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Abstract— Goal: The purpose of this paper is to recognize 

autism spectrum disorders (ASD) using graph attention network. 

Methods: we propose a node features graph attention network 

(NF-GAT) for learning functional connectivity (FC) features to 

achieve ASD diagnosis. Firstly, node features are modelled based 

on functional magnetic resonance imaging (fMRI) data, with each 

subject modelled as a graph. Next, we use the graph attention 

layer to learn the node features and gets the node information of 

different nodes for ASD classification. Results: Compared with 

other models, the NF-GAT has significant advantages in terms of 

classification results. Conclusions: NF-GAT can be effectively 

used for ASD classification. 

 
Index Terms—Autism spectrum disorder, Graphical attention 

network, Functional connectivity, Classification 

 

 

I. INTRODUCTION 

UTISM spectrum disorder (ASD) [1] is a serious mental 

illness that affects the social behavior and communication 
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skills of individuals. Due to its non-invasive, high temporal and 

spatial resolution [2], fMRI has been widely used in clinical and 

basic research in a variety of disciplines, including brain 

neuroscience, cognitive science and psychology [3-5]. 

Resting-state functional magnetic resonance imaging (rs-fMRI) 

data have been used to study ASD [6].  

In computer-aided diagnosis, machine learning [7] and deep 

learning [8] have made good achievements in the classification 

and recognition of ASDs. However, graph structures such as 

knowledge graphs, brain connections, etc. are often irregular 

data structures which belong to non-Euclidean space [9]. 

Irregular data are difficult to be processed by convolutional 

neural networks (CNN) [10]. At the same time, many 

researchers have found that graph neural networks (GNNs) are 

powerful in modelling non-Euclidean data such as brain 

connectivity networks [11-13]. Graph convolutional networks 

(GCNs) are one of GNNs, which nicely extend convolutional 

operations to the graph domain. As brain connectivity graphs 

are irregular graph structures, GCNs are well suited to handle 

such data structures. For example, Parisot et al. [14] first 

proposed an application of GCNs to ASD classification. The 

classification performance of this method is significant 

improved to traditional machine learning methods. Jiang et al. 

[12] considered both the topological information of fMRI data 

and the correlation between subjects and used hierarchical 

GCN learn features for ASD classification. Wen et al. [13] used 

different thresholds to obtain different views, and then used 

GCN to learn common features between different views for 

ASD classification. 

The above algorithm is well applied in emotion recognition. 

However, the performance suffers from several limitations due 

to a variety of problems. Firstly, the GCN-based classification 

algorithm requires the entire graph structure as the input of the 

model. Secondly, the GCN model is largely constrained by the 

graph structure, and the trained model cannot be applied to 

graphs of different structures. Thirdly, in the GCN model, all 

edges in the graph have the same weight. To solve these 

problems, Velickovié et al. [15] proposed a graph attention 

network (GAT). GAT aggregates only the features of a node's 

neighboring nodes as the new features of that node by 

introducing an attention mechanism when aggregating feature 

information. At the same time, GAT can learn different weights 

between nodes, so that each input of GAT is not the whole 

graph structure but a part of the graph, and which can be 

applied to different graph structures to capture the correlation 

between nodes greatly. On the basis of GAT, we construct a 
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GAT based on node features (NF-GAT), which mainly uses 

rs-fMRI data to construct brain graph structures through brain 

atlas and define nodal features, and then learn node features 

through the graph attention layer to finally achieve the ASD 

classification. The main contributions are summarized as 

follows: 

1) We propose NF-GAT model that can apply the learned 

node features to the ASD classification, and the experimental 

results verify the effectiveness of the proposed algorithm. 

2) We give a new way to construct nodal features based on 

rs-fMRI data, which can facilitate the use of functional brain 

information for ASD classification. 

3) The node features are mapped by a function and then 

weighted sum, and experiments show that the NF-GAT can 

better improve the classification performance. 

II. MATERIALS AND METHODS 

We construct NF-GAT to extract features from brain 

functional networks and to classify ASD. The proposed method 

is described below. 

 

Fig. 1.  The structure of NF-GAT 

A. Data sets 

The datasets used in this paper are drawn from the public 

database which is Autism Brain Imaging Data Exchange I 

(ABIDE I) database [16]. Table I summarizes the demographic 

information for subjects. There are a total of 1112 subjects in 

the ABIDE dataset. And after pre-processing operation and the 

high-quality visual examination, 871 subjects are selected for 

the experiment. 
TABLE I 

SUBJECT DEMOGRAPHIC-INFORMATION (MEAN ± STD) 

Site 
ASD   TD  

Age(year) Sex(M/F)  Age(year) Sex(M/F) 

