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Abstract—Goal: We present a new framework for in vivo image
guidance evaluation and provide a case study on robotic partial
nephrectomy. Methods: This framework (called the “bystander
protocol”) involves two surgeons, one who solely performs the
therapeutic process without image guidance, and another who
solely periodically collects data to evaluate image guidance. This
isolates the evaluation from the therapy, so that in-development
image guidance systems can be tested without risk of negatively
impacting the standard of care. We provide a case study applying
this protocol in clinical cases during robotic partial nephrectomy
surgery. Results: The bystander protocol was performed success-
fully in 6 patient cases. We find average lesion centroid localization
error with our IGS system to be 6.5 mm in vivo compared to our
prior result of 3.0 mm in phantoms. Conclusions: The bystander
protocol is a safe, effective method for testing in-development
image guidance systems in human subjects.

Index Terms—Image-guided surgery, Partial nephrectomy,
Robotic surgery

Impact Statement- Rapid early testing of image guidance
systems has the potential to accelerate their development
timeline. Quantitative measurements will objectively define
accuracy under realistic conditions.

I. INTRODUCTION

IMAGE-GUIDED surgical (IGS) systems provide medical
imaging information to surgeons in real time during surgery.

They typically provide a 3D map of anatomy and indicate the
location of the surgeon’s tool on it. This assists the surgeon
in understanding unseen subsurface anatomical relationships,
without requiring incisions to expose them. Creation of IGS
systems has been enabled over the past few decades by the
advancement of computational power and three-dimensional
imaging technology, which IGS combines [1]. IGS systems
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employ patient images, typically derived from tomographic
data, and use tracking technology to measure tool locations [2],
combined with registration algorithms to align images with the
physical patient [3]. Images datasets can be either segmented
(e.g. [4]) or non-segmented (e.g. [5]).

IGS can be deployed in either open surgery or in a minimally
invasive surgical (MIS) setting. It can increase surgical accu-
racy and speed, since it spares the surgeon from the complex
task of building a 3D mental model from a series of 2D images,
and from mentally registering that model to patient anatomy.
In this way, IGS increases the surgeon’s situational awareness
in the face of complicated anatomy and limited field of view
[6]. Such systems have been applied to surgeries in the brain,
lung, colon and other areas of the body (see e.g. [7]–[9]), and
they can also be deployed in robotic MIS settings [10]–[13].

IGS systems were originally designed to work in bone or
in places like the brain or sinuses that are surrounded by
bone. In these settings, IGS is well developed and accuracy
can be quantified based on landmarks that are rigidly coupled
to one another (see e.g. [14]–[16]). However, soft tissue image
guidance is newer [17] and accuracy is more challenging to
evaluate, especially in vivo.

These challenges arise because of tissue deformation and
other changes in tissue morphology during surgery [18]. These
factors mean that any attached fiducials or anatomical features
used for quantitative evaluation may move relative to one
another intraoperatively, making quantitative system accuracy
assessment challenging. Another confounding factor is that
even people with the same disease can differ anatomically.
This makes matching of subjects highly challenging, meaning
that large patient numbers are typically required to obtain
statistically significant results (see e.g. [19]). Having a large
number of patients in a study also usually means that a
large number of surgeons must also participate, and different
surgeons can set up and use systems in different ways –
especially early in the development process for a new IGS
system. Similarly, a variety of metrics might be of interest,
including hitting a desired target, resecting a tumor completely,
or avoiding complications following surgery. Furthermore, by
definition, the first time a new IGS display is tried on a human
subject, it is not fully tested, and hence any errors can be
dangerous to the patient.

Because of these many confounding factors, the accuracy
of soft tissue IGS systems has mainly been assessed in phan-
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toms [20]. In prior work, we employed phantoms to assess
multiple aspects of our IGS system including initial touch-
based registration [10], periodic re-registration [21], and system
impact on surgeon ability [22]. In [10], we found the da Vinci
tool tip to be a satisfactory digitization of the phantom organ
surface for rigid model-to-surgical scene registration. Further,
we demonstrated ink fiducials placed on the phantom organ
surface for periodic re-registration in [21]. Finally, we analyzed
surgeon pointing accuracy in phantoms with and without our
IGS system [22]. Our IGS system reduced mean pointing
error by 67% (from 9.2 mm to 3.0 mm). Phantoms enable
a controlled environment in which the results directly inform
next iterations of platforms, as demonstrated by our phantom
testing results.

