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Continuous Patient-Independent Estimation of
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Spectro-Temporal Features Derived from
Photoplethysmogram Only
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Abstract—Objective: A patient-independent approach for con-
tinuous estimation of vital signs using robust spectro-temporal
features derived from only photoplethysmogram (PPG) signal.
Methods: In the pre-processing stage, we remove baseline shifts
and artifacts of the PPG signal using Incremental Merge Seg-
mentation with adaptive thresholding. From the cleaned PPG,
we extract multiple parameters independent of individual patient
PPG morphology for both Respiration Rate (RR) and Blood
Pressure (BP). In addition, we derived a set of novel spectral and
statistical features strongly correlated to BP. We proposed robust
correlation-based feature selection methods for accurate RR
estimates. For fewer computations and accurate measurements
of BP, the most significant features are selected using correlation
and mutual information measures in the feature engineering
part. Finally, RR and BP are estimated using breath counting
and a neural network regression model, respectively. Results:
The proposed approach outperforms the current state-of-the-
art in both RR and BP. The RR algorithm results in mean
absolute errors (median, 25th-75th percentiles) of 0.4 (0.1-0.7) for
CapnoBase dataset and 0.5(0.3-2.8) for BIDMC dataset without
discarding any data window. Similarly, BP approach has been
validated on a large dataset derived from MIMIC-II (∼ 1700
records) which has errors (mean absolute, standard deviation)
of 5.0(6.3) and 3.0(4.0) for systolic and diastolic BP, respectively.
The results meet the American Association for the Advancement
of Medical Instrumentation (AAMI) and British Hypertension
Society (BHS) Class A criteria. Conclusion: By using robust
features and feature selection methods, we alleviated patient
dependency to have reliable estimates of vitals.

Index Terms—Blood Pressure (BP), minimal redundancy max-
imal relevance (mRMR), photoplethysmogram (PPG), respiration
rate (RR), signal quality, vitals, and wearable sensing.

Impact Statement- Continuous, robust, and non-invasive
monitoring of vitals with only one wearable sensor having
applications in remote, fitness, and mobile health-care
devices where both RR and BP are desired.

I. INTRODUCTION

Respiratory Rate (RR) and Blood Pressure (BP) are two
vital health signs that help in timely diagnosis of various
chronic respiratory and cardiovascular diseases (CVD) [1]-
[2]. Many health conditions such as sleep apnea, asthma, and
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hypertension require monitoring both RR and BP [3]- [5]. Ob-
structive sleep apnea (OSA) is a sleep disorder due to breathing
problems, characterized by partial or full occlusion of the upper
airway during sleep which can generate sleep fragmentation
and recurrent oxyhemoglobin desaturations [6]. Sleep RR is a
key sign of critical illness, particularly for OSA monitoring.
RR of healthy adults in a relaxed state is around 12–20
breaths/minute (bpm). However, the RR will be abnormal for
the OSA case when the sleep breathing is decreased or halted
by the apnea [7]. Therefore, sleep RR is a primary and key
indicator for OSA patients. OSA which is considered a major
risk factor for CVD degrades human health and occasionally
leads to nocturnal death [8]. BP is part of the assessment of
cardiovascular risk. In patients with OSA, CVDs have a higher
incidence and are linked to worse functional results and higher
mortality rates. Systemic hypertension, which is usually present
in OSA, can significantly degrade cardiovascular health. In
addition, fluctuating BP may induce a further risk of higher
incidence and rapid progression of CVD. Therefore, for OSA
patients it is essential to monitor both BP and RR at the same
time. Continuous monitoring of RR and BP using wearable
sensors can predict CVD earlier for timely treatment and thus,
can prevent severe conditions leading to death [9].

Traditionally, measurement of vital signs requires wearing
bulky uncomfortable sensors which are performed in a hos-
pital with cumbersome devices. Respiration is observed using
capnometry or spirometry in clinical settings. Similarly, BP
is measured conventionally using a cuff-based method with a
mercury sphygmomanometer [9]. The cuff makes this method
inconvenient for frequent usage. These traditional methods
prevent continuous monitoring of vitals which is required for
accurate diagnosis and treatment of CVD in a timely manner.

Recent research focuses on continuous monitoring of vital
signs using convenient wearable Photoplethysmogram (PPG)
sensors [10]- [14]. [15] utilizes a multi-layer convolutional
encoder–decoder framework that takes PPG as an input and
outputs respiratory waveforms. An end-to-end pipeline for
RR estimation using Cycle Generative Adversarial Networks
(CycleGAN) to reconstruct respiratory signals from raw PPG
signals was presented in [14] while an end-to-end deep learning
model which does not require feature engineering with raw
PPG signals as input was described in [16]. An automated
Hilbert envelope-based respiration rate estimation method us-
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Fig. 1. PPG signal with arbitrary units (a.u.) showing the respiratory
Induced Variations (RIVs), where RIIV is the variation in beat peaks
(Envelope). RIFV is the changes in the inter-beat interval. RIAV is
the change in the beat strength.

ing the PPG signal was proposed in [17]. RR can be also
measured by deriving respiration trends from the PPG signal as
explained comprehensively in our previous work [18]. Respira-
tion modulates PPG in three ways: 1) Respiratory-induced in-
tensity variation (RIIV), 2) Respiratory-induced frequency vari-
ation (RIFV), and 3) Respiratory-induced amplitude variation
(RIAV) [16], [19]. Fig. 1 elaborates these three induced varia-
tions from PPG for respiration. Nevertheless, the existence of
these modulations relies on several factors such as gender, age,
patient’s health, and body position during measurement. They
may also appear and disappear for certain patients over time.
The traditional fusion approach for RR estimation provides
equal weight (finds the mean) to RR estimates from the overall
modulations without observing the respiration quality of the
individual modulation waveforms. This method raises the mean
absolute error (MAE) remarkably for many patients, degrading
the overall measurement accuracy. The smart fusion method
enhances robustness, however, it disregards several data win-
dows which decreases the system throughput. The technique in
[19] utilizes an automatic algorithm that selects the modulation
segment with the highest respiratory quality indices (RQIs)
for RR estimation. Secondly, the Kalman smoother (KS) is
used to fusion multiple modulations with RQI above a given
threshold. However, it needs an Electrocardiogram (ECG)
signal in addition to PPG as inputs. In this paper, we propose
a Modulation Quality Index (MQI) based fusion approach
that mitigates the challenge of patient dependency, offering
robust and continuous RR measurements. We incorporated
more vigorous MQIs and we consider the mean of only those
RR readings which were computed from exceptional standard
and trustworthy modulation patterns. The proposed method
enhances the RR measurements by decreasing the MAE by
>20% compared to [16], [19].

