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Abstract—Goal: Diagnosing the corpus-predominant gastritis
index (CGI) which is an early precancerous lesion in the stomach
has been shown its effectiveness in identifying high gastric cancer
risk patients for preventive healthcare. However, invasive biopsies
and time-consuming pathological analysis are required for the
CGI diagnosis. Methods: We propose a novel gastric section cor-
relation network (GSCNet) for the CGI diagnosis from endoscopic
images of three dominant gastric sections, antrum, body and
cardia. The proposed network consists of two dominant modules
including the scaling feature fusion module and section correlation
module. The front one aims to extract scaling fusion features
which can effectively represent the mucosa under variant viewing
angles and scale changes for each gastric section. The latter one
aims to apply the medical prior knowledge with three section
correlation losses to model the correlations of different gastric
sections for the CGI diagnosis. Results: The proposed method
outperforms competing deep learning methods and achieves high
testing accuracy, sensitivity, and specificity of 0.957, 0.938 and
0.962, respectively. Conclusions: The proposed method is the first
method to identify high gastric cancer risk patients with CGI from
endoscopic images without invasive biopsies and time-consuming
pathological analysis.

Index Terms—Corpus-predominant gastritis index, deep learn-
ing, precancerous lesion classification, gastric endoscopy.

Impact Statement- Effectively identify high gastric
cancer risk patients with CGI from endoscopic images by
a novel deep learning network without invasive biopsies.
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I. INTRODUCTION

TO control the disease burden of the gastric cancer (GCA),
it is important to diagnose the presence of the precan-

cerous lesions in the stomach for the early detection of high
GCA risk patients to reduce the mortality rate and occurrence
of gastric cancer. Compared with gastric lesion classifica-
tion methods [1]–[9] and segmentation methods [10]–[14],
detecting precancerous lesions will help physicians achieve
early detection of GCA in preventive healthcare. Recently, the
corpus-predominant gastritis index (CGI) [15] is proposed to
assess the precancerous lesions of high GCA risks and indicate
candidates for early Helicobacter pylori (H. pylori) eradication
before the presence of gastric IM. In the previous studies, CGI
has been shown an early and reversible marker for the diagnosis
of high GCA risks [16]. According to [15] and [16], CGI is
a good marker because its presence could indicate high GCA
risk early before the presence of atrophy and gastric IM in
the previous researches [17]–[19]. CGI has also been shown
an early and reversible marker for the diagnosis of high GCA
risks [16]. Thus, the CGI diagnosis is important in the routine
endoscopy study.

In order to diagnose CGI, the pathologists need to ana-
lyze biopsy specimens obtained from three gastric sections
including the antrum, body and cardia, respectively. Then, they
assort the inflammation scores of these three gastric sections
by two indices, acute inflammation score (AIS) and chronic
inflammation score (CIS) according to the updated Sydney
system [20]. Both of AIS and CIS are ranged from 0 to 3 to
represent the degrees of inflammations. The 0 score represents
that the biopsy is normal, and the higher the number indicates
more severe inflammations. After figuring out the scores of
AIS and CIS, the pathologists combine these two indexes to
an inflammation score (IS) which assesses the overall inflam-
mations of the target gastric section. Based on the correlations
of the inflammation scores of these three gastric sections, the
CGI of each patient can be diagnosed as follows [15]:

CGI =


1, if (ISA < ISB)

1, if (ISA ≤ ISC and ISC ̸= 1),
0, otherwise

(1)

where ISA, ISB, and ISC are the inflammation scores of the
antrum, body, and cardia, respectively. When the inflammation
scores of the gastric sections of a patient match the first two
criteria in Eq. (1), the patient has CGI, i.e. the patient is
diagnosed as a high GCA risk patient.
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Fig. 1. The overview of the proposed gastric section correlation network (GSCNet). The proposed network contains the scaling feature fusion
module and section correlation module. While the front one aims to learn representative features for different gastric sections, the latter one
considers the correlations of different gastric sections to achieve the CGI diagnosis. The dash rectangles represent the shared-weights resizing
sub-networks in the scaling feature fusion module.