However, phantom studies do not fully capture the in vivo
surgical setting. As a step toward overcoming this barrier,
researchers conducted a study where an ablation probe was
inserted in vivo under ultrasound guidance with an IGS system
registered in parallel, but not used in the therapeutic process
[23]. The distance between the tumor and ablation probe was
then measured in both ultrasound images and using the IGS
system. While this study provides a useful way to test some
IGS systems, it assumes there is already an accurate way to
approach the surgical objective (i.e. ultrasound), which is not
always the case. It also does not isolate the IGS information
from the surgeon’s view, so there is no guarantee that IGS
information does not influence surgical decision making. In
this paper, we provide a more general framework, and isolate
surgical decision making from IGS testing.

Note also that the value of manually aligned image guid-
ance has been assessed based on clinical metrics such as
complication rates [24]–[26], which supports the value of
image guidance in soft tissue surgeries, in general. However,
since these cases align the IGS display with the anatomy
based on human hand-eye coordination, they are subject to
an unknown (surgeon and case-specific) amount of registration
error, making it challenging to know which types of surgical
decisions should rely on IGS information. Thus, a safe method
is needed to quantitatively evaluate registration accuracy in
vivo for soft tissue image guidance systems.

To enable this, this paper describes an experimental frame-
work we call the “Bystander Protocol” that enables image
guidance systems to be safely tested quantitatively, in vivo.
To illustrate the bystander protocol in a practical application,
we implemented it and used it in a small case series of in
vivo robotic partial nephrectomies (rPN’s) conducted using the
da Vinci Surgical System. Given that the study size is small
(6 patients) the objective of this study was not to find statstical
significance. Rather it was to illustrate how the new bystander
framework we propose can be applied in a practical setting
to safely test a new IGS system that is an early stage of
development, in human subjects.

II. MATERIALS AND METHODS

A. The Bystander Protocol

The bystander protocol consists of two surgeons trading
places at various points throughout a surgical procedure. One,

Fig. 1. The general bystander protocol workflow where the primary
surgeon and bystander surgeon periodically trade control of the
system.

the “primary surgeon”, performs all aspects of the surgical
procedure, but never sees the IGS display. The other, the
“bystander”, has access to IGS and collects data using it, but
does not perform any surgical actions. The primary surgeon
can also make measurements, without IGS, and the results can
be compared. The workflow of the bystander protocol is shown
in Fig. 1. The type of image guidance system and procedure
will determine when and what measurements the surgeons
acquire. The advantage of using two surgeons in this way is
that, since the primary surgeon never sees the IGS display, any
misalignments or other errors in the guidance system cannot
– even subconsciously – influence the surgical decisions of
the primary surgeon. This enables IGS systems to be tested in
vivo much earlier in their development life cycle than would
otherwise be possible, revealing the unique features of the in
vivo workflow and context earlier.

B. Image Guidance System for da Vinci Soft Tissue Surgeries

To provide an example of the bystander protocol, we im-
plement it in the context of an image guidance system for
the da Vinci Surgical System (Intuitive Surgical, Inc.). The
first version of this system was implemented in Orion [27] on
the da Vinci classic system [28]. Optical tracking was used
to compensate for uncertainty in robot tool tip positions. The
system was later moved to the open source 3D Slicer software
and applied to the improved da Vinci Si, and subsequently Xi,
systems [22]. This enabled us to dispense with the tracking
system because the accuracy of the Xi system is sufficient for
the robot itself to be used as a digitizer [29]. In particular,
the Xi system dramatically improved the accuracy of the setup
joints, enabling the robot to be re-positioned during surgery
without having to be re-calibrated or re-registered.

