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Chronic Wound Image Augmentation and
Assessment using Semi-Supervised Progressive

Multi-Granularity EfficientNet
Ziyang Liu, Emmanuel Agu, Peder Pedersen, Clifford Lindsay, Bengisu Tulu, Diane Strong

Abstract—Goal: Augment a small, imbalanced, wound dataset
by using semi-supervised learning with a secondary dataset. Then
utilize the augmented wound dataset for deep learning-based
wound assessment.

Methods: The clinically-validated Photographic Wound Assess-
ment Tool (PWAT) scores eight wound attributes: Size, Depth,
Necrotic Tissue Type, Necrotic Tissue Amount, Granulation
Tissue type, Granulation Tissue Amount, Edges, Periulcer Skin
Viability to comprehensively assess chronic wound images. A
small corpus of 1639 wound images labeled with ground truth
PWAT scores was used as reference. A Semi-Supervised learning
and Progressive Multi-Granularity training mechanism were used
to leverage a secondary corpus of 9870 unlabeled wound images.
Wound scoring utilized the EfficientNet Convolutional Neural
Network on the augmented wound corpus.

Results: Our proposed Semi-Supervised PMG EfficientNet (SS-
PMG-EfficientNet) approach estimated all 8 PWAT sub-scores
with classification accuracies and F1 scores of about 90% on
average, and outperformed a comprehensive list of baseline
models and had a 7% improvement over the prior state-of-the-art
(without data augmentation). We also demonstrate that synthetic
wound image generation using Generative Adversarial Networks
(GANs) did not improve wound assessment.

Conclusions: Semi-supervised learning on unlabeled wound
images in a secondary dataset achieved impressive performance
for deep learning-based wound grading.

Index Terms—Chronic wounds, data imbalance, data augmen-
tation, Neural Networks, smartphone assessment.

Impact Statement- Our envisioned smartphone wound
assessment system can reduce the significant burden that
manual wound grading imposes on wound care nurses.

I. INTRODUCTION

MOTIVATION: More than 6.5 million people in the
US have chronic wounds (or approximately 2% of the

This project is funded by the National Institutes of Health under grant
number (1R01EB025801).

Corresponding author: Emmanuel Agu. Ziyang Liu and Emmanuel
Agu are with the Computer Science Department, Worcester Polytech-
nic Institute, Worcester, MA, USA. Peder Pedersen is with the Elec-
trical and Computer Engineering Department, Worcester Polytechnic In-
stitute, Worcester, MA, USA. Clifford Lindsay is with the Depart-
ment of Radiology, University of Massachusetts Medical School, Worces-
ter, MA, USA. Bengisu Tulu and Diane Strong are with the Foisie
Business School, Worcester Polytechnic Institute, Worcester, MA, USA.
(e-mail: zliu10@wpi.edu, emmanuel@wpi.edu, pedersen@wpi.edu, clif-
ford.lindsay@umassmed.edu, bengisu@wpi.edu, dstrong@wpi.edu)

This article has supplementary materials.

population) [1]. Chronic wounds are often painful and are
prevalent in the elderly population [2] [3], which costs the
healthcare system over $25 billion annually [4]. In order to heal
properly, chronic wounds require proper treatment including
cleaning, debridement, changing of dressings and using an-
tibiotics [5]. Without proper care, such wounds may become
infected [6] or cause limbs to be amputated. The number of
chronic wounds is large and growing, increasing the need
for more efficient chronic wound care especially information
technology solutions that assist the work of medical personnel
and reduce the cost of care. Additional background and detailed
descriptions of various types of chronic wounds can be found
in the Supplementary Materials.

A. Background of our research

Smartphone-based image analyses provide a new method
for remote wound assessment [7] [8] [9] [10]. Since 2011,
our group has been researching and developing the Smart-
phone Wound Analysis and Decision-Support (SmartWAnDS)
[11] [12] [13] [14] since 2011. SmartWAnDS analyzed the
smartphone captured chronic wound images autonomously and
provide wound care recommendations to patients and their
caregivers. The SmartWAnDS system can provide standardized
feedback on wounds for patients when they are at home
between hospital visits and engage patients in the care of their
wounds It can also support the work of wound nurses with care
recommendations when they are in remote locations and wound
doctors are unavailable temporarily. The recommended wound
care is based on its current status and healing progress since the
preceding examination. Consequently, it is necessary to grade
the wound before making treatment decisions. The research
described in this paper focuses on the SmartWAnDS module
that uses deep learning to autonomously grade the wound’s
healing status based on its visual appearance in a smartphone
image.

In collaboration with wound experts (1 wound doctor and
1 wound nurse) who labeled all images, our group created
WoundNet, a chronic wound image dataset with 1639 chronic
wound images totally, as mentioned in our previous research
[15]. WoundNet contains four types of wounds: diabetic foot
ulcers, pressure ulcers, vascular ulcers and surgical wounds,
which are the most common types seen by wound experts
at hospitals [16]. Table Ia summarizes the statistics of the
four wound types in WoundNet. Example images of diabetic,
venous, arterial and pressure ulcers are shown in Fig. 1 (a).
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Fig. 1. (a) Examples of diabetic, venous, arterial and pressure ulcers wound types (left to right) (b) Example wound images
corresponding to PWAT Necrotic Amount scores 0 (left) to 4 (right). The target sub-classes (Necrotic amount scores) can appear
quite similar visually, posing a fine-grained image classification problem

Prior work including ours [15] has explored using machine
and deep learning models to grade wound healing status. As
ground truth healing assessment scores that machine learning
models can predict as target labels, each wound in WoundNet
was comprehensively graded using the Photographic Wound
Assessment Tool (PWAT), a clinically validated wound grading
rubric [17] [18] [19]. The PWAT evaluates eight attributes of
wounds [19] from an image: 1) Size 2) Depth 3) Necrotic
Tissue Type 4) Necrotic Tissue Amount 5) Granulation Tissue
Type 6) Granulation Tissue Amount 7) Edges and 8) Skin
viability. Each PWAT sub-score grades a single wound attribute
with a score of 0 (best), 1, 2, 3 or 4 (worst) and higher
scores indicate a worse wound condition. All 8 PWAT sub-
scores are summed to generate a total PWAT wound score
(max = 32). The PWAT sub-scores for Necrotic Tissue Type,
Necrotic Tissue Amount, Granulation Tissue Type and Gran-
ulation Tissue Amount are abbreviated as Nec Type, Nec
Amount, Gran Type and Gran Amount respectively in this
paper. A table with detailed descriptions of each PWAT sub-
score and their corresponding grading criteria can be found in
the Supplementary Materials.

B. Problem

Due to the high cost associated with collecting medical
datasets and variability in the occurrence of various wound
severities, many medical datasets are small and imbalanced,
which presents a challenge to machine and deep learning.
Labeling is manual and often has to be done with experts whose
time is expensive. As shown in Table Ib, the number of images
corresponding to several PWAT sub-scores in WoundNet was
inadequate and the distribution of sub-scores was imbalanced.
This presented a challenge to deep learning wound assessment
model development, and prevented clinically usable classifica-
tion performance from being performance achieved.