This conventional process of the CGI presence in [15] relies
on the topographic invasive biopsies and the protocol of the
updated Sydney system [20]. It requires manual reviews of
pathologists and is very time-consuming. Moreover, biopsies
cause more bleeding risks of patients. As a result, a novel CGI
diagnosis method without biopsies and the time-consuming
burden of the pathologists becomes one of the most important
and novel issues of detecting precancerous lesions for early
GCA.

Recently, deep learning based computer-aided diagnosis
(CAD) methods [21]–[23] have attracted more attention in the
medical domain. Compared with previous CAD methods, we
propose the first deep learning based CAD method to diagnose
CGI from endoscopic images of antrum, body and cardia, and
aim to replace [15] which requires invasive biopsies. In our
method, a novel deep learning based gastric section correlation
network (GSCNet) is proposed. It consists of the scaling feature
fusion (SFF) module and section correlation (SC) module as
shown in Fig. 1. The endoscopic images of the antrum, body
and cardia serve as the inputs of the network for the CGI
diagnosis.

Due to the peristalsis of the stomach and different endo-
scopes, the distances and viewing angles between the mucosa
of different patients and the cameras are variant and incon-
sistent. These situations lead to significant scale changes of
the endoscopic images. To solve the problems, we propose the
scaling feature fusion module, which contains three different
shared-weights resizing sub-networks with different field-of-
views. Each shared-weights resizing sub-network learns deep

features which can simultaneously represent inflammations of
three gastric sections with respect to the target scale. Moreover,
we apply a channel attention layer [24] to each sub-network
to extract more salient deep features. As a result, the learned
features of the proposed method have better generalization
ability and are more distinctive to represent different gastric
sections. By concatenating the deep features of each shared-
weights resizing sub-network, scaling fusion features of each
gastric section are obtained and applied to learn the correlations
of inflammations based on different gastric sections.

The medical prior knowledge to diagnose CGI represented
by Eq. (1) in [15] shows that the correlations of inflammations
of biopsy specimens of different gastric sections need to be
considered to assess CGI of patients. In our approach, we
consider the correlations of endoscopic images of different
gastric sections for the CGI diagnosis and propose the section
correlation module to represent the medical prior knowledge.
This module aggregates scaling fusion features of the antrum
with respect to those of the remaining gastric sections to
represent the correlations of different gastric sections. Three
section correlation losses are proposed and the features are
fused to compute the fusion loss to drive the learning of the
whole network. In this way, the proposed method can success-
fully represent the correlations of different gastric sections for
the CGI diagnosis. As shown in the experimental results, the
proposed method outperforms the state-of-the-art deep learning
methods.

The contribution of the proposed method is three-fold:

1) First, this is the first artificial intelligence method to
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diagnose the precancerous lesions, CGI, from endoscopic
images in an end-to-end trainable manner. We also
reveal a novel medical application in video endoscopy
to identify the high GCA risk patients.

2) Second, we propose a novel gastric section correlation
network (GSCNet) which can learn representative deep
features to overcome viewing direction and scale change
problems, and correlate features of different gastric sec-
tions based on medical prior knowledge for the CGI
diagnosis.

3) Third, our method significantly outperforms the state-of-
the-art deep learning methods and shows the importance
of imposing medical prior knowledge in the task-specific
application.

II. MATERIALS AND METHODS

To solve the CGI diagnosis problem, we propose a novel
gastric section correlation network (GSCNet) which consists
of two dominant modules including the scaling feature fusion
module and section correlation module as shown in Fig. 1. The
scaling feature fusion module aims to extract representative
scaling fusion features from endoscopic images of each gastric
section. The section correlation module aims to represent the
medical prior knowledge of CGI and provides interpretable
network structure. Then, three section correlation losses are
proposed and fused with the fusion loss to drive the network
training and achieve the CGI diagnosis. In the following, we
will describe the details of the proposed method.

