIONS 
Motion recognition is a rapidly growing field focused on 
identifying and interpreting human movements, gestures, and 
postures. This field finds applications in healthcare, sports, 
rehabilitation, entertainment, and human-computer interaction, 
among others. A key component in the advancement of this 
field is the use of strain sensors due to their high sensitivity and 
versatility. These sensors can detect subtle changes in strain and 
deformation, which make them suitable for monitoring a wide 
array of human motions – from full-body movements to minute 
changes in joint angles and facial expressions. In motion 
recognition applications, strain sensors play a crucial role in 
acquiring high-resolution data on muscle activity, joint 
movements, and other biomechanical parameters. They capture 
valuable information on the magnitude and direction of human 
movements, providing a deeper understanding of the dynamic 
performance of the human body. This wealth of data paves the 
way for more accurate and personalized motion analysis, 
training, and rehabilitation programs. 

However, the value of the data collected is 
intrinsically tied to the effectiveness of the processing methods 
employed; therefore, the selection of machine learning 
algorithms plays a crucial role. As the complexity of motion 
recognition tasks increases, so too does the dimensionality of 

the data, and by extension, the complexity of the processing 
circuits.[280] In recent years, the emergence of complex, high-
dimensional data in tasks like intricate gesture interpretation or 
multi-joint movement analysis has become commonplace. 
Processing this data effectively often necessitates the use of 
advanced machine learning algorithms. This complexity 
presents a twofold challenge: maintaining high system 
performance while managing power consumption, particularly 
in wearable or portable systems[281]. As an example, deep 
learning techniques, such as convolutional neural networks 
(CNNs) or recurrent neural networks (RNNs), can handle this 
high-dimensional data and deliver high recognition accuracy, 
however they also impose a substantial computational burden. 
This could potentially lead to increased processing times and 
elevated power consumption[282]. 

Recognizing these challenges, there has been a rising 
trend in developing lighter versions of these complex 
algorithms that are optimized for low-power and mobile 
devices. An example is TensorFlow Lite, a production-ready, 
cross-platform solution for mobile and embedded devices. 
TensorFlow Lite provides a set of tools to convert and optimize 
trained TensorFlow models for use on-device, reducing both 
the computational load and power consumption without 
significantly compromising accuracy. In the realm of wearable 
or portable systems, power consumption is of particular 
importance. These devices often rely on battery power, and 
maintaining energy efficiency is a critical factor in their 
practical application.  For instance, in a smart glove for sign 
language interpretation, one might opt to use algorithms like 
SVM or decision trees, which are less computationally 
intensive than deep learning models but still provide acceptable 
recognition performance[283]. Even lighter options such as 
Linear Discriminant Analysis (LDA) could be considered for 
tasks that require less complexity[13]. Real-time requirements 
also play a significant role in algorithm selection. In 
applications such as sports performance monitoring or physical 
rehabilitation, immediate feedback is crucial. This need for 
real-time operation often favors simpler, faster algorithms, even 
at a slight trade-off in recognition accuracy. Algorithms like k-
NN or lightweight versions of RNNs, such as the Long Short-
Term Memory networks (LSTM), can offer a good balance 
between computational complexity, power efficiency, and real-
time processing[284]. 

In conclusion, the development of motion recognition 
applications with strain sensors demands careful consideration 
of several key factors: algorithmic complexity, system 
performance, power consumption, and real-time processing 
needs. These considerations help guide the design process, 
resulting in an optimal system that meets the specific 
requirements of the intended application. The following 
sections will delve deeper into these complexities as they apply 
to four primary areas of application: full-body motion 
recognition, joint angle tracking, hand gesture recognition, and 
subtle body motion recognition. 
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A. Full Body Motion Recognition 
Full-body motion recognition is the process of identifying and 
interpreting the movements, gestures, and postures of the entire 
human body during various activities. This process enables a 
comprehensive understanding of human motion dynamics, 
which can be applied to a wide range of applications, such as 
sports performance assessment, rehabilitation, virtual reality, 
human-robot interaction, and motion capture for animation or 
gaming. One study explored the potential of an "all in one" E-
textile with dual tactile and tension stimulus response for 
monitoring athletic movement and form. This approach 
demonstrated its potential applications in sports like 
Taekwondo and physical training analysis[285]. In full-body 
motion recognition, multiple sensors, including strain sensors, 
are strategically placed on different parts of the body, such as 
limbs, torso, and joints. These sensors measure the strain 
experienced during various movements, capturing information 
on muscle activity, joint movement, and overall body posture. 
By monitoring the changes in strain over time, researchers can 
reconstruct and analyze a subject's motion, offering valuable 
insights into the biomechanics of human movement.  