(a) Statistics of types of wounds in WoundNet dataset
Wound Types Numbers of Images
1. Diabetic Foot Ulcers 121
2. Pressure Ulcers 13
3. Vascular Ulcers 1349
4. Surgical Wounds 156

(b) Statistics of PWAT sub-scores of images in WoundNet dataset
PWAT subscore 0 1 2 3 4
1. Size 141 393 537 337 231
2. Depth 134 135 814 378 178
3. Necrotic Type 509 472 273 76 309
4. Necrotic Amount 347 160 150 290 692
5. Granulation Type 143 319 626 95 456
6. Granulation Amount 137 77 194 342 889
7. Edges 142 311 1035 131 20
8. Skin 435 1061 143 0 0

TABLE I. Statistics of types of wounds and PWAT sub-scores of
images in WoundNet dataset

Table II summarizes related work. Prior research on assess-
ing PWAT wound attributes from images [20] [21] [22] [23]
[24] [25] [26] [27] [28] [29] typically only assessed a few
wound attributes instead of assessing all clinically important
attributes of wounds comprehensively. Prior research that ex-
plored data augmentation of wound images [30] [31] [32] [33]
[34] [35] applied both traditional data augmentation techniques
or GAN-based methods. Prior research on other medical image
problems used data augmentation methods [36] [37] [38] [39]
[40] [41] including GANs methods and transform models,
which improved the performance of machine learning models.
The previous state-of-the-art neural networks model for PWAT
wound assessment was our Patch Attention DenseNet [15]
but it achieved only about 82% in accuracy and F1-score,
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Medical imaging research assessing PWAT wound attributes
Related
research

PWAT
subscore

machine learning
method task wound type dataset

size results

Chino et al.
2020 [20] 1. Size

deep neural
network

segment the wound;
estimate the size

venous and
arterial ulcer 446 estimate wound area in

cm2 with error of 14%
Spinczyk et al.
2017 [21]

triangulation
technique

wound 3D surface
reconstruction not specified 10

patient
measure wound area
with error of 11%

Hsu et al.
2017 [22]

3. Nec Type
4. Nec Amount
5. Gran Type
6. Gran Amount

clustering
method, SVM detect necrotic tissue postsurgical

wound 42 detection accuracy 95.23%

Blanco et al.
2020 [23]

superpixel-driven
deep learning
approach

segmenting Necrotic
and Granulation, and
wounded area

arterial and
venous ulcers 217 spot wounded tissues

with AUC = 0.986

Godeiro et al.
2018 [24]

deep neural
network

classifying Necrotic
and Granulation

chronic
wounds 30 tissue classification

accuracy 96%
Nejati et al.
2018 [25]

deep neural
network, SVM

classifying Necrotic
and Granulation

chronic
wounds 350 tissue classification

accuracy 86.4%

Hsu et al.
2019 [26]

robust image
segmentation,
SVM

wound segmentation;
detect Necrotic and
Granulation

chronic
wounds 293 tissue classification

accuracy 83.58%

Maity et al.
2018 [27]

deep neural
network

classifying Necrotic
and Granulation

chronic
wounds 68 tissue classification

accuracy 99%

Babu et al.
2018 [28]

Naive bayes and
Hoeffding tree

wound segmentation;
classifying Necrotic
and Granulation

diabetic
wound N. A. tissue classification

accuracy 90.9%

Rajathi et al.
2019 [29]

deep neural
network

classifying Necrotic
and Granulation

varicose
ulcer 1250 tissue classification

accuracy 99.55%
Wound (all Diabetic Foot Ulcer) medical imaging that explored data augmentation
Related
research

data augmentation
method

machine learning
method task dataset size results

Bloch et al.
2021 [30] pix2pixHD EfficientNets

Ensemble

4 classes (Infection and
Ischaemia, Infection,
Ischaemia, None)

Infection and Ischaemia,
Infection, Ischaemia, None:
621, 2555, 277, 2552

best macro F1-Score
of 60.77 %

Das et al.
2022 [31]

horizontal
and vertical flips

CNN-based
classification
model

DFU vs. normal skin
binary
classification

292 Ulcer foot, 105
healthy foot, augmented
to 641 normal. 1038
abnormal

96.4% accuracy,
95.4% F1 score

Goyal et al.
2020 [32]

natural data
augmentation ensemble CNN

2 classes (Ischaemia:
Yes, No; Infection:
Yes, No) classification

Ischaemia: (235, 1431)
augmented: (4935, 4935)
Infection: (982, 684)
augmented: (2946, 2946)

90% accuracy
in ischaemia,
73% accuracy
in infection

Yap et al.
2021 [33]

flip, natural data
augmentation, crop,
Gaussian noise,
rotate shear, scale
and adjust contrast

VGG16,
ResNet101,
InceptionV3,
DenseNet121,
EfficientNet

4 classes (both Infection
and Ischaemia, Infection,
Ischaemia, None)

Infection and Ischaemia,
Infection, Ischaemia,
None:621, 2555, 277,
2552

EfficientNet B0:
macro-average Precision,
Recall and F1-Score
of 0.57, 0.62 and 0.55

Al-Garaawi
et al. 2022
[34]

rotation, flipping,
color space
augmentation

CNN-based DFU
classification
method

Part A: 2 classes (healthy
and DFU); Part B: 2
classes (Ischaemia: Yes,
No; Infection: Yes, No)

Part A: 641,1038;
Part B: Ischaemia:
(4935, 4935);
Infection: (2946, 2946)

Ischaemia: 0.995% (AUC),
0.990% (F-measure)
Infection: 0.820% (AUC),
0.744% (F-measure)

Goyal et al.
2018 [35]

rotation, contrast
enhancement, color
space, random
scaling, flipping

a novel CNN
model

2 classes (healthy skin
and DFU) 641 healthy, 1038 DFU

accuracy 0.925,
F-measure 0.939,
AUC 0.962

Non-wound medical imaging tasks that explored data augmentation
Related
research

data augmentation
method

machine learning
method task dataset size results

Frid-Adar
et al. 2018
[36]

Deep
Convolutional
GAN (DCGAN)

CNN model liver lesion CT images
classification

liver lesions (CT) images:
182, augmented: 5000

improvement of 7%
using GAN with
accuracy of 85.7%

Zhao et al.
2019 [37]

learned spatial and
appearance
transform models

deep fully
convolutional
neural networks

one-shot segmentation
of brain (MRI) scans

101 brain scan, synthesis
of 10,000 different
labeled examples

Dice score of 0.815 (0.123)

Ghorbani et al.
2020 [38]

pix2pix (GAN)
based

MobileNet CNN
model skin lesions classification 49920 images, 20000

synthetic images

about 50% accuracy, 14%
improvement in F1 score in
classes with fewer examples

Pollastri et al.
2020 [39]