A. Scaling Feature Fusion Module

To solve the first problem and generate representative fea-
tures for the CGI diagnosis, we propose the scaling feature
fusion module to simultaneously extract gastric section features
with respect to different scales and field-of-views for different
gastric sections. Conventionally, to learn multi-scale features,
most recent methods [25], [26] downsample input images
to different scales in advance. These methods usually apply
parallel multi-scale shared-weights networks with the fixed
depth to learn multi-scale features from training images of
a specific gastric section. Thus, the learned features easily
overfit the training images of the specific gastric section, and
are hard to simultaneously represent three endoscopic images
of different gastric sections, i.e. the antrum, body, and cardia,
which are required for the CGI diagnosis. Moreover, parallel
multi-scale shared-weights networks of the same depth are hard
to learn representative features with respect to different field-
of-views.

Compared with the conventional multi-scale methods, the
proposed scaling feature fusion module contains three indi-
vidual shared-weights resizing sub-networks which can auto-
matically achieve the resizing process by using the proposed
network structure. It is not necessary to manually downsample
the input images to obtain the inputs of different scales for
the scaling feature fusion module in advance. Moreover, each
sub-network simultaneously learns representative deep features
from three endoscopic images of the antrum, body and cardia
with respect to the target scale instead of images of a specific

gastric section in most multi-scale methods. To further learn
features of different field-of-view information and ensure the
consistency of feature dimension for feature fusion, each sub-
network also contains different numbers of convolutional layers
and residual blocks. In this way, the learned features are more
distinctive to represent different gastric sections under different
scales and field-of-views.

Let IA, IB and IC be the endoscopic images of a patient’s
antrum, body and cardia, respectively. These images serve as
the inputs of the three individual shared-weights resizing sub-
networks as shown in Fig. 1. The first shared-weights resizing
sub-network NL contains a 7 × 7 convolutional layer and 3
residual blocks [27] to learn the large scale deep features
from the input endoscopic images. Then, we append a channel
attention layer [24] after the last residual block. The channel at-
tention layer exploits the inter-channel relationship of features
and helps further extract more salient deep features to represent
each gastric section. By using the channel attention layer, the
network can focus on learning critical content of different
gastric sections. NL simultaneously generates large scale deep
features fA

L , fB
L and fC

L from IA, IB and IC, respectively, instead
of generating multi-scale features for only a specific gastric
section in most conventional multi-scale methods. Because
NL needs to learn features to simultaneously represent these
three different gastric sections, the learned large scale deep
features can be more distinctive and representative compared
with conventional multi-scale methods.

The second shared-weights resizing sub-network NM aims to
simultaneously learn features based on medium field-of-view
information from IA, IB and IC. To achieve the goal, a pooling
block, which is composed of a 3×3 convolutional layer with
a max pooling layer, is applied to learn the medium scale
information at first. After the pooling block, 3 residual blocks
with a channel attention layer are applied in NM to generate
the medium scale features fA

M , fB
M and fC

M computed from IA,
IB and IC, respectively.

Finally, the third shared-weights resizing sub-network NS
has 2 pooling blocks to obtain small scale information. Then,
2 residual blocks with a channel attention layer are applied to
generate the small scale features fA

S , fB
S and fC

S for IA, IB and
IC, respectively. In this way, the scaling feature fusion module
can effectively learn distinctive and representative deep features
for different gastric sections with respect to different scales
and field-of-views by using three shared-weights resizing sub-
networks of different depths and structures.