For cuffless continuous BP monitoring, Pulse Wave Velocity
(PWV) methods have shown a great impact [20]. Recent PWV-
based approaches use Pulse Arrival Time (PAT) and Pulse
Transit Time (PTT) which describe cardiovascular character-
istics in terms of blood vessels’ expansion and contraction.
These parameters are extracted from two physiological signals
i.e., PPG and Electrocardiogram (ECG) signals [22]- [24].
The acquisition of two physiological signals, however, makes

the implemented device more complex. These approaches not
only increase hardware complexity but also add to the pa-
tient’s discomfort by wearing and carrying multiple sensors for
continuous use. To determine blood pressure from PPG only,
there is no straightforward mathematical relation between PPG
and BP. However, variation in PPG morphology appears to be
correlated to BP [24]- [27]. Therefore, an artificial intelligence
tool is required to uncover the hidden relation. In the literature,
deep learning was involved where features are automatically
extracted from time-domain signal and spectrum using fully
connected and convolutional layers [24], [28], [29]. Deep learn-
ing methods have also been proposed recently using visibility
graphs (VG). The work in [27] presented a data-driven deep-
learning-based end-to-end solution for estimating BP from the
short-duration PPG signals using VG and pre-trained deep
convolutional neural network (CNN) for image classification.
Hybrid neural network architecture consists of convolutional,
recurrent, and fully connected layers that operate directly on
the raw PPG time series and provide BP estimation has been
presented in [28]. However, machine learning methods based
on handcrafted features are more reliable when there exist
physical relations between features and the target variable [24],
[26]. Previous studies have relied heavily on the PPG mor-
phology to derive various parameters such as diastolic peaks,
inflection points, and dicrotic notch [26], as shown in Fig. 2.
The study in [26] has used only the PPG signal but it depends
on accurate and reliable extraction of these morphological
features and they have validated their approach on a small
dataset (only 21 patients). It has been noted that these methods
do not work when the feature extraction process gets erroneous
due to variation of the PPG morphology from patient-to-
patient. Few studies have explored the spectral features but
they cannot work solely; they need morphological parameters
to estimate BP as well [22], [23]. Therefore, both spectral
and statistical features that are morphology-independent are
essential to obtain robust BP readings.

In this study, we propose a single-channel PPG with a
patient-independent approach for BP estimation. We utilize a
few morphological parameters such as peak and onset which
are present in every PPG morphology as well as robust fre-
quency domain features based on spectral energy, entropy, and
area. The presented technique outperforms the current state-

Fig. 2. Ideal PPG Morphology exhibiting morphological features for
Blood Pressure Estimation.
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Fig. 3. Output of IMS Algorithm showing peaks and onsets of valid
beats. The remaining beats are artifactual having clipped or saturated
pulses.

of-the-art ( [22], [26], [27]) while being validated on a larger
and more diverse database. Our dataset has almost double the
number of patient cases (approx. 1700 patients) compared to
[26], [27], and [28], which proves the clinical robustness of
our proposed approach.

The proposed methodology involves a common pre-
processing step for both RR and BP estimations which in-
cludes baseline wandering and artifact removal caused by
body motion. However, BP and RR differ in extracted features
and estimation methods afterward and hence are explained in
separate sections. This paper is organized as follows: Section
II-A introduces pre-processing step of PPG filtering and seg-
mentation. Sections II-B and II-C present feature extraction and
feature selection for both RR and BP. Section II-D describes
RR and BP estimation methods. In section III, the results
are described. The discussion and conclusion are detailed in
Sections IV and V, respectively.

II. MATERIALS AND METHODS

The proposed methodology is presented in the block diagram
Fig. 4. A) The patient’s PPG signal obtained using a pulse
oximeter goes to preprocessing block where it is filtered, and
artifacts are identified. B) Physiological features i.e., RIIV,
RIFV, and RIAV are extracted for characterizing respiration
activity. For Blood Pressure estimation, we extract different
physiological, spectral, and statistical features. C) Extracted
features are then analyzed for their significance in estimating
RR and BP using feature selection methods. Selected features
then go to the final estimation block. D) RR is computed using
the breath counting method and an average measurement is
generated over the selected modulation RRs for the desired
PPG window. Similarly, BP is estimated using a Deep Neural
Network (DNN) regression model. Finally, at the output termi-
nal, we have desired values of RR, systolic BP, and diastolic
BP.

A. Pre-processing

First, we filter the PPG signal using a bandpass filter (0.05-
10Hz) to remove both low and high-frequency noise. Then,
baseline shifts are removed to observe main respiration and
cardiac activities. This is achieved by removing the varying dc
value from the PPG signal over time. PPG beats and artifacts

are characterized through Incremental Merge Segmentation
(IMS) and adaptive thresholding [30]. The IMS algorithm
utilizes a sliding-window technique which is straightforward,
rapid, and can be measured in run-time. In this segmentation al-
gorithm, line segments are formed using their slopes first. Then
up-slope segments are classified as valid beats and artifacts
based on their amplitude and inter-beat interval thresholds.
This method deploys adaptive thresholding which adapts to
the PPG morphology and results in the accurate detection
of PPG key points for robust discrimination of valid beats
and artifacts. It detects artifacts of both types i.e., motion
artifacts having abnormal amplitude and clipping noise having
flat horizontal lines due to sensor disconnection. Within each
processing window, we use only valid beats for the detection
of key points to accurately extract features from it.

From the IMS algorithm, we detect peaks and onsets of
valid beats along with motion and clipping artifacts (Fig. 3).
The time series of PPG is defined as {ti, xi}i=1...N where N
is the length of the PPG signal. Then we can define the time
series of detected peaks as {tpeak,i, xpeak,i}i=1...Npeak and time
series of detected onsets as {tonset,i, xonset,i}i=1...Nonset where
Npeak and Nonset are the number of peaks and number of
onsets, respectively, and Npeak = Nonset = Number of valid beats
identified. The detected key points of valid PPG beat i.e., peaks
and onsets are used to extract temporal features for both RR
and BP estimations, as discussed in the next section in detail.