DCGAN,
LAPGAN custom CNN skin lesions segmentation training set: 1882, 2000

augmented images jaccard index of 0.789

Pang et al.
2021 [40]

semi-supervised
GAN: TripleGAN

Inception-V3
model

Breast Ultrasound Mass
Classification

1447 ultrasound images,
augmented to 4341

accuracy 90.41%, sensitivity
87.94%, specificity 85.86%

Guan et al.
2022 [41]

texture-constrained
multichannel
progressive
generative
adversarial network
(TMP-GAN)

faster-RCNN
lesion detection of
mammography data set
and pancreatic tumors

CBIS-DDMS: 1318
pancreatic tumor dataset:
1066; synthetic images:
1, 4, and 9 times the
actual images

precision, recall, F1-score
CBIS-DDMS: improves
2.59%/2.70%/2.77%,
to 86.28%/85.89%/86.08%
pancreatic tumor: improves
2.44%/2.06%/ 2.36%,
to 86.28%/85.89%/86.08%

TABLE II. Prior work on assessing PWAT attributes and medical imaging (wound and non-wound) data augmentation
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which was not clinically usable. Prior research on various
medical imaging problems [36] [40] [41] have demonstrated
improvements in their model’s performance using synthetic
images generated using traditional data augmentation methods
and GANs. However, in our experiments, we discovered that
synthetic images generated using GANs and traditional data
augmentation methods did not improve the performance of
wound assessment neural networks model. Consequently, in
this paper, we proposed a novel method for leveraging a
large, external dataset of unlabeled wound images using semi-
supervised learning, which improves PWAT-based wound as-
sessment using neural networks models. A detailed analysis of
the limitations of prior work is presented in the supplementary
materials.

C. Our approach

Semi-supervised learning is used to augment a small, labeled
corpus by leveraging a large unlabeled corpus. In this paper,
we propose a semi-supervised learning aiding [42] [43] [44],
Progressive Multi-Granularity mechanism [45] based Efficient-
Net B0 architecture [46], named Semi-Supervised PMG Effi-
cientNet (SS-PMG-EfficientNet), to improve the number and
balance of our WoundNet dataset and utilize the augmented
dataset to improve the accuracy of our wound assessment
system. SS-PMG-EfficientNet was a creative integration of
the semi-supervised learning method and Progressive Multi-
Granularity mechanism with the EfficientNet B0 CNN model.
SS-PMG-EfficientNet was trained on our WoundNet dataset
and used to analyze wound images to assess their healing
status. The PMG mechanism was a state-of-the-art fine-grained
image classification method with its own data augmentation
method designed specifically. The semi-supervised learning
method enabled our deep learning wound assessment model
to utilize other secondary sources of unlabeled wound image
dataset for data augmentation while using our WoundNet as
a labeled reference dataset. EfficientNet is a state-of-the-
art image classification architecture that has achieved good
performance on wound image related research. In our research
to develop SS-PMG-EfficientNet, simpler variant architectures
named PMG EfficientNet and Semi-Supervised EfficientNet
were also developed, which were integrated models generated
by combining the PMG mechanism and EfficientNet B0, and
the Semi-Supervised learning component and EfficientNet B0
respectively. Finally SS-PMG-EfficientNet was developed from
integrating the semi-supervised learning method and the PMG
mechanism into EfficientNet B0 in order to improve the
model’s performance as much as possible.

1) Semi-supervised learning:
Semi-supervised learning jointly learns from unlabeled data

using an unsupervised loss function as well as from labeled
data using traditional supervised loss function [42] [43] [44].
The unsupervised loss from the unlabeled data acts as a
regularization term for the labeled data’s loss. Typically the
labeled dataset and unlabeled dataset are sampled from the
same distribution. This approach facilitates sampling from a
different yet related distribution. To facilitate semi-supervised
learning on wound images, the labeled dataset we utilized

was our WoundNet with all 8 PWAT sub-scores labeled on
all 1639 wound images, in conjunction with a larger unlabeled
DFUC (Diabetic Foot Ulcer) 2021 dataset [33] [47] with 9870
wound images. We considered the DCUC 2021 dataset as the
unlabeled source dataset because while it had infection and
ischaemia ground truth assessments by wound experts, the
images contained no PWAT sub-scores labels. As Diabetic
Foot Ulcers (DFUs) are common chronic wound types and
all chronic wounds types have similar appearance with similar
features, it was reasonable to utilize DFU images from DFUC
2021 dataset as unlabeled images for semi-supervised learning
in order to improve model performance and reduce overfitting.
This innovative method of applying semi-supervised learning
method using our labeled WoundNet dataset and unlabeled
images from the DFUC 2021 dataset can be considered a type
of data augmentation. The DFUC 2021 dataset was not directly
added to the WoundNet dataset for the PWAT classification
problem but it provided the CNN model with more Diabetic
Foot Ulcer images. Allowing the CNN models to see more
highly related images, especially when our own dataset was
relatively small, encouraged the model to better learn chronic
wound features.

2) Progressive Multi-Granularity mechanism:

The Progressive Multi-Granularity mechanism [45] was pro-
posed in a research that combined part granularity learning
and cross-granularity feature fusion to work simultaneously.
It had a progressive training strategy that fused features from
different granularities and a random jigsaw patch generator that
forced the model to learn features at specific granularities. The
PMG (Progressive Multi-Granularity) mechanism was built
on the assumption that fine-grained discriminative information
could be extracted from different visual granularities. The PMG
mechanism allowed the model to learn at different granularities
while fusing multigranularity features simultaneously, instead
of detecting image parts first then fusing them later. This
PMG framework started with stable finer granularities first and
then coarser granularities so that it could avoid the confusion
from large intra-class variations in large regions. However,
the progressive training tended to focus on learning multi-
granularity information from similar region. This problem
was tackled by the jigsaw puzzle generator, which generated
different granularity levels at each training step that are input
to the model. It forced the model to focus on local patch
levels that corresponded to specific granularity level, instead
of learning the entire image. The Progressive Multi-Granularity
mechanism can be viewed as a combination of modifying the
CNN model’s architecture and providing this new architecture
with specific type of images generated from the jigsaw puzzle
generator. Sourced from WoundNet images, the jigsaw puzzle
generated images could be considered as another type of
images for data augmentation, as shown in Fig. 3 (b). Chronic
wound images augmented in this specific way improve the
learning of information contained in different granularities by
the PMG mechanism based CNN model, which improves the
model’s performance on the PWAT classification problem.

This article has been accepted for publication in IEEE Open Journal of Engineering in Medicine and Biology. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/OJEMB.2023.3248307

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Technology
D. Novelty of our work

In order to solve related problems of inadequate labeled
data and data imbalance, we explored innovative data augmen-
tation and semi-supervised learning approaches. Specifically,
the Progressive Multi-Granularity mechanism [45] and semi-
supervised learning method [42] [43] [44] were innovatively
integrated into the EfficientNet B0 CNN architecture [46],
which improved our model’s performance significantly by
7% and achieved almost 90% accuracy and F1 score for
all 8 PWAT scores. We also demonstrate that our proposed
approach outperforms a comprehensive set of baselines that
included Generative Adversarial Networks (GANs), which are
widely considered the state-of-the-art for data augmentation.
In addition to solving data insufficiency and imbalance issues,
our model also comprehensively analyzed wounds based on
the comprehensive PWAT rubric.

The fine-grained nature of PWAT sub-score prediction is
illustrated in Fig. 1 (b), which shows example images of the
subscore Nec Amount with scores 0 to 4 (left to right) based on
the PWAT wound grading rubric for necrotic tissue. As shown
in Fig. 1 (b), wounds with different Nec Amount scores are
quite challenging to distinguish visually, as well as grading
other PWAT subscores that are based on the type or amount
of a specific type of tissue shown in the wound images. The
Supplementary Materials shows a brief description of the fine-
grained image classification problem in computer vision.