This article has been accepted for publication in IEEE Open Journal of Engineering in Medicine and Biology. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/OJEMB.2023.3271853

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Technology

(a) (b)

Fig. 2. IGS display as seen by the bystander surgeon (a) complete registration including tracing (red dots) and fiducials (purple and yellow
dots) (b) lesion centroid localization

C. Application to Partial Nephrectomy

We applied the bystander protocol with our robotic IGS
system in the context of partial nephrectomy. The bystander
protocol workflow for this procedure is shown in Fig. 3. We
began by segmenting the patient’s preoperative CT scan to gen-
erate a three-dimensional model including renal parenchyma,
the lesion, the renal artery, the inferior vena cava (right kidney),
the gonadal vein (left kidney), and the renal vein. CT scan
data was collected according to our institution’s normal pro-
tocol for pre-operative imaging of patients undergoing partial
nephrectomy. This involves a slice thickness of 1 mm, with the
patient in supine position, and the field of view set to include
abdomen and pelvis. Axial, sagittal, and coronal views of the
CT scans were used simultaneously for manual segmentation.
Each anatomical target was identified and marked across the
scan slices and cross-validated between each view to produce
a complete three-dimensional anatomical model within 3D
Slicer, verified by the bystander surgeons. A subset of our
studies utilized automatic segmentation provided by Ceevra,
Inc. using their proprietary software. This segmented model
was displayed in the da Vinci’s surgeon console in 3D Slicer
using the TilePro™ interface.

In the operating room, each rPN began with a standard
dissection performed by the primary surgeon, uncovering ap-
proximately 30% of the kidney’s surface, as described in [21],
[30]. The tumor and vasculature were not yet exposed. At this
point, the primary surgeon stepped immediately outside the

room, the bystander took control of the da Vinci, and the IGS
system was turned on. The bystander traced the exposed kidney
surface with the robotic tool tip, digitizing the anatomy. The
resulting point cloud was then used to register the segmented
model to patient anatomy, using the iterative closest point
(ICP) algorithm, while the bystander maintained control of
the da Vinci. Additionally, four fiducials are added to the
kidney surface via ink, or, if the surgeon preferred, cautery.
These fiducials were used to update the initial rigid registration
throughout the remainder of the study by either surgeon as
necessary [31]. Note, when a registration update was performed
by the primary surgeon, they used only the endoscopic video
feed to localize the fiducials. A completed registration is shown
in Fig. 2a. Once the initial registration was complete, the
bystander surgeon used the IGS display and endoscopic video
feed to point at various anatomical targets, an example of which
is depicted in Fig. 2b.

The bystander pointed at the following targets: the lesion
centroid, the planned arterial clamp location, and the inter-
section of the renal vein with the inferior vena cava (right
kidney) or the gonadal vein (left kidney). For each anatomical
target, the bystander pointed at it from several different angles,
collecting one measurement from each (these will later be
averaged). During the final two human surgical cases, the
intersection curve between the exophytic lesion and the kidney
parenchyma was also localized by tracing with the instrument.

The image guidance display was then turned off, and the
primary surgeon resumed control and collected pointing data
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following the same procedure as the bystander had previously
used, only without viewing the IGS display. Then, the primary
surgeon continued with the standard partial nephrectomy dis-
section, uncovering the anatomical targets in the process. The
ink fiducials were used to update the registration periodically.
Then, the exposed anatomical targets were touched with the
robotic tool tip by the primary surgeon. This touching data
is the final measured intraoperative location of the anatomical
targets.

Since the centroid of the tumor and vasculature cannot be
directly touched, we performed several pointing instances from
very close range. To compute the final measured intraoperative
location from these pointing instances, we performed an op-
timization, finding the point that minimized the sum of the
perpendicular distances to the set of pointing instance lines.
This is depicted in Fig. 4. The black arrows are the pointing
instances, and the colored dots are the points that minimize the
sum of perpendicular distances.

Next, using these final measured locations, our goal is to
compute the target localization error (TLE) for each surgeon,
based on the several pointing instances each collected before
de-fatting. This TLE is defined as the average of the minimum
perpendicular distances between the final measured point and
the lines defined by each pointing instance.

For the lesion-parenchyma intersection curve, the final mea-

Fig. 3. The bystander protocol workflow as applied during robotic
partial nephrectomy.

Fig. 4. Final intraoperative location pointing measurements collected
by the primary surgeon (black arrows) and located point in 3D space
for lesion centroid (green) and arterial clamp location (red).

sured curve was collected by tracing the da Vinci tool tip along
it. For this curve, we defined the error of a single pointing
instance as the minimum distance between the curve and the
line defined by that pointing instance. The TLE of the curve
is then computed as the mean of these errors.