B. Feature Extraction

After filtering the signal for artifacts, we extract useful
features from valid PPG beats to measure RR and BP. These
features depend on powerful time-domain and frequency-
domain parameters that lead to robust estimation of RR and BP.
Note that our proposed system requires only one physiological
signal i.e., PPG while approaches described in [22] - [25] need
two signals i.e., ECG and PPG to extract PTT and PAT-related
features. However, we have reduced system complexity by
using only the PPG signal as input. For RR and BP estimation,
we extract three sets of features from PPG only. These consist
of PPG morphology, spectrum, and statistical parameters, as
discussed below in detail:

1) Morphological Features: These features depend on the
morphology of the PPG waveform. Extraction of features
involves determining key points of the PPG signal. Here
we have used only peaks and onsets of PPG detected in
preprocessing stage because other key points (diastolic peak,
dicrotic notch, and inflection points) are highly dependent
on PPG morphology which varies from patient to patient
as the cardiovascular characteristics and skin textures vary.
Extraction of other key points leads to the erroneous cal-
culation of features [18]. Fig. 5 shows three different PPG
morphologies obtained from different subjects. All three PPG
signals are free from artifacts or noise. First PPG has ideal
morphology which presents critical points such as inflection
point, dicrotic notch, and diastolic peak along with systolic
peak and onset. However, the last two PPGs have altogether
different morphology although they are correct. This difference
in morphology leads to incorrect calculation of morphological
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Fig. 4. Proposed approach. A: Baseline shifts of raw PPG are removed, and artifacts are identified. B: Physio, spectral and statistical features
are extracted from cleaned PPG. C: Extracted features are checked for their relative significance in determining RR and BP. D: Finally, RR
is estimated using breath counting, and BP (Systolic and Diastolic) is measured using a DNN regression model.

parameters which decreases the reliability of the system. There-
fore, we have limited morphological parameters’ extraction to
peaks and onsets only. We have focused more on spectral
and statistical features whose calculation is accurate. In this
way, we have alleviated the problem of patient morphology
variation and developed a patient-independent approach. Here
we extract three respiratory modulations for RR estimation and
five morphological parameters for BP estimation.

As discussed earlier, three respiratory variations can be
derived from PPG: 1) PPG peaks changes during respiration,
forming RIIV. 2) Inter-beat interval changes i.e., compressed
beats during inhalation and expanded beats during exhalation
i.e., RIFV. 3) Amplitude of up-slopes of beats variations,
forming RIAV. From the peaks and onsets determined in
preprocessing stage, we obtain the following three respiratory
modulations for RR estimation:

1) RIIV: This is time series of amplitudes of PPG peaks
i.e., xRIIV = {ti, xpeak,i}i=1...N peak . This effect represents
intrathoracic pressure variations, resulting in the change
of perfusion baseline.

2) RIFV: It is the time between successive PPG peaks;
xRIFV = {ti, xRIFV,i}i=1...(Npeak−1) where xRIFV,i = t j+1−t j
for t j the time series of peaks. This phenomenon is
known as Respiratory Sinus Arrhythmia (RSA) which
is regulated by the vagal nerve.

3) RIAV: Amplitude difference between the peak and onset
of a beat; xRIAV = {ti, xRIAV,i}i=1...Npeak , with xRIAV,i =
xpeak,i − xonset,i. This effect is caused by cardiac output
variations which represent refill quantity in the vessels
at the periphery.

Fig. 6 shows a 32-sec window of PPG signal with detected
beats (onsets and peaks). From the identified peaks and onsets,
we derive three modulations i.e., RIIV, RIFV, and RIAV.
These derived modulations are re-sampled to 4 Hz with linear
interpolation. Next, we calculate morphological parameters for
BP estimation (Fig. 7 ). These features represent peripheral
resistance and arterial stiffness in terms of pulse expansion
and contraction in the systolic and diastolic regions of PPG.

1) Systolic Time: It is the time between beat start (onset)
and beat peak. It represents upstroke beat expansion. This
parameter is related to the stiffness of blood arteries.
Mathematically, tsys,i = tpeak,i − tonset,i.

2) Diastolic Time: It is the time between beat peak and beat
end (onset of next beat); tdias,i = tonset,i+1 − tpeak,i.

3) Systolic and Diastolic Branch widths: It is the systolic or
diastolic time calculated at a fraction of beat amplitude:
tX ,sys,i = tpeak,i − tX ,i where tX ,i : xi = X ∗ xpeak,i and X
= [0.1, 0.25, 0.33 0.5]. For example, t33,sys is the time
when beat amplitude is 33% of the beat peak. This is
also a way of characterizing PPG morphology using
pulse expansion. Similarly, we can calculate different
percentages of diastolic time. These branch widths at
different percentages of amplitude are related to total
peripheral resistance.

4) Heart Rate: It is the time between two consecutive beats,
representing one cardiac cycle; tHR,i = tpeak,i+1 − tpeak,i.

5) PPG Intensity Ratio: It is the ratio of peak and onset
amplitudes. It shows the amplitude intensity of the pulse.
We take the average of all valid beats’ peaks and onsets
during the given window for accurate calculation. PIRi =
xpeak,i/xonset,i.

These features are calculated for only those PPG beats which
have been detected as valid beats by the IMS algorithm in
the pre-processing stage. We extract per-cycle parameters such
as systolic and diastolic times from individual cycles, and
then we average them over the current processing window.
Note that these morphological features are valid for all PPG
morphologies presented in Fig. 5. Next, we extract the spectral
and statistical features which are calculated for only those PPG
windows that have artifacts less than an empirical threshold.

2) Spectral Features: Here we take FFT to get the
power spectrum of the PPG signal represented as H (w), for
frequency-domain feature extraction (Fig. 8). The spectrum
frequencies are concentrated in the range of 0 to 10 Hz, which
is the plausible range for PPG. We first take the spectrum peak
and the corresponding frequency (which is the heart rate) as
features. Then we divide the 10 Hz spectrum into 5 equal parts
i.e. [0-2, 2-4, 4-6, 6-8, 8-10]. We selected 5 as the number of
bands empirically after observing the main frequency content
variation in these regions of the FFT spectrum. Then we
calculate the following features from these bands as follows:

1) Energy bands: Energy in different frequency bands
shows the frequency content in a particular band. We
calculate normalized spectral energy for each frequency
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band, given as:

Energy =
1
N

N

∑
i=1

|H (wi) |2, (1)

where N is the number of frequency components in a
particular band. The extracted spectral energies relate to
the frequency content of the PPG signal which varies
with BP.