Because of the design of the network structure of NL, NM and
NS, we can concatenate the deep features of different networks
to integrate different scale and field-of-view information for
each gastric section. Let fA be the scaling fusion feature of the
antrum. It is defined as the concatenation of deep features fA

L ,
fA
M and fA

S as follows:

fA = {fA
L , fA

M, fA
S}. (2)

Similarly, the scaling fusion feature fB of the body is defined
as:

fB = {fB
L , fB

M, fB
S}, (3)
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and the scaling fusion feature fC of the cardia is defined as:

fC = {fC
L , fC

M, fC
S }. (4)

In the proposed method, fA, fB, and fC provide the different
scale and field-of-view information of each gastric section by
using shared-weights backbones.

Compared with conventional parallel multi-scale methods
which learn different field-of-view information for the endo-
scopic images of each gastric section individually, the proposed
SFF module aims to simultaneously learn representative deep
features from endoscopic images of three different gastric sec-
tions, i.e. the antrum, body and cardia, with respect to the target
scale. Each sub-network of the SFF module needs to learn the
deep features which can simultaneously represent endoscopic
images of different gastric sections based on different numbers
of convolutional layers and residual blocks. In this way, the
SFF module has better generalization ability and is able to
reduce the overfitting problem. The deep features extracted
from NL preserve more local details, while the deep features
extracted from NS provide non-local information of the gastric
sections in the following. By combining the different scale and
field-of-view information with the weights-shared scheme, the
learned deep features of the antrum, body and cardia can be
more representative and discriminative. These features serve as
the input of the section correlation module to achieve the CGI
diagnosis.

B. Section Correlation Module

As indicated in [15], the presence of CGI is defined as the
occurrence of either: 1) the combination of acute inflammation
and chronic inflammation scores in cardia (high corpus) is
equal to or larger than that of the antrum, but is not equal
to 1 in score; or 2) the combination of acute inflammation and
chronic inflammation scores in the body (corpus) is larger than
that of the antrum. Comparing body (corpus) and cardia (high
corpus) is defined as an absence of CGI in [15]. In other words,
only the correlations between the antrum and corpus including
the body and cardia need to be considered based on the
medical observations. Thus, we propose the section correlation
module which combines scaling fusion features of different
gastric sections and section correlation losses for the CGI
diagnosis from endoscopic images. To address the correlations
of different gastric sections, we combine scaling fusion features
of different gastric sections to generate heterogeneous section
features. The first heterogeneous section feature fAB is obtained
by the concatenation of the scaling fusion features of the
antrum and body as follows:

fAB = {fA, fB}. (5)

It serves as the first feature of the correlations between the
antrum and body for the CGI diagnosis. Then, fAB is passed to
two 3×3 convolutional layers to further update the correlations
of the feature between the antrum and body as shown in
Fig. 1. The convolutional features are passed to two fully
connected layers and a classification layer cAB to compute the
first proposed section correlation loss ℓAB which indicates the

CGI diagnosis based on the correlation of the antrum and body
as follows:

ℓAB =
K

∑
k=1

−yk log2(pAB
k ), (6)

where K is the number of the training data, yk is the ground
truth label provided in [15], and pAB

k is the output of cAB of
the kth patient.

The second heterogeneous section feature fAC aims to repre-
sent the correlations of inflammations between the antrum and
cardia as follows:

fAC = {fA, fC}. (7)

Similar to the first heterogeneous section feature, fAC also
passes to a network of the same structure with a classification
layer cAC to compute the second proposed section correlation
loss ℓAC which indicates the CGI diagnosis based on the antrum
and cardia as follows:

ℓAC =
K

∑
k=1

−yk log2(pAC
k ), (8)

where pAC
k is the output of cAC of the kth patient. Based on these

two heterogeneous section features and section correlation
losses, we can represent the two medical criteria of the CGI
diagnosis as shown in [15], where the first criterion represents
the correlation between the antrum and body, and the second
criterion represents the correlation between the antrum and
cardia.