 
Figure 9. Motion recognition applications in different body parts. 
(A) Full-body motion recognition using soft strain sensor integrated 
wearable sensing suit (reprinted from IEEE Access, copyright ©[2019] 
IEEE). (B) Joint motion recognition using wearable multimode strain-
based sensor (reprinted under Creative Commons license CC BY 4.0 
from Spring Nature). (C) Hand gesture recognition with graphene 
strain sensor integrated smart glove (reprinted with permission from 
Nanotechnology 32 215501 (2021)). (D) Facial expression recognition 
with multi-analysis flexible strain-based sensor (reprinted with 
permission from Advanced Materials 28 1369-1374 (2015)). 

 
Further research highlighted the use of a soft sensing shirt with 
textile-based capacitive strain sensors for tracking shoulder 
kinematics in 3 DOFs, offering accurate motion tracking for 
both cyclic and random arm movements[286]. Advancements 
in sensor technology, such as high sensitivity and flexibility, 
allow for the unobtrusive integration of strain sensors into 
clothing or wearable devices. One study demonstrated WCNC 
(TPU/ACNTs/AgNWs/PDMS) strain sensor with a high 
conductivity of 3506.8 S/m, a high GF of 1.36 × 105, and a 
large working strain from 38% to 100%, achieving more precise 
full-body motion monitoring in multiple directions[287]. This 
enables continuous monitoring of a wide range of motions, 
from simple walking and running to complex athletic activities. 
Another research introduced a wearable soft motion sensing 
suit for measuring lower extremity joint motion, enabling the 
study of human biomechanics in various real-life 
activities.[288] Integration of wireless communication 
technologies facilitates real-time data transmission and 
analysis, enabling immediate feedback for athletes or patients 
to adjust their movements and improve their performance. One 
instance is a skin-like, recyclable hydrogel sensor designed for 
comfortable whole-body motion sensing and promoting 
sustainable wearable electronic device development[289]. Full-
body motion recognition using strain sensors also holds 
potential in virtual reality, gaming, and human-robot 
interaction, where accurate tracking of the user's body 
movements can enable more realistic and immersive 
experiences. 
  Challenges remain in terms of sensor placement, data 
processing, and movement classification, necessitating further 
research to enhance the performance and applicability of strain 
sensors in full-body motion recognition. For example, 
researchers presented a soft wearable sensing suit with 20 soft 
strain sensors for full-body motion tracking as shown in Figure 
9(a). By using deep learning-based calibration and mapping 
methods, the proposed system achieves higher accuracy in 
motion estimation compared to traditional methods. The 
experiment results demonstrated that the system is effective in 
predicting human body poses with an overall root-mean-
square-error of 29.5 mm, making it useful for applications in 
athletics, physical therapy, and virtual reality. However, the 
need for calibration every time a user wore the sensing suit is a 
remaining challenge that needs to be addressed in future 
research. The proposed approach represented a new direction in 
soft robotics research[41]. 

 