2) Entropy bands: Entropy gives the amount of informa-
tion present in a particular band. We calculate spectral
entropy for each frequency band using normalized fre-
quency components H (wi)N ;

Entropy = −
N

∑
i=1

H (wi)N . log(H (wi)N) , (2)

where H (wi)N = H (wi)/∑
N
i=1 H (wi)

3) Area bands: The area under the spectrum for each
frequency band has been calculated using the trapezoidal
method:

Area =
1
2

N−1

∑
i=1

[H (wi)+ H (wi+1)] .(wi+1 −wi) ,

(3)

These parameters signify the harmonic content of the PPG
signal which is related to cardiac and respiratory activities.
These frequency-domain features are highly correlated to the
output BP values which makes our method robust (discussed
below).

3) Statistical Features: We extracted a set of temporal
features based on statistics as well. These features model PPG
physiology variations in statistical ways. These include time-
domain PPG signal’s kurtosis, skewness, and temporal entropy
as important statistical parameters:

1) Kurtosis: It shows the flatness of a signal which is a

Fig. 5. Three PPG signals with different morphologies from the
MIMIC Database with (a) ideal morphology with visible critical points
such as inflection point, dicrotic notch, and systolic and diastolic
peaks, (b) and (c) nonideal shapes of PPG morphology due to missing
or altered peaks/points such as inflection points, dicrotic notch, and
diastolic peak.

Fig. 6. A 32 sec PPG window displaying Physiological Feature
Extraction for RR estimation: RIIV, RIFV, and RIAV are formed using
identified peaks and onsets, and then re-sampled to 4 Hz. RIIV is the
most accurate representation of respiration activity.

statistical way of describing the signal shape.

Kurtosis =
∑

N
i=1 (xi − x̄)4

N. (
√

c)4 , (4)

where N, x̄, care signal length, signal mean, and vari-
ance, respectively in the current processing window.

2) Skewness: This parameter checks symmetry of signal
distribution.

Skewness =
∑

N
i=1 (xi − x̄)3

N. (
√

c)3 , (5)

3) Temporal Entropy: This is the information entropy of the
PPG signal, calculated from the probability distribution
of the normalized signal.

Entropy = −
N

∑
i=1

xn,i . log(xn,i), (6)

Fig. 7. Morphological features extracted from PPG morphology for
BP estimation.
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Fig. 8. PPG Spectrum showing 5 frequency bands from 0 to 10 Hz
for Spectral Feature Extraction.

where xn,i = xi/∑
N
i=1 xi

As described earlier, PPG morphology varies from patient
to patient subject to cardiovascular properties and skin texture.
Similarly, the prominence of morphological features i.e., RIIV,
RIFV, and RIAV for RR estimation also vary due to several
factors including age, health condition, and activity during
measurement. Among the extracted modulations (Fig. 6), RIIV
is the most realistic depiction of the respiration pattern whereas
both the RIFV and RIAV are absent in the displayed PPG
graph. Therefore, we need to check the quality of extracted
modulation before estimating RR from it. Similarly, A total
of 35 features were extracted for BP estimation including
morphological, spectral, and statistical features (TABLE I).
However, using all the features increases computational load
and regression model complexity. Therefore, we performed
feature relevance and redundancy analysis and selected only
the top 12 features which are most relevant to the target BP
value and least redundant within the selected feature set.

C. Feature Selection

Since the quality of extracted modulations for RR estima-
tion depends heavily on patient health condition and activity,
we require accurate quality assessment measures to estimate
RR from extracted modulations. In the literature, PPG signal
quality has been assessed in the pre-processing stage to detect
artifacts. However, a little focus has been put into developing
quality assessment measures for respiratory-induced variations
[31], [32]. Here we present robust modulation quality indices
(MQIs) based on Fourier analysis and correlation for RR:

1) Power Spectrum MQI (FFT) Fourier Analysis is utilized
to study the frequency content of a signal. We measure
the peak dominance of the FFT power spectrum to realize
how strong the respiration frequency is compared to other
frequencies in the extracted modulation.

MQIFFT = Ppeak/Ptotal , (7)

where Ppeak is the summation of three power values
centered on peak value and Ptotal is the total power
values in the plausible respiration range of 0.1 to 1 Hz

TABLE I. List of Features Extracted for BP Estimation

IndexFeature Definition
1. t sys Systolic upstroke time between beat start

and peak
2. t dias Diastolic time between beat peak and beat

onset
3. t 10,sys

Systolic time at X% of beat amplitude
(X: 10, 25, 33, 50)

4. t 25,sys
5. t 33,sys
6. t 50,sys
7. t 10,dias

Diastolic time at X% of beat amplitude
(X: 10, 25, 33, 50)

8. t 25,dias
9. t 33,dias
10. t 50,dias
11. t HR Heart Rate representing one cardiac cycle
12. PIR PPG Intensity Ratio
13. PSD peak Power Spectrum peak amplitude
14. Energy B1

Energy of frequency bands
(B1: 0-2, B2: 2-4, B3: 4-6,
B4: 6-8, B5: 8-10) Hz

15. Energy B2
16. Energy B3
17. Energy B4
18. Energy B5
19. Entropy B1

Entropy of frequency bands
(B1: 0-2, B2: 2-4, B3: 4-6,
B4: 6-8, B5: 8-10) Hz

20. Entropy B2
21. Entropy B3
22. Entropy B4
23. Entropy B5
24. Area B1

Area of frequency bands
(B1: 0-2, B2: 2-4, B3: 4-6,
B4: 6-8, B5: 8-10) Hz

25. Area B2
26. Area B3
27. Area B4
28. Area B5
29. Perc 20

ith percentile of temporal PPG
(i: 20, 40, 60, 80)

30. Perc 40
31. Perc 60
32. Perc 80
33. Kurtosis Statistical measure of PPG flatness
34. Skewness Statistical measure of PPG Distribution

Symmetry
35. Entropy Information entropy of PPG

(6 to 60 bpm). MQIFFT close to one means the spectrum
peak is dominant over the whole spectrum, which means
that the respiration frequency is strongly present in the
modulation (Fig. 9).

2) Autocorrelation MQI (AC): Autocorrelation is utilized
to study the signal periodicity. We find the modulation
periodicity with a lag range from 1 to 10 seconds (k=4
to 40 samples) corresponding to a plausible respiration
range of 6 to 60 bpm.

MQIAC = max

{
1

N−1 ∑
N−k
i=1 (xi − x̄)(xi+k − x̄)

c0

}
(8)

where N,k, x̄,c0 are signal length, time lag, signal mean,
and variance, respectively. Closer the MQIAC is to 1, the
more periodic modulation is.