To further take the advantages of all of gastric sections for
the CGI diagnosis, we further propose the third heterogeneous
section feature fABC which is the concatenation of scaling
fusion features of the antrum, body and cardia as follows:

fABC = {fA, fB, fC}. (9)

fABC can be considered to discover the inflammation infor-
mation based on the correlations among the antrum, body,
and cardia for the CGI diagnosis. Based on fABC and the
convolutional network mentioned above, the third proposed
section correlation loss ℓABC is defined as follows:

ℓABC =
K

∑
k=1

−yk log2(pABC
k ), (10)

where pABC
k is the output of the classification layer cABC of

the network. To show the effectiveness of the third section
correlation loss ℓABC, we perform the ablation study in Sec.
IV-B.

To address the medical prior knowledge, these three losses
are computed based on each heterogeneous section feature
which represents the correlations of different gastric sections.
Finally, to provide the fusion results of cAB, cAC and cABC

for end-to-end training, we concatenate the features of these
classifiers and pass to a classification layer cF to compute the
fusion loss ℓF as follows:

ℓF =
K

∑
k=1

−yk log2(pF
k ), (11)

where pF
k is the output of the classification layer cF of the

network.

This article has been accepted for publication in IEEE Open Journal of Engineering in Medicine and Biology. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/OJEMB.2023.3277219

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



Technology
To update the parameters of the scaling feature fusion

module and section correlation module by simultaneously
considering all of the aforementioned losses, we compute the
CGI loss ℓ as follows:

ℓ= ℓAB + ℓAC + ℓABC + ℓF . (12)

The CGI loss fuses these three losses and drives the learning
of the proposed network in an end-to-end trainable manner. By
minimizing the CGI loss, the learned scaling fusion features
of each gastric section and heterogeneous section features
of different gastric sections can then effectively and better
represent the inflammations of the gastric mucosa for the CGI
diagnosis. In this way, the proposed network can successfully
solve the CGI diagnosis problem under variant scale changes.
Moreover, because the design of the module is based on the
medical prior knowledge, our method is more interpretable and
convincing to physicians.

While most recent CAD methods aim to diagnose diseases
from images containing target lesions, the CGI diagnosis
requires to consider the correlations of inflammations between
different gastric sections [15]. Thus, the CAD method for
the CGI diagnosis also needs to simultaneously consider the
medical prior knowledge mentioned above instead of only
considering the content of each endoscopic image individually.
The state-of-the-art CAD methods are then not suitable for
the CGI diagnosis. Such fact shows the differences between
the proposed method and the recent CAD methods, and also
addresses the importance and necessary of developing a novel
method for the CGI diagnosis.

C. Implementation Details

In our implementation, the resolutions of the endoscopic
images IA, IB and IC are 224×224. The residual blocks used
in the scaling feature fusion module are from the pre-trained
ResNet-18 network [27], which can reduce the training time
and avoid overfitting. Because the spatial resolution of the
features of the last residual block in ResNet-18 are 7 × 7,
we remove the last block of ResNet-18 to obtain features
with higher resolutions of 14 × 14. Then, we append the
channel attention layer of the squeeze-and-excitation block [24]
after the last residual block of each shared-weights resizing
sub-network to make the learned features focus on critical
parts of the input images of different gastric sections. In this
way, the spatial resolution of each scaling fusion feature of
each gastric section is 14 × 14 with 256 channels. During
training, the batch size was set to 68 and the learning rate was
1e− 5. For the optimization strategy, we choose Adam [28]
and train 1000 epochs. To prevent overfitting and increase
generalization ability of the learned features, we also apply
data augmentations including random cropping, color jittering,
grayscale, horizontal flip, vertical flip, and rotations of 90, 180
and 270 degrees during training.