B. Joint Angle Tracking 
Joint angle tracking refers to the process of measuring and 
monitoring the angles formed by the relative positions of body 
segments connected at a joint, such as the elbow, knee, or 
shoulder. Accurate joint angle tracking is crucial for 
understanding the biomechanics of human movement, as well 
as for applications in sports performance assessment, 
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rehabilitation, physical therapy, and human-computer 
interaction.  
  Strain sensors are well-suited for joint angle tracking 
due to their high sensitivity, flexibility, and ability to detect 
subtle changes in strain and deformation[290]. To measure joint 
angles, strain sensors are typically placed near the joint, either 
on the skin or integrated into wearable devices such as sleeves 
or braces. As the joint moves, the sensors detect the elongation 
or contraction of the targeted areas, providing valuable data on 
the joint's range of motion and angular displacement. This 
information can then be used to analyze and assess the 
performance of the joint during various activities, identify 
abnormalities, or guide the development of personalized 
training and rehabilitation programs. Notable research included 
the development of a new stretchable and wearable triboelectric 
nanogenerator (TENG) sensor to convert mechanical 
deformation into electrical signals and was used to create a joint 
sensor and a 3D muscle sensor for real-time human various 
joint bending monitoring[291]. Another study presented an 
anisotropic strain sensor to measure unidirectional strain with a 
root-mean-square error of less than 3° when estimating the 
angle of a wrist joint[292]. Futhermore, a wearable graphene 
textile strain sensor has been reported, displaying excellent 
performance in detecting joint movements and angles, 
highlighting its potential in wearable electronics and human 
motion detection applications[293].  

 Joint angle tracking is essential for evaluating joint 
health, assessing injury risk, and monitoring the progress of 
recovery after injury or surgery. Accurate joint angle tracking 
can also help improve the performance and efficiency of 
athletes, enabling them to optimize their movements and 
minimize the risk of injury. As shown in Figure 9(b), this study 
involved a wearable multimode sensor for joint motion 
recognition that can decouple pressure and strain stimuli using 
an independent resistance-capacitance sensing mechanism. The 
sensor consisted of a resistive and capacitive component and 
exhibits high strain sensitivity and linear pressure sensitivity. 
The sensor's dual signal output characteristics allowed for deep 
learning algorithms to accurately recognize different joint 
positions and states with 97.13% accuracy. The proposed 
sensor's low-cost and convenient fabrication process could have 
potential applications in electronic skin, healthcare, sports 
monitoring, human-machine interfaces, and soft robot 
perception systems[12].  
  In robotics and human-computer interaction, joint 
angle tracking can facilitate the development of more natural 
and intuitive interfaces, allowing users to control devices or 
interact with virtual environments using their body movements. 
A highlighted study presented an omni-purpose stretchable 
strain sensor (OPSS) with a nanocracking structure, optimized 
for monitoring whole-body motions, including joint and skin-
level movements. The OPSS sensor has potential applications 
in medical robotics, wearable healthcare devices, and 
communication systems for paralyzed patients[294]. 
 

C. Hand Gesture Recognition 
Hand gesture recognition, from the perspective of strain sensor 
applications, is a significant advancement in the field of motion 
recognition. It involves identifying and interpreting specific 
hand and finger movements for the purpose of communication 
or interaction with devices and systems. Strain sensors play a 
crucial role in the development and implementation of hand 
gesture recognition technology. These sensors facilitate more 
natural and intuitive interactions, paving the way for seamless 
communication between users and a wide range of 
applications[242]. A recent study presented a soft artificial skin 
with embedded microfluidic strain sensors that can detect hand 
gestures and finger joint motions, demonstrating promising 
results in linearity and repeatability[295]. Also, other 
researchers demonstrated a graphene-based strain sensor with 
ultra-high gauge factor and a wide strain range, making it 
suitable hand gesture recognition[296]. 