Once the primary surgeon had mobilized the kidney and
exposed the parenchymal surface near the lesion, the primary
surgeon again stepped immediately out of the room, the IGS
display was turned on, and the bystander took control. The
bystander then updated the registration using the ink fiducials
and traced the planned lesion resection contour. This resection
contour indicates where the bystander surgeon would resect
the lesion if they were operating. The IGS display was then
turned off, the primary surgeon resumed control, and traced
their planned resection contour with the robotic tool tip, using
only endoscopic video feed. Once the data collection process
was complete, the primary surgeon continued the standard
procedure.

Written consent was obtained before each procedure in
accordance with approval from our Institutional Review Board
(Vanderbilt University Medical Center IRB, #191338).

III. RESULTS

Patients radiologically diagnosed with unilateral renal cell
carcinoma were prospectively identified within our practice
at Vanderbilt for inclusion in this study. Our image-guidance
system was deployed via the bystander protocol during six
robot-assisted partial nephrectomies between December 2020
and August 2022.

CT scan segmentation for the first five patients was done
manually using 3D Slicer [32]. The sixth patient’s recon-
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PATIENT AND LESION CHARACTERISTICS

Age BMI (kg/m2) Axial Lesion Diameter (cm) Tumor Location ASA Classification RENAL Score
53 28.2 3.1 interpolar 3 7
51 33.8 2.4 interpolar 3 6
57 21.9 2.8 upper pole 3 4
50 33.1 1.5 interpolar 2 5
60 39.7 4.6 lower pole 3 7
44 26.6 3.7 interpolar 2 10

TABLE I. Patient characteristics in our study

struction was done in partnership with Ceevra, Inc. using
their automated segmentation tools (see e.g. [33]). Patient and
lesion characteristics such as age, BMI, American Society of
Anesthesiologists (ASA) physical status classification, axial
tumor diameter, R.E.N.A.L. nephrometry scores, and tumor
location were prospectively recorded (Table I). The overall
median age, BMI, and axial lesion diameter were 52 years,
30.65 kg/m2, and 2.95 cm. The median nephrometry score
was 6.5. Descriptive statistics of the data sets include the
median, minimum, maximum, and lower/upper quartile ranges.
The statistical differences between the medians of bystander
and primary target localization errors were determined via a
Kruskal-Wallis test and Chi-square approximation in Matlab.

Six different surgeons, with an average of 10+ years in
practice, participated in these experiments. Each surgery was
performed with the Da Vinci Xi surgical robot through
transperitoneal access. Our total time added to the surgical
procedure was limited to 20 minutes or less in each of our
cases, per to our IRB protocol. The initial surface tracing took
approximately 75 seconds to collect. Across the six studies,
pointing instances varied between 3, 5, and 10 pointings,
according to the surgeons’ discretion. Across all studies, the
median TLE for all targets when comparing the bystander
to the primary surgeon was 9.82 mm vs. 8.86 mm. For the
lesion centroid, the overall median TLE was 7.44 mm vs.
7.67 mm (bystander vs. primary). For the planned arterial
clamp location, the overall TLE was 14.13 mm vs. 18.74 mm
(bystander vs. primary). For the intersection of the venous
intersection, the overall TLE was 14.45 mm vs. 9.66 mm
(bystander vs. primary). For the lesion-parenchyma intersection
curve the overall TLE was 3.70 mm vs. 2.18 mm (bystander
vs. primary). The TLEs for the individual studies can be found
in Table II.

IV. DISCUSSION
The bystander protocol was successful in enabling us to

quantitatively evaluate our robotic IGS system in the context of
partial nephrectomy. Thus, the primary objective of this paper
was achieved. Our results were inconclusive (no statistically
significant differences) with respect to demonstrating that our
robotic IGS system can improve accuracy in partial nephrec-
tomy. This may be partially due to small sample size (6 cases).
There are also several other challenges that are worth noting,
which are opportunities for future research.