E. Our contributions

There are three main contributions in this paper:
1) We innovatively adapted a semi-supervised learning

method inspired mainly by the rotation degree Self-Supervised
Learning [42] and the SESEMI method [43], and partially from
FixMatch method [44] to the problem of generating synthetic
wound images.

2) We proposed a deep learning framework that inno-
vatively integrated the Progressive Multi-Granularity (PMG)
mechanism and the semi-supervised learning method with the
EfficientNet B0 neural network to comprehensively predict all
8 PWAT sub-scores, which solved challenging fine-grained im-
age task of recognizing clinically-important grades of wound.
The semi-supervised learning method worked as a new way of
data augmentation to solve our WoundNet’s problem of insuffi-
cient and imbalanced data and PMG improved the prediction of
PWAT-based wound scores, a fine-grained image classification
problem.

3) We performed rigorous evaluations and comparison of
our proposed model and its variants. Our results show that our
proposed semi-supervised learning aiding Progressive Multi-
Granularity mechanism based EfficientNet B0 architecture
achieves classification accuracies and F1 scores of almost
90% for fine-grained classification of all 8 PWAT sub-scores
with more than 7% improvement of our previous model
[15]. Our approach was compared to various state-of-the-art
baseline CNN models, data augmentation methods and fine-
grained image classification techniques. We also demonstrate
that state-of-the-art GAN-based data augmentation methods
including pix2pixHD [48] and semi-supervised GANs [49] did

not improve PWAT wound image classification performance,
an unexpected finding. Facilitated by the proposed research,
the performance of our deep learning model for PWAT wound
assessment system made our wound assessment system clini-
cally usable.

II. MATERIALS AND METHODS

This section introduces Semi-Supervised PMG EfficientNet
(SS-PMG-EfficientNet), our proposed deep learning archi-
tecture for estimating PWAT subscores for chronic wounds.
Sub-Section II-A describes WoundNet, our chronic wound
dataset and the secondary DFUC 2021 dataset [33] [47].
Sub-section II-B describes our wound assessment system and
the deep learning architecture. Sub-section II-C describes
the PMG (Progressive Multi-Granularity) mechanism. Sub-
section II-D describes the semi-supervised learning approach.
Sub-section II-E describes our rigorous evaluation including
definitions of our evaluation metrics and experiments con-
ducted.

The supplementary materials introduces the detail for data
augmentation using pix2pixHD GANs [48] and using semi-
supervised GANs [49]. The supplementary materials also in-
cludes details of the MMAL ResNet50 architecture [50].

A. WoundNet Dataset, DFUC 2021 dataset and Preprocessing

1) WoundNet dataset:
There are 1639 images in our WoundNet chronic wound

image dataset. 1323 of them were provided by the University of
Massachusetts Memorial Medical Center from their archives.
114 of them were captured by our research group using a me-
chanical wound imaging box that ensured consistent imaging
distance, angle and lighting. 202 of them were collected from
the Internet using an image search. All images in WoundNet
were labeled with their 8 PWAT sub-scores calculated based
on the PWAT subscore scoring instruction. PWAT sub-scores
1 through 7 were assigned values 0, 1, 2, 3 and 4 and were
modeled as 5-class classification problems. PWAT sub-score
8 can only be assigned values 0, 1 and 2 and was modeled
as a 3-class classification problem. The number of WoundNet
images for each of the 8 PWAT sub-scores are summarized
in Table Ib, which shows that WoundNet has problems of
insufficient images corresponding to some PWAT scores and
consequently, imbalance in the distribution of PWAT sub-
scores.

Wound image pre-processing: Some of the original Wound-
Net images were poorly captured, which challenged image
analyses. For instance, some images had small wounds with
large background areas. Some images had large wounds or
were mostly occupied by wound and skin area. The WoundNet
corpus was pre-processed using the following steps in order
to make the wound images more consistent and then the
WoundNet was used for all PWAT sub-scores classification
research. First, the wounds and the skins were segmented
out of the whole images with our previously developed wound
annotation app [51], which is shown in Fig. 2a.a. This segmen-
tation app applied the deep extreme cuts algorithm [52] that
ensured consistent, systematic wound image segmentation. The
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(a) a: Example of our wound annotation app; b: Example of wound segmen-
tation mask

(b) Histogram showing the percentage of each Red, Green, Blue value in the
WoundNet and DFUC 2021 datasets

Fig. 2. our wound annotation app, wound segmentation mask and the
Histogram of WoundNet and DFUC 2021

segmentation mask of the wound image was then utilized as a
bounding box to crop the skin and the wound area out from
the original wound image. The cropped wound images were
resized to a dimension of 512× 512× 3. Fig. 2a.b shows an
example original wound, its segmentation mask, and cropped
image.

2) DFUC 2021 dataset:
The Diabetic Foot Ulcers Grand Challenge (DFUC) 2021

dataset [33] [47] contained DFU images collected from the
Lancashire Teaching Hospital with the approval for research
from the UK National Health Service (NHS) Research Ethics
Committee (REC) (NHS REC reference no. 15/NW/0539).
About 3000 images for each class were captured in stable

room lighting with a distance of 30-40 cm to the plane of
the foot ulcer. The images were acquired by a podiatrist and
a diabetic ulcers consultant physician, both with more than 5
years of professional experience, who produced ground truth
labels on infection and ischemia status. The size of the original
DFU images varies between 1600 × 1200 and 3648 × 2736
and they were resized to a dimension of 640 × 640, which
was suitable for deep learning in optimizing performance and
minimizing computational costs.

The workload of annotating all images in the DFUC 2021
dataset with all 8 PWAT subscores would have been very
large. Consequently, the DFUC 2021 dataset is utilized without
PWAT subscores labels, as a secondary dataset, by our model.
Therefore, a semi-supervised learning method was applied
by our deep learning architecture to utilize both the labeled
WoundNet dataset and unlabeled DFUC 2021 dataset, which
is described in more detail in Sub-section II-D. Using this
approach, our proposed deep learning model was trained on
our own WoundNet dataset as well as the DFUC 2021 dataset
so that the model’s performance could be further improved.
Fig. 2b is a histogram showing the percentage of each Red,
Green, Blue value in the WoundNet and DFUC 2021 datasets,
which demonstrates that the distributions of pixel values for
these two datasets are similar.

B. Overview of proposed SS-PMG-EfficientNet wound assess-
ment system

Semi-Supervised PMG EfficientNet (SS-PMG-EfficientNet),
our deep learning architecture for accessing all 8 PWAT sub-
scores, is shown in Fig. 3(a). This architecture is composed of
3 main components: the semi-supervised learning component,
the PMG (Progressive Multi-Granularity) component and the
baseline deep learning model: EfficientNet B0.