Some primary applications of hand gesture 
recognition that benefit from strain sensor technology include 
human-computer interaction, virtual reality, gaming, sign 
language interpretation, and robotics control. For an example of 
sign language interpretation, this study presented a wearable 
sign language translation system using a strain sensor which 
can recognize and display the sign language for all 26 English 
alphabets by interpreting hand gestures of finger positions in 
real time[297]. For virtual reality application, researchers 
demonstrated a wireless, battery-free platform of electronic 
systems and haptic interfaces capable of softly laminating onto 
the skin to communicate information via programmable 
patterns of mechanical vibrations[298]. In each of these 
contexts, hand gestures provide a seamless way for users to 
convey information or control systems without the need for 
conventional input devices like keyboards, mice, or 
touchscreens. The integration of strain sensors in these 
applications allows for more accurate and responsive gesture 
recognition, leading to improved user experiences and 
increased accessibility for individuals with varying needs and 
abilities. In another study, researchers introduced a novel 
electronic skin with an integrated deep neural network which 
can detect complex hand gestures using a single strain sensor, 
providing a breakthrough in health-monitoring, motion 
tracking, and soft robotics applications[6]. 
 As the demand for more immersive and user-friendly 
interfaces continues to grow, hand gesture recognition 
supported by advanced strain sensors is expected to play an 
increasingly important role in the development of modern 
technology. By leveraging the power of motion recognition 
systems, hand gesture recognition has the potential to 
revolutionize how we interact with the digital world and 
enhance accessibility across a diverse range of applications. As 
shown in Figure 9(c), this study developed a graphene-coated 
silk-spandex fabric strain sensor for motion monitoring in 
wearable devices, demonstrating high sensitivity and durability 
with a stretch capacity of 60%. Ten sensors were integrated into 
a smart glove for fine hand movement detection, enabling the 
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precise tracking of joint angles. The data from the glove was 
used in a deep learning-based gesture recognition system, 
utilizing a LeNet-5 convolutional neural network. The gesture 
recognition system achieved 96.07% accuracy, showcasing the 
potential of the proposed sensor in human motion detection and 
machine learning applications[7]. Moreover, other researchers 
developed a cost-effective, lightweight, wearable sign-to-
speech translation system using machine learning, achieving a 
recognition rate of up to 98.63% and real-time translation in 
under 1 second. This technology aims to enhance 
communication between signers and non-signers.[299]. The 
ongoing advancements in strain sensor technology will 
continue to drive the progress of hand gesture recognition, 
ultimately shaping the future of human-computer interaction 
and beyond. 
 

D. Subtle Body Motion Recognition 
Subtle body motion recognition refers to identifying and 
interpreting small, nuanced, or low-amplitude human 
movements. These movements can include minor changes in 
facial expressions, slight hand gestures, or minimal shifts in 
body posture. Subtle body motion recognition is particularly 
important in applications requiring a high level of detail and 
accuracy, such as emotion recognition, sign language 
interpretation, and human-computer interaction. 
  Strain sensors can play a crucial role in detecting 
subtle body motions due to their high sensitivity and ability to 
measure small changes in strain and deformation. One work 
showcased a flexible strain sensor with high sensitivity capable 
of detecting subtle movements with strains as small as 0.1%, 
which could be used to detect bending, stretching, and facial 
expression changes[300]. By strategically placing strain 
sensors on specific body parts, such as the face, hands, or joints, 
it is possible to capture the minute movements associated with 
subtle body motions. These sensors can then provide valuable 
data for further analysis and interpretation, enabling a deeper 
understanding of the intricate aspects of human movement and 
behavior. Additionally, other study developed the graphene 
textile strain sensor which can effectively monitor subtle human 
motions such as muscle movements, pulse, respiration, and 
facial expressions, illustrating its potential for various wearable 
electronics applications[293]. Subtle body motion recognition 
can be challenging due to the need for high-resolution sensors, 
accurate data processing, and sophisticated algorithms that can 
detect and classify the subtle variations in movement. As a 
result, researchers continue to explore new materials, designs, 
and techniques to enhance the performance of strain sensors 
and improve their applicability in subtle body motion 
recognition. For instance, recent research presented a feasible 
strategy for the assembly of nanoparticles into controllable 
micro or nanocurve circuits that could be integrated into a 
multi-analysis flexible sensor, which could run complicated 
facial expression recognition. The sensor was made by 
assembling AgNP curves and could realize arbitrary adjustment 
of tortuosity morphology, and was capable of tracking eyeball 

movements, classifying facial expressions, and performing 
detailed monitoring of the complexed micro muscle group 
movements as shown in Figure 9(d)[301]. Additional research 
introduced an ultrathin and durable nanomesh strain gauge 
designed for continuous facial expression monitoring. This 
gauges minimized mechanical constraints on natural skin 
motions and exhibits excellent sustainability, linearity, and 
durability with low hysteresis[302]. A different study 
demonstrated patterned graphene strain sensors that can 
monitor small-scale motions using a simple, scalable, and 
solution-processable method. These sensors exhibited 
enhanced sensitivity and can distinguish subtle motions, 
making them ideal for monitoring subtle human body 
movements in applications such as acoustic sensing and pulse 
detection[303]. 
 