Pitt 18.3 ± 7.0 21/3  18.7 ± 6.7 22/4 

Olin 17.1 ± 3.3 11/3  16.9 ± 3.6 13/0 
OHSU 11.4 ± 2.2 12/0  10.2 ± 1.0 13/0 

SDSU 15.3 ± 1.8 8/0  14.0 ± 1.9 13/6 

Trinity 17.0 ± 3.2 19/0  17.1 ± 3.8 25/0 
UM 12.9 ± 2.5 38/9  15.4 ± 3.4 55/18 

USM 23.6 ± 8.4 43/0  20.9 ± 8.3 24/0 

Yale 13.1 ± 3.0 14/8  13.6 ± 2.1 11/8 
CMU 26.0 ± 5.4 4/2  27.8 ± 4.4 3/2 

Leuven 17.0 ± 4.1 23/3  18.4 ± 5.0 26/4 

KKI 10.7 ± 1.3 9/3  10.1 ± 1.2 15/6 
NYU 14.8 ± 7.1 64/10  15.8 ± 6.2 72/26 

Stanford 10.2 ± 1.6 9/3  9.8 ± 1.7 9/4 

UCLA 13.1 ± 2.4 42/6  12.7± 2.1 32/5 
MaxMun 28.4 ± 13.2 16/3  25.2 ± 8.4 26/1 

Caltech 24.0 ± 7.6 4/1  28.2 ± 12.2 6/4 

SBL 34.0 ± 6.6 12/0  33.6 ± 6.8 14/0 

Total 17.1 ± 8.0 349/54  16.8 ± 7.2 378/90 

B. Construction of functional connectivity features 

FC features are constructed by calculating similarity on 

pre-processed fMRI data. The process of constructing FC 

features is as follows. Firstly, the brain is divided into N ROIs 

by using the Havard Oxford (HO) atlas [17]. Secondly, the 

Pearson correlation coefficient is used to calculate the 

correlation, which can be defined as 
ijR  between brain region 

ir  and 
jr . Finally, a correlation coefficient matrix of N N  is 

constructed for each subject, where N is the number of ROIs. 

This matrix is the functional connectivity matrix (FCM), which 

can be expressed as: 

11 12 1

21 22 2

1 2

N

N

N N NN

R R R

R R R
M

R R R

 (1) 

Each row vector ih  of the FCM is chosen for the FC features. 

ih  can be expressed as: 

1 2, , ,i i i iNh R R R  (2) 

C. NF-GAT model 

The NF-GAT model structure is shown in Fig. 1. The 

NF-GAT model is mainly divided into two parts: the 

construction of the node feature graph and GAT. In the first part, 
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each ROI is used as a node. Combining FC features extracted 

from fMRI data, we construct a graph containing node features 

and connecting edges between nodes for each subject. The 

graph of each subject is described as ,G h R , where h  is 

the node feature set and R  is the edge connected between any 

two nodes. The second part is the GAT, which can learn the 

node features and achieve ASD recognition. 

1) Construction of the node feature graph 

Each ROI is defined as a node. The weight value of the edge 

is the absolute value of ijR , i.e. ijR . The set of edges is defined 

by 1 2, , , , , 1,110i i ijR R R i jR . Each row of 

constructed FC features is used as a node feature, and all the 

nodes are combined together to obtain the set of node features 

1 2, , , , F

N ih h h hh , where F is the node feature 

dimension. Let the nodal feature graph constructed for each 

subject be ,G h R . 

2) Graph attention layers and attention mechanisms 

The graph attention layer (GAL) proposed by Veličković et 

al. [15] is used for learning node representations. We set the 

number Z of GAL to 2. The input to the GAL is the node 

features 1 2, , , , F

N ih h h hh  and the output is a new set 

of node features 1 2, , , , F

N ih h h hh . A weight matrix 

F F
W  is trained for all nodes. To calculate the node 

representation, the one-hop neighborhood nodes of the node are 

aggregated for each node by using self-attentive mechanism. 

The attention coefficient is defined as: 

,ij i jc a h hW W  (3) 

where : F Fa  is a shared attention mechanism that 

includes both self-attention and neighborhood attention, and 

the ijc  indicates the importance of node j to node i. 

Softmax is introduced to regularize all neighboring nodes 

ij N  of i , that is: 

exp

exp
i

i j

i j i j

i jk N

c
m softmax c

c
 (4) 

The attention mechanism a  is a single-layer feedforward 

neural network, 2Fa  is the weight matrix which connected 

the layers in the neural network to each other, and a 

LeakyReLU is also added to the output layer. To sum up, the 

attention cross correlation coefficient can be obtained by: 

exp

exp
i

i j i j

T

i j

T

i kk N

m softmax LeakyReLU c

LeakyReLU a h h

LeakyReLU a h h

W W

W W

 (5) 

where T  represents matrix transposition and  represents 

joining the left and right matrices together. 