3) Template Matching MQI (XC-Tmp): Cross-correlation
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Fig. 9. Extracted modulation window (32 sec) and modulation power
spectrum. Blue dotted margins indicate a plausible respiration range
of 0.1 to 1 Hz (6 to 60 bpm) while red ones show 3 power frequency
components middling the peak power value.

is used to study the similarity between signals. We
compared the similarity of the modulation with its
smoothened version generated after passing a moving
average filter considering a plausible respiration range of
0.1 to 1 Hz (6 to 60 bpm), known as template-matching.

MQIXC−T mp =
1

N−1 ∑
N
i=1 (xi − x̄)(yi − ȳ)
√cx.cy

, (9)

where N, x̄, ȳ,cx,cy are signal length, signal mean, tem-
plate mean, signal variance, and template variance, re-
spectively. The closer the MQIXC−T mp is to 1, the more
similar modulation is to its standard template (Fig. 10).
Note that MQIXC−T mpis computed only if the corre-
sponding PPG window has percentage artifacts less than
an empirical threshold. Other MQIs need not to check
artifacts because they automatically identify artifactual

Fig. 10. Example 32 sec window of extracted modulation. (a): Good
quality waveform having a strong correlation with the template. (b):
Bad quality modulation having less MQIXC−T mp.

Fig. 11. Effect of changing Thresholds on Performance and Data Re-
tention: As the threshold value is increased (strict quality thresholds),
Error decreases at the expense of discarding many data windows. The
red circle indicates the median and blue line boundaries denote the
Inter-Quartile Range (25th to 75th percentiles)

portions in derived modulations. However, MQIXC−T mp
requires constructing a template out of the given modu-
lation. Hence, the PPG window under analysis must be
free from any artifacts.

Fig. 11 elaborates the effect of changing threshold values
of one quality measure i.e., MQI-FFT on patient-wise perfor-
mance (a) and data retention (b) for CapnoBase dataset. As we
increase the threshold values for lesser errors, we drop a lot
of data windows. However, we tune the thresholds in such a
way that we get optimal performance while retaining all the
windows. Note that these threshold values are independent of a
particular patient i.e., they are fixed for the whole dataset. Then
the quality of each modulation is estimated using all the three
MQIs illustrated earlier and only the high-quality modulations
are adopted for the estimation of RR, which is vetted by all
three metrics.

Feature relevance analysis reveals the significance of a par-
ticular feature for the target estimation and Feature redundancy
analysis removes redundant features, lowering computational
load and ML model complexity later.

1) Pearson Correlation Coefficient: To see the linear rela-
tionship of extracted features with target BP values, we
use the Pearson correlation coefficient. It is calculated
as:

PCC =
∑

N
i=1 (xi − x̄)(yi − ȳ)

√cx.cy
, (10)

where N, x̄, ȳ,cx,cy are feature-length, feature mean, tar-
get mean, feature variance, and target variance, respec-
tively. The closer the PCC is to 1, the greater the linear
dependency between the feature and target is.

2) Mutual Information Coefficient: Mutual information is
used to find non-linear dependency between features and
target variables. It is based on entropy measurement
which reveals probabilistic relations among variables of
interest. Entropy calculation involves probability distri-
bution estimation by making histogram bins first. The
mutual information Coefficient is given as:

MIC =
I(X ;Y )√

H (X) .H(Y )
, (11)

Where I(X ;Y ),H (X) ,H (Y ) are mutual information be-
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TABLE II. FEATURE SIGNIFICANCE SCORE OF TOP 18
RANKED FEATURES USING FOUR SELECTION MEASURES:
PEARSON CORRELATION COEFFICIENT (PCC), MUTUAL IN-
FORMATION COEFFICIENT (MIC), CORRELATION BASED
MRMR (MRMR PCC) AND MUTUAL INFORMATION BASED
MRMR (MRMR MIC).

Feature Feature Importance Score (scaled 0 to 1)

PCC MIC
mRMR
(PCC)

mRMR
(MIC)

Avg.
Score

t 10,dias 0.58 0.78 0.17 0.17 0.43
t 33,dias 0.63 0.96 0.63 0.96 0.80
t 25,dias 0.63 1.00 0.63 0.20 0.60

Energy B1 0.74 0.81 0.74 0.43 0.68
Energy B2 0.74 0.80 0.43 0.48 0.61
Kurtosis 0.76 0.58 0.97 0.97 0.82
t 25,sys 0.86 0.97 0.86 0.97 0.92
t 50,dias 0.87 0.79 0.26 0.79 0.68
t 33,sys 0.97 0.97 0.11 0.97 0.76

t 50,sys 1.00 0.88 0.14 0.88 0.73
Perc 60 0.22 0.80 0.89 0.89 0.70
t 10,sys 0.52 0.98 0.52 0.98 0.75
Entropy 0.49 0.41 1.00 1.00 0.73

Entropy B3 0.33 0.18 0.60 0.60 0.43
Area B2 0.54 0.28 0.71 0.28 0.45

Energy B5 0.01 0.25 0.01 0.51 0.20
t dias 0.39 0.62 0.39 0.03 0.36

Energy B3 0.49 0.58 0.49 0.58 0.54

tween feature and target, the entropy of feature and
entropy of target, respectively. MIC value close to 1
indicates strong mutual dependence between feature and
target variables, which is highly desirable for decision
trees deploying information gain as attribute selection
criteria.

3) Minimal Redundancy and Maximal Relevance
(mRMR): To verify that features selected by PCC and
MIC are not redundant within themselves, we used this
minimum redundancy analysis [33].

max

[
I (x j;y)− 1

m−1 ∑
xi∈Fm−1

I (x j;xi)

]
(12)

where x j ∈ X −Fm−1, I (x j;y) is the MI between feature
x j and target BP value y, and I (x j;xi) is the MI between
features. Here X represents the complete feature vector
while F denotes the selected feature set. This method
selects features based on their maximum relevance to
the target variable and their minimum redundancy among
selected features. Note that we used this method for
correlation-based dependency as presented in Table II.

Table II represents the results of our feature selection anal-
ysis for BP. We have scaled the scores of individual features
for all four criteria between 0 and 1 for comparison purposes.
Note that mRMR analysis returns the top 12 features and
the remaining feature scores have been added from relevance
analysis only i.e., PCC and MIC. As we can see, Spectral

Fig. 12. Neural Network Architecture for BP estimation.

energies and statistical parameters like entropy and kurtosis are
among the top features which are most relevant to the target
BP values. Since the main variations in the FFT spectrum
happen in bands 1 and 2, these bands prove to contain the
most significant features after feature relevance and redundancy
analysis.