III. RESULTS
A. Dataset

In this study, patients older than 20 years old with normal
mental function who suffered from dyspepsia and received

TABLE I. Dataset

# of Patients With CGI Without CGI Total
Training 68 90 212
Testing 20 48 92

pan-endoscopy were invited from the National Cheng Kung
University hospital and Ministry of Health and Welfare Tainan
hospital. They received H.pylori screening and endoscopy to
provide topographic gastric biopsy specimens for histologi-
cal assessment. Patients with the following conditions were
excluded: 1) Patients with severe systemic diseases, such as
severe anemia, uremia, liver cirrhosis with portal hyperten-
sive gastropathy and malignancies except GCA; 2) Patients
with bleeding tendency such as thrombocytopenia, long term
NSAIDs or Aspirin treatment. The endoscopic images were
collected topographically at the antrum, body and cardia with
Olympus EVIS CV 290 system and H290 gastro-scope or EVIS
CV 290 and Q290 gastroscope. The CGI of each patient was
assessed by one experienced pathologist who was blind to
the clinical information of the patients. Gastric mucosa biopsy
specimens were reviewed and scored AIS and CIS according
to the updated Sydney system [20]. The ground truth of the
CGI diagnosis was provided by [15] based on the scored
AIS and CIS. All of the patients were given written informed
consent and the informed consent forms and study design were
reviewed by the Research Ethics Committee of the institute.

The dataset contains 304 patients for the CGI diagnosis and
each patient has 3 white-light endoscopic images of the antrum,
body and cardia. The images of three gastric sections were
selected and pre-processed by using [29]. The training and
testing data were randomly partitioned as 7 : 3 are shown in
Table I. To avoid the overfitting and make the model more
robust for rotations of endoscopic cameras, we performed
data augmentations. Because no validation sets are provided,
we trained the network with fixed epochs. Please refer to
the implementation details. Our network was implemented by
using Pytorch 1.7.1 and run on a personal computer with
NVIDIA GeForce RTX 3090.

To evaluate the performance of the proposed method, the
accuracy, sensitivity, specificity and area under receiver oper-
ating characteristic curve (AUC) are used. Let T P, T N, FP
and FN be the numbers of true positive, true negative, false
positive and false negative, respectively. The accuracy (Acc),
sensitivity (Sens) and specificity (Spec) are defined as follows:

Accuracy =
T P+T N

T P+T N +FP+FN
, (13)

Sensitivity =
T P

T P+FN
, (14)

and
Speci f icity =

T N
T N +FP

. (15)

B. Ablation Study

To diagnose CGI from three endoscopic images, the pro-
posed network contains two dominant modules including the
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scaling feature fusion (SFF) module and section correlation
(SC) module. Moreover, we also apply the channel attention
(CA) layers to further extract attention features for better rep-
resentations of different gastric sections. In the ablation study,
we aim to evaluate the effectiveness of three schemes. The first
three rows show the results of the proposed method with only
the SFF module, CA layers and the SC module, respectively.
The accuracy drops when only one of the proposed schemes
is applied. Among these three schemes, the method with only
the SFF module achieves better results. Such results indicate
that it is necessary to generate multiple field-of-view features
to overcome the problem that endoscopic images are captured
under variant viewing angles and scales. Compared with the
method with only the SC module, the method with only the
CA layers achieves better sensitivity but has more false alarms.
Because using only one scheme cannot achieve satisfactory
results, collaborations of these schemes are applied.

As shown in the fourth row of Table II, the method without
(w/o) using the SC module achieves the worst results when
we combine different schemes. Without the SC module, the
network is hard to build correlations among different gastric
sections to represent CGI and thus has lower sensitivity. Such
results indicate the importance and uniqueness of the proposed
SC module based on the medical prior knowledge [15]. As
shown in the fifth and sixth rows of Table II, our method
without CA achieves better results compared with our method
without the SFF module. Such results show that the proposed
SFF module is more effective compared with the CA layers.
The SFF module is proposed to capture the multiple field-
of-view information of the endoscopic images. The proposed
method without the SFF module was implemented by consider-
ing only the single field-of-view information, i.e. the large scale
deep features of each endoscopic image. As shown in Table II,
the proposed method without the SFF module achieves worse
results compared with the proposed method. Thus, representing
the mucosa under variant viewing directions and scale changes
during endoscopy by using the SFF module is necessary.