The PMG mechanism and semi-supervised learning compo-
nent are two separate techniques from different prior research
and they can both improve the deep learning model’s perfor-
mance. The PMG mechanism was designed specifically for
fine-grained image classification problems. It can be built on
top of any state-of-the-art baseline CNN models. The PMG
mechanism first focuses on discriminative information in local
regions then progressively training on higher stages and global
structures eventually. The semi-supervised learning method
was originally designed for the model to train on both the
small labeled subset and large unlabeled subset sampled from
the same distribution of images. In our research, this semi-
supervised learning method was modified to train the baseline
model on our labeled WoundNet and DFUC 2021 dataset [33]
[47] that is not labeled with PWAT subscores. Detailed descrip-
tions of the PMG mechanism and semi-supervised learning are
presented in subsequent Sub-sections.

These two techniques can both improve the baseline model
EfficientNet B0’s performance, which was proven via extensive
evaluation of PMG EfficientNet and Semi-Supervised Efficient-
Net. The semi-supervised learning component and the PMG
component were integrated and assembled innovatively with
the EfficientNet B0 model and became SS-PMG-EfficientNet.
It was also tested and evaluated extensively to show that SS-

This article has been accepted for publication in IEEE Open Journal of Engineering in Medicine and Biology. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/OJEMB.2023.3248307

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Technology

Fig. 3. (a) Our chronic wound image analysis system including annotation app, segmentation and our novel semi-supervised
PMG EfficientNet (SS-PMG-EfficientNet); (b) PMG (Progressive Multi-Granularity) mechanism
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PMG-EfficientNet outperformed both PMG EfficientNet and
Semi-Supervised EfficientNet, which illustrated that the PMG
mechanism and semi-supervised methods worked simultane-
ously in SS-PMG-EfficientNet to boost the model for the best
performance.

C. Progressive Multi-Granularity (PMG) mechanism

1) Network Architecture:
The PMG (Progressive Multi-Granularity) mechanism [45]

can be implemented as a feature extractor with any state-of-
the-art image analysis models such as ResNet [53]. Suppose
F is the feature extractor with L stages. Its intermediate
stages have output feature-map: F l ∈ RHl×Wl×Cl . Here Hl ,
Wl , Cl are the height, width and number of channels of the
feature map at l-th stage, l = 1,2, ...,L. The next step is
to calculate the classification loss on the feature-map from
different intermediate stages. The new convolution block H l

conv
takes l-th intermediate stage output, F l , as input. Its output
was reduced to a vector representation:

V l = H l
conv(F

l) (1)

Then, a classification module H l
class with two fully-

connected stage, Batchnorm [54] and Elu [55], calculates the
probability distribution for each classes for the l-th stage:

yl = H l
class(V

l) (2)

After calculating the last S stages: l = L,L−1, ...,L−S+1,
the outputs from them are concatenated as:

V concat = concat[V L−S+1, ...,V L−1,V L] (3)

It is then input into a classifier:

yconcat = Hconcat
class (V concat) (4)

2) Progressive Training:
In traditional CNN models, training the entire network

directly in traditional CNN models means learning all the
granularities simultaneously. In progressive training, the low
stage is trained first and then new stages are added for training
progressively. The PMG mechanism allows the network to first
exploit discriminative information from local details such as
textures because the low stage has a limited receptive field
and representation ability. When the features are gradually
input into higher stages, the model can locate discriminative
information from local details to global structures.

The outputs from each stage and the output from the
concatenated features are input into the cross entropy (CE)
LCE . The loss between ground truth label y and prediction
probability distribution is calculated as

LCE(yl ,y) =−
m

∑
i=1

yl
i × log(yl

i) (5)

and

LCE(yconcat ,y) =−
m

∑
i=1

yconcat
i × log(yconcat

i ) (6)

In each training iteration, the data d will be used for S+1
times but only to obtain the output for each stage in each time.
All parameters used in each stage are updated even though they
may already be updated in the previous stages, which helps all
stages in the model work together.

3) Jigsaw Puzzle Generator:
The notion of Jigsaw Puzzle is used here to generate input

images for different stages of progressive training. It generates
different granularity regions so that the model can learn the
corresponding granularity level’s information which is specific
at each training step. The input image d ∈R3×W×H is equally
split into n× n patches with 3× W

n × H
n dimensions. The

patches are shuffled randomly and merged together into a new
image P(d,n) so that the hyper-parameter n controls the
patches’ granularities.

The correct hyper-parameter n for each stage should guar-
antee that the patches’ size should be smaller than the receptive
field at the corresponding stage and the patches’ size should
increase proportionately as the receptive fields of the stages
increase. For the l-th stage, n is chosen as:

n = 2L−l+1 (7)

During training, the jigsaw puzzle generator augments train-
ing data batch d to generate several augmented batches
P(d,n), which all have the same label y . The batch P(d,n)
with n = 2L−l+1 is input to the l-th stage which generates
the output yl , then all the parameters used in this process
will be updated in this propagation. All the jigsaw generator
augmented data batches are input sequentially into the network
by S+1 steps. The training procedure is shown in Fig. 3(b).

4) Inference:
During inference, the original images are input into the

trained model without the jigsaw puzzle generator. To only
utilize yconcat for prediction, the FC layers for the other three
stages are removed and the final result C1 is:

C1 = argmax(yconcat) (8)

The prediction from each stage has unique and complemen-
tary information from a specific granularity. To obtain a better
performance, all outputs are combined together with equal
weights and the multi-output combined prediction C2 is:

C2 = argmax(
L

∑
l=L−S+1

yl + yconcat) (9)

D. semi-supervised learning

The semi-supervised learning method applied in our research
was inspired mainly from the rotation degree Self-Supervised
Learning [42] and the SESEMI method [43], and partially from
FixMatch method [44]. It is a simple but effective algorithm
for semi-supervised image classification via self-supervision.
The dataset for the semi-supervised learning method consists
of pairs of images and labels (x,y)∈ SL and unlabeled images
x ∈ SU . Usually SL and SU are sampled from the same
distribution p(x) and SL is SU ’subset with labels. However,
SL is our WoundNet dataset and SU is the DFUC 2021
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dataset [33] [47] in our case, as mentioned in Sub-section II-A.
It is possible to sample SL from p(x) but sample SU
from q(x), a different yet related distribution [56]. This semi-
supervised learning method trains a prediction function fθ(x)
with parameter θ on a combination of SL and SU to obtain
better model performance than training on SL alone. During
the training process, two batches of data are sampled from the
labeled dataset SL and unlabeled dataset SU separately in each
step:

sL = b(xi ∈ SL) (10)

sU = b(x j ∈ SU ) (11)

Then they are input into the shared baseline model fθ(x),
which is EfficientNet B0 in our case. The labeled batch sL and
the unlabeled batch sU are input into fθ(x) so that its softmax
layer generates prediction vectors from them respectively:

zi = fθ(sL) (12)

z j = fθ(sU ) (13)

The ground truth labels yi are used for computing the
supervised cross-entropy loss Llabeled(yi,zi). The DFUC 2021
dataset’s label is considered as the dataset SU ’s label, which
is used as the proxy labels y j to compute the cross-entropy
loss Lunlabeled(y j,z j) for the unsupervised cross-entropy loss.