D. Estimation

After performing feature engineering, we use the most
significant features for the estimation of RR and BP. Note that
RR features i.e., RIIV, RIFV, and RIAV are checked for relative
significance for every patient. However, the top 12 features of
BP are the same for all patients, and feature engineering is not
performed in the real system.

1) RR Estimation: Based on the obtained good-quality
modulation signals, RR is computed using a peak detector.
A moving average filter with a frequency range of 0.1 to 1
Hz (6 to 60 bpm) is applied before estimating the respiration
cycle period which simplifies the task of the peak detector. The
average time between two peaks within a window is associated
with one respiration cycle and it is reciprocally multiplied by
60 to find RR in bpm. Selected RR estimates from reliable
modulations are then fused by finding the average to obtain
one final RR value.

2) BP Estimation: For BP estimation, different ML and
deep learning algorithms have been used in the literature [34],
[35]. We used simple linear regression, support vectors, ensem-
ble learning methods (bagging, boosting), and deep learning
methods for modeling the BP system. We have used Grid-
Search with 10-fold cross-validation to find the best set of
parameters. In addition, the data is not shuffled before train-
ing/testing, hence the data remains the same for all regression
algorithms. Table III shows the performance comparison of
these regression algorithms.

1) Linear Regression: The baseline ML algorithm for any
data exhibiting a linear relation is linear regression. We
selected the top 12 features from the PCC criteria. These
models are easy to implement, less computational, and
take less training time as compared to other ML methods.
We used Scikit and NumPy libraries to train and cross-
validate our algorithm by minimizing the residual sum of
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squares. We deployed 10-fold cross-validation to validate
the generalizability of the model.

2) Support Vector Regression: Support Vector machines
are kernel methods that use optimization to find the
maximum margin between the support vectors. We did
input the top 12 features from PCC selection method into
the model. For choosing values of kernel transformation
function and miss-penalty coefficient parameters, we
used grid search with 5-fold cross-validation in Scikit-
learn.

3) Random Forest Regression (Bagging): Random Forest
is an ensemble learning method that deploys many deci-
sion trees in a parallel fashion. It averages the results of
all trees trained on a subset of the dataset. We selected
12 most significant features according to the Mutual
Information measure. The model was trained using grid
search along with cross-validation to get optimal values
of the number of trees.

4) Adaptive Boost Regression (Boosting): This is also an
ensembling learning method that uses different estima-
tors in a series fashion such that each new estimator
learns from the mistakes of the previous estimator. Once
again, we used decision trees as estimators and used mu-
tual information as the feature selection criteria. Decision
tree learning uses information gain as attribute selection
criteria. That’s why it is closely related to the information
entropy of features.

5) Deep Neural Network Regression: We used deep learn-
ing as well where we built a neural network architecture
as shown in Fig. 12. This model was finalized after
trying different combinations of architecture parameters
i.e., number of layers, number of hidden units in a layer,
and activation functions. Similarly, the hyper-parameters
of the neural network such as learning rate, batch size,
and optimization algorithm i.e., Adam (adaptive moment
estimation) parameters were selected. Note that we im-
plemented the same Neutral Network (NN) architecture
for both Systolic BP (SBP) and Diastolic BP (DBP. For
the first hidden layer, we have:

Y1 =W1 ∗X +b1, (13)

TABLE III. PERFORMANCE COMPARISON OF IMPLEMENTED
ML ALGORITHMS IN TERMS OF MEAN ABSOLUTE ERROR
(MAE) AND STANDARD DEVIATION OF ERROR (SDE) FOR
SBP, DBP, PP AND MAP.

ML
Algorithm

SBP
(mmHg)

DBP
(mmHg)

PP
(mmHg)

MAP
(mmHg)

MAE SDE MAE SDE MAE SDE MAE SDE
Linear

Regression 8.3 10.0 5.5 6.9 11.7 12.0 7.3 7.4

Support
Vectors 6.7 10.2 5.2 7.0 10.2 11.1 6.5 7.3

Random
Forest 5.9 11.4 4.1 7.5 8.9 10.2 5.7 5.9

Adaptive
Boosting 5.7 8.9 3.7 7.1 7.6 9.2 4.8 5.1

Deep
Neural

Network
5.0 6.3 3.0 4.0 7.2 8.5 4.1 4.0

Fig. 13. Histograms showing Percentage number of values correspond-
ing to a given BP level: (a) SBP and (b) DBP.

A1 = tanh(Y1), (14)

Similarly, for second hidden layer:

Y2 =W2 ∗A1 +b2, (15)

A2 = tanh(Y2), (16)

And finally, the output layer:

Y3 =W3 ∗A2 +b3, (17)

III. RESULTS
A. Datasets

We have used two open-source databases to validate our RR
approach: The CapnoBase dataset (available at capnobase.org)
and the BIDMC dataset derived from MIMIC-II database
(available at https://mimic.physionet.org/), as described below:

1) TBME Benchmark Capnobase Dataset: This dataset
has 8-minute recordings of 42 patients (29 pediatric and
13 adults). It consists of both controlled ventilation and
spontaneous breathing cases. We adopted Capnometry
waveform as the reference ”gold standard” to validate
the results. Both PPG and reference signals are sampled
at 300 Hz.

2) BIDMC Dataset from MIMIC-II Physionet: This
dataset contains 53 adult patient recordings, each 8
minutes in duration. We did a performance comparison
using the reference thoracic impedance pneumography
signal. The PPG and reference signals provided have
been sampled at 125 Hz.

For BP validation, we used the Open-Source MIMIC-II
database [36] which had 12000 subject recordings of different
durations (accessed in November 2021). We performed dataset
cleaning by selecting only those records having a minimum
duration of 8 minutes to ensure enough recording period
for reliable processing. This left us with approximately 2064
subjects. Then, we scanned the selected subjects for abnormal
BP values (SBP<80, SBP>180, DBP<60, or DBP>130) using
the given invasive ABP (arterial blood pressure) waveform
which returned in 117715 windows of 8 seconds and 3167797
heartbeats, representing 1700 unique subjects in total. Both
signals i.e., PPG and gold standard ABP have been sampled
at 125 Hz which is sufficient to accurately extract temporal
features from PPG [37].
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TABLE IV. RR COMPARISON WITH STATE-OF-THE-ART (FOR 32 SEC WINDOW SIZE WITH BOTH DATASETS): NUMBER
OF PATIENTS CONSIDERED; RESPIRATION QUALITY ANALYSIS IN TERMS OF NUMBER OF QUALITY MEASURES; MAE
PRESENTED AS MEDIAN AND INTERQUARTILE RANGE (25TH TO 75TH PERCENTILES) AND PERCENTAGE OF WINDOWS
DISCARDED DURING FUSION.