In our method, we propose three section correlation losses.
The first section correlation loss explains the medical prior
knowledge of the correlations between the antrum and body,
while the second section correlation loss explains the medical
prior knowledge of the correlations between the antrum and
cardia. The third section correlation loss ℓABC aims to provide
additional correlations among the antrum, body and cardia
in the SC module. The seventh row of Table II shows the
results without considering the ℓABC. Without ℓABC, the network
achieves worse results compared with the proposed method
shown in the eighth row of Table II. Thus, applying ℓABC

is necessary to the CGI diagnosis. These results show the
effectiveness of the combinations of the proposed modules,
channel attention layer, and section correlation losses for the
CGI diagnosis.

C. Quantitative Results

To the best of our knowledge, no existing artificial intelli-
gence (AI) methods are proposed to diagnose CGI. The pro-
posed method is the first AI method to solve the CGI diagnosis

TABLE II. Ablation Study

SFF CA SC Acc. Sens. Spec. AUC√
0.8297 0.8750 0.8205 0.9326√
0.8085 0.9375 0.7820 0.9150√
0.8085 0.6875 0.8333 0.8645√ √
0.9043 0.6875 0.9487 0.9647√ √
0.9362 0.8750 0.9487 0.9792√ √
0.9255 0.7500 0.9615 0.9639√ √ √

∗ 0.9362 0.6875 0.9872 0.9655√ √ √
0.9574 0.9375 0.9615 0.9836

TABLE III. Quantitative Results

Method Acc. Sens. Spec. AUC
GoogLeNet 0.8723 0.6875 0.9103 0.8726
ResNet-50 0.8936 0.6875 0.9487 0.9195

DenseNet-121 0.8408 0.7500 0.8590 0.8766
BoTNet 0.8617 0.8125 0.8718 0.8950

ViT 0.7979 0.7500 0.8077 0.8910
Proposed 0.9574 0.9375 0.9615 0.9836

problem by using endoscopic images. Current deep learning
methods are also hard to discover the correlations of differ-
ent gastric sections, because they generally consider to learn
features from images of a specific gastric section. For compar-
isons, we modify the input of the state-of-the-art convolutional
neural network methods including GoogLeNet [30], ResNet-
50 [27] and DenseNet-121 [31], and transformer based methods
including BoTNet [32] and vision transformer (ViT) [33], so
these methods can also learn deep features of different gastric
sections for the CGI diagnosis. We concatenate endoscopic
images of each patient’s antrum, body, and cardia to a 9
channel image and pass the image to a 1× 1 convolutional
layer to learn a 3 channel image which serves as the input of
these deep learning methods. The pre-trained models of the
competing methods were loaded as the initial models to train
the endoscopic images. In this way, these methods can learn
better features of training endoscopic images based on the pre-
trained models for fair comparisons in the CGI diagnosis.

The quantitative results are shown in Table III. Because the
state-of-the-art methods are not designed for solving the CGI
diagnosis problem, their results are not satisfied. It is worth to
note that the patch embeddings in ViT consider patches of a
fixed field-of-view. Moreover, the position embeddings in ViT
do not model multiple field-of-view information. Thus, ViT
is hard to properly learn features of the endoscopic images
captured under significant image scale changes and viewing
angle changes. As a result, the performance of ViT is not
satisfactory. In contrast, the proposed method outperforms
all of the competing methods. Such results also indicate the
difficulty of the CGI diagnosis when the correlations of three
gastric sections are not correctly represented. While the scaling
feature fusion module helps learn representative features of
each gastric section under variant viewing angles and scales,
the channel attention layers help extract more salient fea-
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0.8754 0.9268 0.4829 0.8679 0.0023 0.9999

0.0015 0.3584 0.0007 0.0000 0.0000 0.9903

0.3410 0.0628 0.0117 0.1810 0.9800 0.9999

(a) (b) (c) (d) (e) (f)