The attention coefficients between the different nodes after 

regularization are obtained by the above operation and could be 

used to predict the output features of each node as shown in (6). 

i

i i j j

j N

h m hW  (6) 

where  is the non-linear activation function, and j  traversed 

in ij N represents all nodes adjacent to i . 

3) Multi-head attention 

We use an attention mechanism constructed by a multi-head 

attention extension. The features learned by multiple attention 

heads can describe signals from different sides. Specifically, K 

independent self-attention mechanisms can be defined as (7), 

and then we connect the node feature representations obtained 

by each attention to establish the final node representation, 

which can be calculated as follows: 

1

W
i

K
k k

i i j j
k j N

h m h  (7) 

where K denotes the number of the attention heads, K=3. 
k

i jm  is 

the normalized attention coefficient calculated from the k-th 

attention head. k
W  denotes the weight matrix of the input 

linear transformation under the k-th attention head with the size 

of 
F

F
K

. 

Since the intermediate layer is the node feature 

representation obtained by each attention connected with an 

output dimension of KF . For the final GAL performing 

multiple attentions, K-averaging is used in the final layer 

instead of the connection operation to make the final output is 

the same as the initial input dimension and delay the application 

of the final non-linear function, the node representation in the 

final layer is: 

1

1

i

K
k k

i i j j

k j N

h m h
K

W  (8) 

The multi-head attention of the node 
1h  on its neighborhood 

is updated with the target node based on the calculated weights. 

4) Classification 

The node features are transformed into node information 

through a two-layer full connection layer. In first full 

connection layer, the 
ih  is mapped to the node information of 

each node iI  by the sigmoid function, which is: 

( )I
i iI sigmoid hW  (9) 

where 1I FW  is a shared weighted vector. 

In second full connection layer, a weight is assigned to each 

node's information to be used in calculating each node's 

contribution to the final predicted outcome, and the weight is 

calculated as: 
EsoftmaxE W I  (10) 

where E N NW , 1 2, , , NI I II , and finally the weights 

E  are linearly weighted sum with the nodes I  to obtain the 

predictions of the NF-GAT model, that is: 
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1

N

i ii
p E I  (11) 

III. RESULTS 

A. Model training and algorithm evaluation indicators 

The NF-GAT model is based on the Python language and 

implemented by using the TensorFlow framework. A 10-fold 

cross validation is used to evaluate the model’s performance. 

The model training details are shown in Table II. The loss 

function is a cross-entropy loss function, which is defined as 

ˆ ˆlog 1 log 1L y y y y  (12) 

TABLE II 
MODEL TRAINING DETAILS 

Name Parameter 

Operating system Ubuntu 18.4 

RAM 32G 
CPU Intel(R) Xeon(R) CPU I7 

GPU NVIDIA 2080Ti 

Optimizer Adam 
Learning Rate 0.00005 

Dropout 0.1 

Batch size 10 
Maximum training epoch 1000 

Early stop mechanism 30 

We use accuracy, sensitivity, specificity, Fl value, area under 

curve (AUC) and matthews correlation coefficient (MCC) as 

objective evaluation metrics. The MCC is defined as 

TP TN FP FN
MCC

TP FP TP FN TN FP TN FN
 (13) 

where TP is the true positive rate, FP is the false positive rate, 

TN is the true negative rate, FN is the false negative rate. The 

MCC is essentially a correlation coefficient between the actual 

category and the predicted binary classification, which returns a 

value between -1 and +1. +1 indicates a perfect prediction, 0 

indicates a random prediction, and -1 indicates that the 

predicted outcome is the opposite of the actual. 

B. Comparison with other algorithms 

To verify the effectiveness of the proposed model, we 

compare the NF-GAT with several other state-of-the-art ASD 

classification models. 

The input of the traditional method is to remove the lower 

triangular and diagonal parts of the FCM. The remain part of 

the FCM is flatten into a one-dimensional vector as the 

classification features, whose dimension size is 

1 2N N . 

TABLE III 

CLASSIFICATION RESULTS OF DIFFERENT ALGORITHMS ON THE ABIDE I DATASET 

Categories Methods Atlas Accuracy Sensitivity Specificity F1 AUC 

Traditional 
methods 

SVM HO 65.44% 58.12% 72.15% 61.75% 65.13% 

RF HO 66.02% 57.89% 73.47% 62.05% 65.68% 

GB HO 62.68% 58.86% 66.20% 60.23% 62.53% 

Non-graph deep 
learning methods 

FCNN [17] HO 69.81% 63.05% 75.63% 65.82% 72.62% 

PCCE+CNN [7] HO 70.31% 71.67% 73.33% - 73.00% 

IRHL-FC [8] AAL 69.19% 64.79% 73.46% - 76.00% 

GCN methods 

sGCN [11] CC200 67.54% 64.73% 60.12% - 64.11% 
DeepGCN [19] HO 73.71% - - 69.68% 75.00% 