CapnoBase Dataset BIDMC Dataset

Method
No. of

Subjects

Resp.
Quality

Measures

RR
MAE
(bpm)

%windows
discarded

No. of
Subjects

Resp.
Quality

Measures

RR
MAE
(bpm)

%windows
discarded

BSPC 2023 [15] 42 - 0.37(0.19-1.42) 0% 53 - 0.89(0.36-3.05) 0%
IoT J. 2023 [16] 42 - 1.79 ±1.37 - 52 - 1.89 ±0.95 -
EMBC 2021 [14] - - - - 53 0 1.9 ±0.3 -

ICAIoT 2022 [17] - 3 0.4(0.2-0.8) 1.3% 10 3 0.7(0.3-4.9) 23.3%
TBME 2020 [19] 42 3 0.5(0.2-1.1) 0% - - - -

Proposed 42 3 0.4(0.1-0.7) 0% 53 3 0.5(0.3-2.8) 0%

Fig. 13 shows the distribution of BP values across the
final selected records. We have divided the data into three
BP levels according to ACC/AHA standards. The normal BP
or Normotension corresponds to (90/60 - 130/80) mmHg in
SBP/DBP while the abnormal levels are i) Hypotension: The
low BP level is below 90/60 mmHg and ii) Hypertension: The
high BP level is above 130/80 mmHg. Similarly, Table VI gives
some insight into database statistics having a wide range of BP
values.

Since the previous studies have used the standard sampling
rates provided with datasets, we have followed the same rule.
This allows us to make performance comparisons with other
state-of-the-art works. However, we will choose 125 Hz for
both RR and BP in case of a hardware implementation of these
methodologies because it would be sufficient to accurately
extract temporal features from PPG for both RR and BP [37].

B. Performance Evaluation

For RR, we adopted a 32-second moving window and shifted
by 3 seconds to obtain the results. For the sake of comparison,
a reference RR with the closest timestamp was adopted. We
computed MAE in bpm for the entire moving windows for
each patient. The patient-wise error distribution is presented
in the form of a boxplot in Fig. 14 (a) for the CapnoBase
dataset and in Fig. 14 (b) for the BIDMC dataset. Boxplots
display the median and inter-quartile range (IQR) of MAE for
individual modulations (RIIV, RIFV, and RIAV) without using
any MQI, using each MQI separately (FFT, AC, XC-Tmp),
and our proposed fusion approach using all MQIs i.e., MQI
Fusion.

For BP, we used a window size of 8 seconds to evaluate the
results. The reference values were generated using the given
invasive ABP waveform. We measured mean absolute error
(MAE) in mmHg for each patient over all windows. Table
III represents a comparison of the performance of different
ML algorithms. We implemented Linear Regression and kernel
machines i.e., support vector regression. Then we used complex
ensemble learning methods i.e., Random Forest and Adaptive
Boost to increase the prediction power. Finally, the deep neural
network performed best for BP estimation. We measured Pulse
Pressure (PP) and Mean Arterial Pressure (MAP) as well.

For the selected DNN model, the regression plot, Bland-
Altman Plot, and the patient-wise error distribution have been
shown in Fig. 15 for both SBP and DBP. The regression plots
show a strong correlation between actual and estimated BP
values with high R and R2 values. Similarly, the Bland-Altman
plots show promising mean error and limits of agreement
of error. In addition, the error histograms present a normal
distribution of error. Since the MAE is ≤ 5mmHg with a
standard deviation ≤ 8mmHg it meets the American Associa-
tion for the Advancement of Medical Instrumentation (AAMI).
Additionally, based on Fig. 15 (e) and (f), the results also
meet the British Hypertension Society (BHS) Class Criteria
that require an absolute difference between standard and test
device (%) is >60% for (|error| ≤ 5mmHg), >85% for (|error|
≤ 10mmHg), and >95% for (|error| ≤ 15mmHg) [38].

C. Performance Comparison

The proposed RR method offers superior performance com-
pared to the current state-of-the-art with 3 robust respiration
quality measures (RR quality measures), presented in Table IV.
We obtained improved results on both datasets which means
our proposed methodology performs equally well on a wide
range of patients i.e. diverse patient cases. It involves both
pediatric and adult patients in different clinical conditions. We
utilized the entire PPG signal which means that the estimator
is able to find at least one good-quality modulation for all the
patients.

As presented in Table V, the proposed method for BP
estimation offers robust results in terms of MAE and SDE.
The state-of-the-art work [22], [39], [40] have used VG with
transfer learning, CRNN, and adaptive regression, respectively,
while we have used a simple 2-layer neural network. We have
followed the “Data-Driven Approach” that enables us to have
similar results with robust and a smaller number of features
as compared to a larger number of features without feature
engineering. We have deployed robust spectral and statistical
features. Furthermore, we did feature optimization to select the
most significant features only. Furthermore, we corroborated
our research on a heterogeneous database having 1690 patient
records. This provides clinical reliability for deploying BP
monitors.
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TABLE V. BP COMPARISON WITH STATE-OF-THE-ART: NUMBER OF PATIENTS CONSIDERED WITH DATABASE; NUMBER OF
SELECTED FEATURES; NUMBER OF PHYSIOLOGICAL SIGNALS ACQUIRED; USED ML MODEL AND ERROR IN TERMS OF
MAE AND STANDARD DEVIATION OF ERROR (SDE) FOR BOTH SBP AND DBP IN UNITS OF mmHg.