VII. CONCLUSIONS AND FUTURE DIRECTIONS 
In recent years, creative and innovative implementations of 
functional nanomaterials with advanced structures have yielded 
substantial improvements in human-interfaced strain sensors 
for motion and gesture recognition. Furthermore, fundamental 
advances in printing nanomaterials have been developed and 
leveraged to offer a potential avenue to translate these materials 
and mechanical innovations into practical applications. 
However, several key challenges must be overcome if strain 
sensors are to become ubiquitous tools for human motion 
recognition, and addressing these opportunities should form the 
basis for the field's future direction.  

First, optimizing strain sensors for the complex 
challenge of human motion recognition requires considering 
many variables simultaneously. No prior work has uncovered 
the optimal material and mechanical innovations necessary to 
achieve all these requirements. These sensors must be highly 
stretchable, stable, linear, durable, sensitive, biocompatible, 
scalable, and possible to integrate with existing electronics. As 
mentioned throughout the review, novel investigations into 
traditionally unexplored nanomaterial properties, like auxetic 
structures, deformable tunneling barriers, and micro-capacitive 
nanomaterial agglomerations, have shown tremendous promise 
in addressing some of these fundamental challenges relating to 
stability, linearity, and sensitivity. Still, they have not been 
sufficiently studied to meet all these challenges in a fully 
developed platform. First, more fundamental studies of the 
material properties are required, and then the sensors may be 
integrated and studied in functional devices with exceptional 
performance. Likewise, the devices must be well optimized for 
the unique challenges afforded by each sensing task, including 
the ability to decouple multi-directional strains and improve the 
user experience through both comfort and imperceptibility.  

With respect to printing approaches to effectively 
scale these sensors, recent advances in fundamental printing 
approaches for gravure, screen, inkjet, aerosol jet, and EHD 
printing have greatly improved our ability to fabricate 
complicated and intricate nanomaterial structures, but 
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significant work remains. In addition, great progress within the 
last decade on ink rheology optimization for novel printing 
methods allows for the high-resolution patterning of many 
functional nanomaterials. This field, however, still has several 
key challenges to overcome. First, advanced strain sensors 
increasingly require complex and highly precise patterning and 
structures, and the further study of printed vias and material 
adhesion in multiple-layer prints is of high importance. Second, 
printing resolutions remain low for many methods, and new 
approaches to increasing resolution must be investigated. Third, 
inkjet printing offers substantial advantages in prototyping and 
manufacturing costs. Still, recent works have not implemented 
commercially tested roll-to-roll inkjet printing to the degree 
necessary to make inkjet printing a highly attractive method for 
high throughput nanomaterial fabrication. Printing parameters, 
like gravure roll geometries and materials, should be 
thoroughly studied for nanomaterial applications instead of 
simply relying on processes optimized for inks without high 
material loadings or dispersion challenges from the traditional 
printing industry.  

Finally, machine learning is a powerful tool that has 
transformed innumerable industries, but it is only beginning to 
be well understood for human gesture tracking, which remains 
a substantial challenge. As sensors become increasingly 
sensitive and capable of differentiating between strain in 
multiple axes and improved multi-sensor platforms are 
developed, new approaches are necessary to improve the 
number of classes and accuracy possible to achieve with 
machine learning. Furthermore, algorithm speed and efficiency 
must be improved to enable real-time classification with high 
accuracy. From an academic standpoint, developing a set of 
rules and a framework for determining which algorithm should 
be implemented and how depending on the application, would 
greatly assist in developing novel applications. Today, each 
new application will require a significant investment in time 
and effort to design new algorithms and implementations, 
whereas having a structured framework of key insights into 
algorithm design would greatly assist in the ability to rapidly 
deploy new optimized strain sensing networks.  

Collectively, new studies in materials and mechanics, 
printing approaches, and machine learning must be conducted 
in tandem and integrated to yield a fully functional system. 
Although this achievement may still be many years away, it 
may be stated with confidence that if the current innovation 
trend continues, the development of ubiquitous, highly accurate 
strain-sensing networks is possible. With it, a great benefit to 
the human condition may be achieved. 
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