Hi-GCN [12] AAL 67.23% 65.93% 68.43% - 74.00% 

MVS-GCN [13] CC200 69.89% 70.18% 63.05% - 69.11% 

GAT methods 
GAT-LI [20] HO 68.02% 74.06% 62.26% 69.31% 73.58% 
FC-HAT [21] AAL 70.90% 70.00% 72.30% - - 

Our method NF-GAT HO 74.28% 71.29% 77.05% 72.76% 81.41% 

TABLE IV 
RESULTS OF ABLATION EXPERIMENTS 

Methods Accuracy Sensitivity Specificity F1 MCC 

Flatten-GAT 71.41% 69.14% 73.52% 69.85% 42.82% 

Average-GAT 71.63% 66.93% 75.91% 68.59% 44.08% 

NF-GAT 74.28% 71.29% 77.05% 72.76% 48.60% 

The classification results of the different algorithms are 

shown in Table III. The best results are shown in bold. As can 

be seen, the NF-GAT outperforms other state-of-the-art 

classification methods. Firstly, compared with the traditional 

classification, our method has improved significantly. Secondly, 

compared with FCNN, NF-GAT achieves 4.47%, 8.24%, 

1.42%, 6.94% and 8.79% improvement in five evaluation 

metrics. NF-GAT uses the GAL to learn node features, focus on 

the features of neighboring nodes and can assign different 

weights to different nodes in a neighborhood. So NF-GAT is 

better than GCN methods. At the same time, our method is 

roughly about 4% higher than FC-HAT in terms of accuracy, 

which may be due to the fact that the brain graph features 

learned by the hypergraph method cannot distinguish well 

between ASD and TD. In summary, the NF-GAT outperforms 

other classification methods in ASD classification. 

C. Ablation study 

To demonstrate the validity of the proposed model 

framework, an ablation study is conducted. 1) We splice the 

learned node feature vectors together and spread them into a 

one dimensional vector as the input of subsequent network for 

classification, and name the model Flatten-GAT. 2) We 

average the node information to instead of weighted summation. 

Equation (11) changes as (14). The model is named 

Average-GAT. The comparison results are shown in Table IV. 

1

N

ii

N

I
p  (14) 
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In Table IV, our model achieves the best overall performance. 

The poor performance of the Flatten-GAT may be due to the 

loss of node information in the process of spreading the learned 

node feature vectors into a one-dimensional vector. The 

objective metrics of the Average-GAT are not as good as the 

NF-GAT due to averaging the information of each node, 

ignoring the different contributions of different nodes to the 

classification. 

IV. DISCUSSION 

It can be seen from Table III that different classification 

methods use different brain atlases. In order to test whether the 

results observed above depend on the choice of brain atlas, the 

NF-GAT is evaluated on six brain atlases other than the HO 

atlas, which are the Anatomical Automatic Labeling (AAL) 

atlas [22], the Cambion Craddock 200 (CC200) atlas [23], the 

Cameron Craddock 400 (CC400) atlas [24], Talariach and 

Tournoux (TT) atlas [25], Eikhoff-Zilles (EZ) atlas [26], and 

Dosenbach 160 atlas [27]. The information of these seven brain 

atlas is shown in Table V. 

TABLE V 

DIFFERENT BRAIN ATLASES AND THEIR NUMBER OF ROIS 

Atlas Number of ROIs 

HO 110 
AAL 116 

CC200 200 

CC400 392 
TT 97 

EZ 116 

Dosenbach160 161 

The classification performance on the above atlases is shown 

in Fig. 2. The NF-GAT shows the best performance on all the 

metrics of the HO atlas, especially compared with the 

Dosenbach160 atlas, the accuracy is improved by about 13.3%. 

This suggests that the HO atlas contains more features for 

classification than the other brain atlases. Therefore, all other 

experiments in this paper are conducted on the HO atlas. 

 
Fig. 2.  Results of NF-GAT on seven brain atlases 

Furthermore, we compared with Flatten-GAT and 

Average-GAT on several brain atlases. The results are shown in 

Supplementary Materials section. The classification result is 

related to each node, so we use BrainNet Viewer [28] shown 

the contribution of each node to the classification, the detailed 

analysis is included in the Supplementary Materials section. 

V. CONCLUSION 

A deep learning model, NF-GAT, is constructed, which uses 

rs-fMRI data to define node features and graph attention 

network to recognize ASD. A graph containing node features 

and connected edges between nodes is constructed for each 

subject, the node features are learned through the GAL. The 

node features are subjected to a function graph and the 

weighted sum of the node features is ultimately used to predict 

the probability of ASD. The results show that our model 

outperforms other models. Because the phenotypic information 

of the subjects also affects the classification, the work of this 

method is not enough. In addition, ASD classification studies 

should consider the effects of different atlases in future. 
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