First, a significant source of error in our results is associated
with the human’s ability to point at a desired target using
the da Vinci. We have previously studied this and found that
attempting to point at the centroid of a sphere that is roughly

TARGET LOCALIZATION ERRORS IN MILLIMETERS

Surgeon Lesion
Centroid

Artery Vein Lesion-
parenchyma

Primary 6.4 15.1 5.5 NA
Bystander 5.0 7.6 27.4 NA
Primary 4.9 11.0 5.2 NA
Bystander 6.3 7.7 18.7 NA
Primary 4.9 15.5 14.8 NA
Bystander 6.8 14.7 22.2 NA
Primary 6.6 18.0 17.3 NA
Bystander 6.2 21.1 24.8 NA
Primary 7.5 19.7 15.0 2.5
Bystander 6.9 20.4 22.3 4.7
Primary 7.3 18.5 13.3 3.1
Bystander 7.7 18.6 17.6 4.0
MEAN TARGET LOCALIZATION ERRORS ACROSS ALL CASES IN MILLIMETERS
Primary 6.3 16.3 11.9 2.8
Bystander 6.5 15.0 22.2 4.35

TABLE II. Target Localization Error (TLE) for each study and
anatomical target.

the size of the tumors in this study introduces error of 5.21 mm
[34]. Further, overall registration error contributes to the sur-
geons’ TLEs. Next, our final intraoperative measured location
is not truly ground truth. It is subject to tissue deformation
during the process of removing fat from and manipulating
the kidney, and also involves pointing at subsurface points.
This error is largest at the arterial clamp and vein locations,
which agrees with our intuition from qualitative observations
of deformation during the surgical procedure. We believe that
the variation in surgeon TLEs for the vasculature is largely due
to this tissue deformation, which can occur at several different
time points in the overall process. For example, differences
in patient positioning between preoperative scans and surgery
have been noted in the past to cause tissue deformation [35].
Furthermore, the de-fatting process that occurs before measure-
ment of the intraoperative final location can cause additional
tissue deformation. Indeed, in observing videos of surgery,
one can qualitatively see what appears to be significant tissue
deformation occurring during de-fatting. The most accurate
target in our results was the lesion-parenchyma intersection
curve. This too is as expected because it is the one location
that can be physically touched by the primary surgeon during
the final intraoperative localization.

Thus, in future studies we plan to incorporate ultrasound into
our IGS system, which will enable registration to incorporate
subsurface features, potentially enhancing accuracy. We also
plan to incorporate deformable tissue models to account for de-
formations induced during the de-fatting and resection process.
Such a model would serve to overcome the large vasculature
localization error experienced with our current system, as well
as account for kidney deformation throughout lesion resection.
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Note, our current implementation is tested before lesion resec-
tion begins. Specific models to account for kidney deformation
after cutting will be needed as demonstrated by [18]. However,
the overarching purpose of the current paper is the bystander
framework, and the quantitative measurements it enables in
vivo. Thus, the fact that we were able to make quantitative
measurements that yielded the above insights demonstrates the
value of the bystander protocol, which is the purpose of this
paper.

Note that the bystander protocol itself is agnostic to target
anatomy, source of images, and registration method. When
applying it to other organs one may wish to, for example,
digitize the surface with a tracked pointer or laser range scanner
[36]. Similarly, one could use MRI images, segmented using
any desired segmentation procedure, or other medical images.
Other organs may also provide additional features that can be
observed in both medical images and intraoperatively, provid-
ing additional data for validation. Furthermore, registration can
be from points, surfaces, or even subsurface points or volumes
(e.g. collected via intraoperative ultrasound).

It is worth noting that imaging protocols were not a major
focus of the current work, but could impact accuracy. Before
future clinical deployment, it will be important to examine the
impact of factors such as slice thickness, scanner manufacturer,
and segmentation algorithm on registration accuracy. None of
these factors were a major focus of the current paper, which
did not prescribe scanner parameters, and used scans collected
by Vanderbilt as part of the normal course of care, which
are typically conducted on a Siemens CT scanner with slice
thickness of 1mm.a

V. CONCLUSION

The bystander protocol enables quantitative in vivo assess-
ment of systems for soft-tissue image guided surgery. By
introducing an additional surgeon, the protocol isolates the
primary surgeon from IGS system information, preserving the
standard of care. Thus, in-development IGS systems can be
tested in vivo, without risk of affecting the theraputic process
by providing imperfect information to the primary surgeon. We
demonstrate the bystander protocol in a series of robotic partial
nephrectomies, and were successful in quantitatively evaluating
an IGS system with the bystander protocol.
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