Method No. of Subjects
No. of Selected

Features Channels Req. Selected Regression Model
SBP

MAE (SDE)
in mmHg

DBP
MAE (SDE)

in mmHg
JBHI 2022 [27] 348 (MIMIC DB) data-driven 1 (PPG) Visibility Graph and Transfer Learning 6.17(8.46) 3.66 (5.36)
JBHI 2022 [28] 100 (MIMIC DB) - 100(Temporal) 1 (only PPG) CRNN 3.52 (-) 2.20 (-)

Sensors 2020 [26] 942 (MIMIC DB) - (only Physio) 1 (only PPG) AdaBoost Reg (200 DTs) 8.2 (10.4) 4.2 (4.2)

IEEE Sens. J. 2023 [22] MIMIC - 2 (PPG + ECG) U-Net model
PPG 17.51(20.98)

ECG 19.10(21.42)
PPG 9.47(12.85)

ECG 10.62(13.20)
Sensors 2021 [39] 1131 (MIMIC DB) - 1 (only PPG) Seq2seq + Attention 14.39 (17.87) 6.57 (8.43)

Sensors 2022 [40] 435 10 (Physio + Demo) 1 (only PPG)
Exponential Gaussian

process Regression - (15.6) - (12.6)

JBHI 2021 [24] 1376 (Vital DB) 28 (only Physio) 2 (PPG + ECG) ANN + RNN 5.1 (6.9) 2.9 (4.0)

Proposed 1690 (MIMIC DB) 12 (Physio + Spectral +
Statistical) 1 (only PPG) DNN (2 FC Layers) 5.0 (6.3) 3.0 (4.0)

Fig. 14. Median and 25th to 75th percentiles of MAE for 32 seconds
window size using individual modulations without a quality check
(RIIV, RIFV, RIAV), using each quality measure one at a time (AC,
FFT, XC-Tmp) and proposed fusion methodology using the entire
quality measures (MQI-Fusion) for (a) CapnoBase and (b) BIDMC
datasets.

IV. DISCUSSION

We presented innovative respiration quality assessment mea-
sures to improve the fusion methodology by making it more
robust for the average RR readings. The template match-
ing cross-correlation MQI accurately identifies the respiratory
modulations with high quality as shown in Fig. 9 and Fig.
10, respectively. The right-most box in Fig. 14 reflects an
overall reduction in MAE when using the combined three
MQIs to select the modulation for RR measurements. It has no

outliers i.e., MQI Fusion performs well for all patients in both
datasets. Similarly, histograms in Fig. 15 show that BP error
is concentrated around 0 for both SBP and DBP. As shown in
TABLE IV, the proposed method does not discard any PPG
windows which means we always have RR readings, which
is essential for continuous monitoring of vitals. The results
show that the proposed method has better MAE performance
compared to state-of-the-art works. The proposed approach
is also independent of the patient’s health condition, body
position, or activity during measurement. Hence, users can have
a wearable pulse oximeter sensor while performing normal
daily activities.

As illustrated in Fig. 11, the performance of respiration qual-
ity measures changes with the value of the quality thresholds.
If we assert strict threshold values, the MAE improves at the
expense of discarding many PPG windows. However, we tune
threshold values in such a way that we get desired performance
while retaining all data windows in the final MQI fusion
methodology. In addition, the empirical quality thresholds are
not patient-specific, they are the same for the entire dataset
which allows the proposed approach to be independent of
individual patients.

The main challenge in developing a vitals monitoring device
is the PPG morphology variation from patient to patient. PPG
morphology changes as the measurement position, skin texture,
and activity change. This is also dependent on individual
person’s cardiovascular characteristics. In this paper, we have
implemented robust features which are independent of these
factors and perform equally well on all patients. These features
include physiological, spectral, and statistical parameters which
we have proved to be highly correlated to the target variables.
This results in improved performance compared to state-of-the-
art methods as shown in Table V.

Another problem in adapting to the use of vital healthcare
devices is the lack of reliability. Researchers so far have pro-
posed a large number of methods for vitals estimation, but they

TABLE VI. MIMIC DB Statistics of Selected Records demonstrating
the range of BP Values.

Min. Max. STD Mean Median
DBP (mmHg) 65.1 129.7 12.7 91.1 89.3
SBP (mmHg) 80.0 180.0 20.1 114.3 111.7
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Fig. 15. Regression Plots for (a) SBP, and (b) DBP, Bland-Altman Plots for (c) SBP, and (d) DBP, and Error histograms for (e) SBP, and
(f) DBP, where ‘R’ is the Pearson correlation coefficient and R2 is the coefficient of determination. In Bland-Altman Plots, solid red lines
indicate mean error while dotted red lines represent 95% confidence interval (-1.96σ to +1.96σ) where ’σ’ stands for the standard deviation
of error.

have corroborated their approaches on small datasets having
a little number of patients with less diversity of cases. The
MIMIC-II database used is a heterogeneous standard database
having a variety of cases in different clinical conditions (Fig.
15 and Table VI). We have validated our methodology on this
extensive database to provide credibility for clinical use. In
this way, we have added to the reliability of vital monitoring
systems, having applications in mobile and fitness health-care
devices.

For embedded applications, we must consider power effi-
ciency. The main cost is the number of computations in terms
of multiplications and additions of designed algorithms. The
proposed methods in the literature are based on frequency-
domain analysis which involves a lot of computations. Sim-
ilarly, Machine Learning and Deep Learning approaches are
computationally very intensive. They require specific hardware
support as well. Therefore, we have selected the 12 most
significant features only (TABLE II) by performing feature
relevance analysis to reduce the computational load. Future
work needs to emphasize on developing less computational,
and more efficient algorithms to measure vital signs.

For continuous monitoring of vital signs, another important
aspect is the Hardware Complexity involved. Current methods
using two physiological sensors are not only computationally
intensive but also the implemented devices are complex. They

require two sensors for acquiring two signals i.e., PPG and
ECG which might be from two different body positions. For
continuous wear, these devices are not comfortable to carry.
However, we have tried to minimize the subject’s distress by
using one pulse oximeter sensor for PPG only. This results in a
simple wearable device that gives continuous estimates of RR
and BP. Such a device is convenient to wear and carry for a
long time use.

V. CONCLUSIONS

In this paper, we alleviated the problem of patient depen-
dency in the measurement of vital health signs. For diverse
patients with variations in PPG physiology, we proposed a
patient-independent approach using robust Spectro-Temporal
features to increase the reliability of the BP estimation method-
ology. To tackle the variations in extracted physiological fea-
tures for RR estimation, we introduced powerful feature selec-
tion measures. We have validated our research findings on a
large database MIMIC having diverse patient cases in different
clinical conditions. The obtained results prove the robustness
of our approach and meet the required clinical standards. Our
proposed approach requires only one physiological signal i.e.,
PPG to estimate both vitals i.e., RR and BP. By acquiring
single-channel PPG using one convenient wearable sensor, we
have enabled continuous monitoring of vital health signs in a
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non-invasive manner. Our research finds applications in fitness,
remote, and mobile health-care devices such as smartwatches
where one can monitor vital health signs continuously in a
non-invasive way while performing daily life activities.
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