Llabeled(yi,zi) =− 1
|sL| ∑

i∈sL

∑
k∈K

yiklog(zik) (14)

Lunlabeled(y j,z j) =− 1
|sU | ∑

j∈sU

∑
t∈T

y jt log(z jt) (15)

The final loss function is defined as the weighted sum of
the supervised cross-entropy loss and the unsupervised cross-
entropy loss:

L f inal = Llabeled(yi,zi)+ωLunlabeled(y j,z j) (16)

The parameter θ will be updated in backpropagation after
minimizing the final loss function L f inal . The unsupervised
cross-entropy loss Lunlabeled(y j,z j) can be considered as a
regularization term in the final loss function and ω > 0
is a regularization hyperparameter that controls the relative
contribution of unsupervised learning in the semi-supervised
learning process.

E. Evaluation

1) Evaluation Metrics:
Our deep learning architecture was evaluated using metrics:

testing accuracy, weighted F1 score, multi-class sensitivity and
multi-class specificity.

Synthetic wound images generated by GANs methods were
evaluated using the FID score. The Frechet Inception Distance
(FID) is a metric that evaluates the quality of synthesis images
from generative adversarial networks (GANs) [57]. The FID

compares the distribution of synthesis images and the distribu-
tion of real images.

The detailed description and the equations of the evaluation
metrics are shown in the Supplementary Materials.

2) Baseline models:
ResNet50 [53] and EfficientNet B0 [46] were utilized as

baseline models for the comparison of data augmentation
methods. Detailed descriptions of ResNet50 and EfficientNet
B0 can be found in the Supplementary Materials. The Patch
Attention DenseNet deep learning model [15] was also used in
the comparison of data augmentation using GANs. ResNet50
and EfficientNet B0 were also used as baseline models for the
comparison of wound assessment deep learning architectures.

F. Experiments

1) Hardware, Software and Hyperparameters:
All the experiments were run on the same Ubuntu system

desktop with an NVIDIA GTX 1080 Ti GPU. PyTorch was
the library used for running the deep learning models. The
regularization hyperparameter ω in the semi-supervised learn-
ing method mentioned in Sub-section II-D was set to ω = 0.8
after experiments to evaluate different values of ω between
0.5 to 1.2, which revealed that the model performed best
when ω was set to values between 0.6 to 1.0. The learning
rate for training SS-PMG-EfficientNet was set to 0.0004 after
experiments using different values.

2) Experiment 1, comparison of SS-PMG-EfficientNet, the
PMG EfficientNet and the Semi-Supervised EfficientNet on all
8 PWAT sub-scores:

The goal of this experiment was to compare our proposed
model SS-PMG-EfficientNet to variants PMG EfficientNet (no
Semi-Supervised (SS) Learning) and Semi-Supervised Effi-
cientNet (no PMG) on all 8 PWAT subscores and demonstrate
the non-trivial contribution of the Semi-Supervised Learning
(SS) and PMG to our overall architecture. To facilitate a fair
comparison, SS-PMG-EfficientNet, the PMG EfficientNet, the
Semi-Supervised EfficientNet and EfficientNet B0 were trained
and tested in the same way. 3 training and testing sets were
generated for each PWAT subscore with no overlapping images
among the 3 testing sets and each of these testing sets contained
10% images of the entire dataset. All four deep learning
architectures were trained and tested on these three training
and testing sets for all 8 PWAT subscores.

Due to various randomness in the deep learning model,
such as the random weight initialization and batch gradient
descent during training, the training and testing results can
be different and unstable. Each training and testing set was
trained 2 times to evaluate whether the models were stable,
generating 6 training results for each PWAT subscore for each
deep learning architecture.

EfficientNets’ run times are very fast and EfficientNet B0
is still very fast even though integrated with PMG mechanism
component and semi-supervised learning mechanism. This ad-
vantage made it possible to run and test all 8 PWAT subscores
6 times with 3 different EfficientNet B0 based architectures.
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3) Experiment 2, comparison of various deep learning ar-

chitectures and data augmentation methods on PWAT sub-
score 2. Depth:

The goal of this experiment was to compare our pro-
posed data augmentation method (PMG) and SS-EfficientNet
classification architecture to a comprehensive set of baseline
methods for augmenting and predicting the Depth PWAT sub-
score. Due to time and resource constraints, we selected to
provide in-depth comparisons on only the depth sub-score
but believe that the results for depth are representative of all
PWAT sub-scores. All baselines deep learning architectures
and data augmentation methods were trained and tested on the
PWAT subscore 2. Depth with a test set of 10% of the entire
dataset. These deep learning architectures include EfficientNet
B0, the Semi-Supervised EfficientNet, the PMG EfficientNet
and SS-PMG-EfficientNet, as well as the PMG ResNet50 [45]
and MMAL ResNet50 [50]. EfficientNet B0, PMG ResNet50
[45] and MMAL ResNet50 [50] were first trained on the
PWAT subscore 2. Depth to show whether these architectures
had good performance on the WoundNet dataset. The Semi-
Supervised EfficientNet, the PMG EfficientNet and the SS-
PMG-EfficientNet were also trained on the PWAT subscore 2.
Depth to show their performance.

The data augmentation methods include applying pix2pixHD
[48] and semi-supervised GANs [49] for the data augmentation
of the WoundNet dataset. The pix2pixHD model was first
trained with the WoundNet dataset and it was used for gener-
ating synthesis chronic wound images. 2000 synthesis chronic
wound images were generated and 1000 of them were labeled
with PWAT subscore 2. Depth. The labeled synthesis chronic
wound images were added to the training set of the original
WoundNet dataset and this augmented WoundNet dataset was
trained with both the Patch Attention DenseNet from our
previous work [15] and EfficientNet B0. The semi-supervised
GAN model was trained with WoundNet as the supervised
dataset and DFUC 2021 dataset [33] [47] as the unsupervised
dataset.

Although it is more convincing to test and compare different
architectures and methods with more PWAT subscores, it is
time-consuming to run these many experiments. On the other
hand, one PWAT subscore can indicate the general perfor-
mance of different architectures on the WoundNet dataset.
Therefore, testing different architectures and methods on the
most important subscore 2. Depth enabled discovery of the
best architectures and methods for estimating PWAT subscores
without loss of generality.

III. RESULTS

A. Training and testing accuracy trajectories

A sample of the trajectories of the training and testing set
accuracies for all 8 PWAT sub-scores are shown in Fig. 4a and
4b. The training and testing accuracy trajectories plotted are
from the best set results of the 6 results mentioned in II-F2. The
number index i represents the ith PWAT sub-score in these two
figures. For example, train1 is the training accuracy for the sub-
score 1. Size. The training and testing accuracies converged and
stabilized after about 35 to 45 epochs. The differences between

(a) Training and testing accuracy trajectory (Example 1)

(b) Training and testing accuracy trajectory (Example 1)

(c) Examples of synthesis wound images from GANs method

Fig. 4. Training and testing accuracy trajectory and synthesis
wound image examples from GANs method
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Fig. 5. Examples of misclassified images for each PWAT sub-
score. Row 1 to 8 is PWAT sub-scores 1 to 8.

training and testing accuracies were relatively small indicating
that the model did not overfit and generalized well to the test
set.