Fig. 2. The qualitative results of the state-of-the-art methods and the proposed method. The confidence probability of each method is shown
above the result for (a) GoogLeNet, (b) ResNet, (c) DenseNet-121, (d) BoTNet, (e) ViT, and (f) Proposed method.
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tures. Then, the section correlation module fuses the learned
features based on the medical prior knowledge in [15], i.e.
the correlations of different gastric sections, and makes our
method become more interpretable with three proposed section
correlation losses. As a result, our network can successfully
diagnose CGI from the patients’ endoscopic images without
invasive biopsies and time-consuming process of the updated
Sydney system which burdens the pathologists in [15]. In
addition, the average inference time during testing is 0.0253s
which shows the real-time processing ability of the proposed
method for online endoscopy.

D. Qualitative Results

Fig. 2 shows the CGI diagnosis results of the state-of-the-art
methods and the proposed method for three patients, where the
first two patients are diagnosed as CGI and the third patient is
diagnosed as normal by pathologists. We group the endoscopic
images of the antrum, body and cardia of each patient from
the top to the bottom for visualization. As shown in Fig. 2, the
variations of appearances of mucosa and the viewing angles
of the endoscopic cameras are significantly different. These
variations lead to the difficulty of the CGI diagnosis. Moreover,
CGI is diagnosed based on the correlations of inflammations
of different gastric sections [15]. Thus, the endoscopists are
hard to manually review and compare the correlations of
inflammations of different sections during endoscopy for the
CGI diagnosis, because the camera can only capture a gastric
section in each view.

Fig. 2(a), (b), (c), (d), and (e) show the results of con-
ventional deep learning methods of GoogLeNet, ResNet-50,
DenseNet-121, BoTNet and vision transformer, respectively.
The green and red rectangles represent the correct and incorrect
CGI diagnosis results of each patient, respectively. The confi-
dence probability of each method is shown above the results.
Because these methods are hard to learn the proper correlations
of three different gastric sections, they fail to correctly diagnose
CGI due to variant camera viewing angles and scale changes.
As shown in the third row of Fig. 2, GoogLeNet, ResNet,
DenseNet-121 and ViT also miss-classify the normal patient
to the patient with CGI. The results of the proposed shown are
shown in Fig. 2(f). While the scaling feature fusion module
learns robust deep features to overcome the viewing angle
and scale changes, the section correlation module employs
the medical prior knowledge to learn the correlations between
different gastric sections for the CGI diagnosis. As a result,
the proposed method can achieve significantly better results
with high confidence probability compared with the competing
methods

IV. CONCLUSION

The early diagnosis of the gastric precancerous lesion, CGI,
helps reduce the mortality rate and occurrence of gastric cancer.
However, current CGI diagnosis can only be achieved by man-
ual review from invasive biopsy specimens, and is a very time-
consuming and burden process for pathologists and physicians.
In this paper, we propose a novel gastric section correlation
network which is the first artificial intelligence method to

achieve the CGI diagnosis. The scaling feature fusion module
aims to represent the scale and viewing angle changes during
endoscopy, while the section correlation module applies the
medical prior knowledge to achieve better CGI diagnosis
results. Applying the medical prior knowledge not only makes
our method become more interpretable but also helps solve
the CGI diagnosis problem for the purposes of the precision
medicine and preventive healthcare.

The experimental results show that the proposed method
significantly outperforms all of the state-of-the-art methods.
Our method takes into account the medical prior knowledge
to build correlations of endoscopic images of different gastric
sections, while existing deep neural network models only con-
sider content of individual endoscopic images. We show that
the CGI diagnosis from endoscopic images can be achieved,
and thus the invasive biopsy and time-consuming process of
the conventional CGI diagnosis can be avoided. In the future,
we will append the proposed model to the video endoscopy
system for the online CGI diagnosis.
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