B. Model performance for predicting all 8 PWAT sub-scores

The mean and standard deviation of testing accuracy on
applying SS-PMG-EfficientNet, the PMG EfficientNet, the
Semi-Supervised EfficientNet, EfficientNet and the Patch At-
tention DenseNet from our previous work [15] to all 8 PWAT
subscores are shown in Table IIIa for comparison. As shown

in Table IIIa, the means of testing accuracy of SS-PMG-
EfficientNet for all 8 PWAT subscores achieved the best results
among all these 5 deep learning architectures for comparison.
The PMG EfficientNet achieved the second-best results and the
Semi-Supervised EfficientNet achieved the third-best results in
terms of the means of testing accuracy for all 8 PWAT sub-
scores. The results of EfficientNet B0 and the Patch Attention
DenseNet were close to each other generally and EfficientNet
B0 had better results in 6. Gran Amount, 7. Edges and 8. Skin
while the Patch Attention DenseNet had better results in Nec
Type and Gran Type.

Table IIIb, IIIc, IIId and IIIe showed the mean and standard
deviation of testing accuracy, weighted F1 scores, Sensitiv-
ity and Specificity for all 8 PWAT subscores of SS-PMG-
EfficientNet, PMG EfficientNet, Semi-Supervised EfficientNet
and the Patch Attention DenseNet.

The means of weighted F1 score of SS-PMG-EfficientNet
achieved the best results for all 8 PWAT subscores when
compared to the other three deep learning architectures. The
means of sensitivity of SS-PMG-EfficientNet also achieved the
best results for 7 PWAT subscores except for 5. Gran Type,
which was 0.8789 for Semi-Supervised PMG EfficientNet and
0.8795 for PMG EfficientNet. The mean of the Specificity
of SS-PMG-EfficientNet also achieved the best results for
all 8 PWAT subscores compared to other 3 deep learning
architectures. The standard deviation of the testing accuracy,
weighted F1 scores, Sensitivity and Specificity for all 8 PWAT
subscores of SS-PMG-EfficientNet were relatively small. The
Sensitivity for 8. Skin had the largest standard deviation of SS-
PMG-EfficientNet with only 0.0447. This demonstrates that
SS-PMG-EfficientNet was relatively stable on the WoundNet
dataset.

Generally, the scores of SS-PMG-EfficientNet were the
highest, while the scores of PMG EfficientNet were the
second highest and scores of Semi-Supervised EfficientNet
were the third highest, which were all higher than the Patch
Attention DenseNet model, the previous state-of-the-art for
wound grading. There was a 7% improvement between SS-
PMG-EfficientNet and Patch Attention DenseNet in testing
accuracy, weighted F1 scores and Sensitivity. However, it can
be observed that the sensitivity of 3. Nec Type had the lowest
scores of SS-PMG-EfficientNet, PMG EfficientNet and Semi-
Supervised EfficientNet with 0.8047 as the highest one. It was
obviously lower than other PWAT subscores’ sensitivity and
was only a small improvement from Patch Attention DenseNet
with sensitivity in 3. Nec Type: 0.7711. On the other hand,
the improvement of specificity between SS-PMG-EfficientNet
and Patch Attention DenseNet were relatively small, which was
likely because the specificity of Patch Attention DenseNet were
already high with little room for improvement. Examples of
misclassified images for each PWAT sub-score are shown in
Fig. 5.

C. Box plot showing k-fold cross-validation results of all 8
PWAT sub-scores

Figure 6 shows the boxplots of all 8 PWAT subscores from
the results of SS-PMG-EfficientNet, the PMG EfficientNet and
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(a) Comparison of Testing Accuracy from different deep learning architecture for predicting all 8 PWAT sub-scores
Semi-Supervised PMG EfficientNet Semi-Supervised EfficientNet Patch Attention

PMG EfficientNet EfficientNet DenseNet
PWAT subscore mean std mean std mean std mean std mean std
1. Size 0.8753 0.0071 0.8609 0.0177 0.8384 0.0163 0.8068 0.0146 0.8098 0.0132
2. Depth 0.9039 0.0232 0.8916 0.0071 0.8651 0.0103 0.8267 0.0237 0.8281 0.0185
3. Nec Type 0.8793 0.0035 0.8753 0.0071 0.8569 0.0158 0.8114 0.0176 0.8244 0.0090
4. Nec Amount 0.8875 0.0187 0.8569 0.0035 0.8517 0.0180 0.8114 0.0383 0.8098 0.0309
5. Gran Type 0.8916 0.0094 0.8793 0.0071 0.8722 0.0264 0.8129 0.0097 0.8269 0.0153
6. Gran Amount 0.8998 0.0248 0.8896 0.0123 0.8671 0.0200 0.8466 0.0371 0.8330 0.0235
7. Edges 0.9018 0.0123 0.8834 0.0061 0.8731 0.0205 0.8497 0.0146 0.8256 0.0093
8. Skin 0.9018 0.0061 0.8916 0.0128 0.8497 0.0075 0.8328 0.0153 0.8208 0.0222

(b) Results of Semi-Supervised PMG EfficientNet for predicting all 8 PWAT sub-scores
F1 score Sensitivity Specificity

PWAT subscore mean std mean std mean std
1. Size 0.8755 0.0067 0.8674 0.0065 0.9673 0.0022
2. Depth 0.9017 0.0238 0.8656 0.0250 0.9666 0.0057
3. Nec Type 0.8767 0.0052 0.8047 0.0406 0.9679 0.0006
4. Nec Amount 0.8862 0.0170 0.8539 0.0253 0.9679 0.0063
5. Gran Type 0.8915 0.0093 0.8789 0.0139 0.9695 0.0025
6. Gran Amount 0.8998 0.0247 0.8662 0.0414 0.9705 0.0080
7. Edges 0.9006 0.0088 0.8838 0.0352 0.9607 0.0054
8. Skin 0.9013 0.0052 0.8542 0.0447 0.9302 0.0056

(c) Results of PMG EfficientNet for predicting all 8 PWAT sub-scores
F1 score Sensitivity Specificity

PWAT subscore mean std mean std mean std
1. Size 0.8607 0.0172 0.8593 0.0264 0.9626 0.0053
2. Depth 0.8887 0.0084 0.8535 0.0235 0.9643 0.0028
3. Nec Type 0.8706 0.0074 0.7998 0.0096 0.9671 0.0023
4. Nec Amount 0.8547 0.0038 0.8400 0.0361 0.9600 0.0016
5. Gran Type 0.8795 0.0078 0.8795 0.0242 0.9664 0.0021
6. Gran Amount 0.8889 0.0111 0.8453 0.0207 0.9639 0.0054
7. Edges 0.8826 0.0043 0.8506 0.0133 0.9521 0.0016
8. Skin 0.8905 0.0124 0.8378 0.0229 0.9269 0.0089

(d) Results of Semi-Supervised EfficientNet for predicting all 8 PWAT sub-scores
F1 score Sensitivity Specificity

PWAT subscore mean std mean std mean std
1. Size 0.8423 0.0127 0.8510 0.0081 0.9589 0.0025
2. Depth 0.8649 0.0070 0.8278 0.0345 0.9602 0.0027
3. Nec Type 0.8525 0.0165 0.7600 0.0144 0.9615 0.0051
4. Nec Amount 0.8555 0.0191 0.8258 0.0482 0.9611 0.0069
5. Gran Type 0.8816 0.0185 0.8691 0.0202 0.9675 0.0044
6. Gran Amount 0.8749 0.0239 0.8305 0.0246 0.9631 0.0074
7. Edges 0.8753 0.0265 0.8030 0.0342 0.9518 0.0066
8. Skin 0.8507 0.0058 0.8104 0.0049 0.9000 0.0073

(e) Results of Patch Attention DenseNet for predicting all 8 PWAT sub-scores
F1 score Sensitivity Specificity

PWAT subscore mean std mean std mean std
1. Size 0.8085 0.0137 0.8154 0.0244 0.9503 0.0034
2. Depth 0.8285 0.0190 0.8156 0.0440 0.9509 0.0056
3. Nec Type 0.8226 0.0096 0.7711 0.0336 0.9533 0.0028
4. Nec Amount 0.8072 0.0307 0.7539 0.0447 0.9498 0.0080
5. Gran Type 0.8263 0.0150 0.8354 0.0306 0.9534 0.0042
6. Gran Amount 0.8324 0.0229 0.8137 0.0227 0.9512 0.0062
7. Edges 0.8269 0.0107 0.8157 0.0617 0.9421 0.0062
8. Skin 0.8189 0.0270 0.7548 0.0771 0.8783 0.0243

TABLE III. Results from the SS-PMG-EfficientNet, the PMG EfficientNet, the Semi-Supervised EfficientNet, EfficientNet
and the Patch Attention DenseNet
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Fig. 6. Boxplots of all 8 PWAT sub-scores from the results of SS-PMG-EfficientNet, the PMG EfficientNet and the Semi-Supervised
EfficientNet
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the Semi-Supervised EfficientNet. For each PWAT subscore
from each deep learning model, there were 6 results, as
mentioned in Sub-section II-F and these 6 results were made
into the boxplots. There are four sub-boxplots: (a) Testing
Accuracy, (b) Weighted F1 Score, (c) Sensitivity and (d)
Specificity.

Each of the sub boxplots contains 24 boxes drawn from
the results of these 3 deep learning model on all 8 PWAT
subscores for that particular metrics. The blue, green and red
boxes represent results from SS-PMG-EfficientNet, the PMG
EfficientNet and the Semi-Supervised EfficientNet. It can be
observed that the results from SS-PMG-EfficientNet generally
had the highest average scores, while the results from the
PMG EfficientNet and the Semi-Supervised EfficientNet had
the second and third highest average scores. On the other
hand, the distribution range of results for all 4 metrics from
all 3 different models varied on different PWAT subscores.
Test accuracy and F1 Scores for all 8 PWAT subscores from
these 3 models were high relatively and the difference between
different subscores were small from all 3 models.

With regards to sensitivity, the difference between different
PWAT subscores from all 3 models were relatively large. The
sensitivity for subscore 3 ( Nec Type) were lower than those of
other subscores’ for all 3 models, especially Semi-Supervised
EfficientNet, The specificity of all 3 models were relatively
high for all PWAT subscores except subscore 8. Skin.

D. Comparison of variations of our proposed architecture and
baseline methods with PWAT subscore 2. Depth

The comparison of results from different deep learning archi-
tectures and data augmentation methods we used on the PWAT
subscore 2. Depth is shown in Table IVa. Semi-Supervised
PMG EfficientNet achieved the highest mean of testing accu-
racy: 0.9039. SS-PMG-EfficientNet, the PMG EfficientNet and
the Semi-Supervised EfficientNet were all able to complete
model training within 30 minutes with relatively high mean
testing accuracy, due to the very fast run time of EfficientNet.
PMG ResNet50 achieved higher mean of testing accuracy when
comparing to MMAL ResNet50, which came from the result
of exploring and testing novel fine-grained image classification
mechanism. Consequently, we selected the PMG mechanism
when designing and developing our deep learning architecture.

PMG ResNet50 achieved a relatively high testing accuracy
mean: 0.8671 but PMG EfficientNet achieved a better mean
of testing accuracy: 0.8916, which demonstrated that choosing
to integrate the PMG mechanism into EfficientNet B0 was the
correct design choice. ResNet50 was the first baseline model
we used in the research of estimating PWAT subscores and
had the mean of testing accuracy: 0.7915, which could be
considered as the PWAT subscore performance baseline and
could indicate how much improvement we made with the
newly developed deep learning architectures. By researching
and studying the WoundNet dataset and deep learning related
works such as state-of-the-art baseline deep learning models,
data augmentation and fine-grained image classification tech-
niques, the newest architecture we designed, Semi-Supervised
PMG EfficientNet, showed significant improvement. SS-PMG-

(a) Model comparison for PWAT subscore: 2. Depth.
deep learning
architecture

input
image

training
time

accuracy
mean

accuracy
std

Our newly proposed method
Semi-Supervised
PMG EfficientNet 224 30 min 0.9039 0.0232

PMG EfficientNet 224 25 min 0.8916 0.0071
Semi-Supervised
EfficientNet 224 25 min 0.8651 0.0103

State-of-the-art deep learning architecture from related work
PMG ResNet50 448 4 hours 0.8671 0.0128
MMAL ResNet50 448 4 hours 0.8466 0.0184

Our previous used method
Patch Attention
DenseNet (without
any kind of data
augmentation)

512 3.5 hours 0.8281 0.0185

Bilinear CNN 256 N/A 0.8336 0.0179

Baseline CNN image classification architecture
(without any kind of data augmentation)
ResNet50 224 40 min 0.7915 0.0132
EfficientNet B0 224 20 min 0.8267 0.0237

GANs based methods
data augmenting with pix2pixHD synthesis images
Patch Attention
DenseNet 512 3.5 hours about

60% N/A

EfficientNet B0 512 20 min about
60% N/A

semi-supervised GAN
ResNet50 as
discriminator 224 60 min about

50% N/A

EfficientNet B0
as discriminator 224 30 min about

50% N/A

(b) Confusion Matrices1

1. Size actual class
0 1 2 3 4

pred-
iction
class

0 11 1 0 0 0
1 1 46 2 1 0
2 2 5 37 2 0
3 0 0 4 29 1
4 0 0 0 2 19

2. Depth actual class
0 1 2 3 4

pred-
iction
class

0 16 0 1 1 0
1 0 9 1 0 0
2 0 5 83 4 0
3 0 0 2 32 0
4 0 0 0 0 9

3. Nec
Type

actual class
0 1 2 3 4

pred-
iction
class

0 54 6 1 0 2
1 2 33 0 0 2
2 0 1 24 2 0
3 0 0 0 3 0
4 0 2 1 0 30

4. Nec
Amount

actual class
0 1 2 3 4

pred-
iction
class

0 26 0 0 0 2
1 1 19 0 0 1
2 0 0 12 0 0
3 4 1 1 24 2
4 2 0 0 5 63

(c) Confusion Matrices2

5. Gran
Type

actual class
0 1 2 3 4

pred-
iction
class

0 17 0 1 0 1
1 0 31 2 0 0
2 0 5 59 2 2
3 0 0 0 7 0
4 0 0 3 0 33

6. Gran
Amount

actual class
0 1 2 3 4

pred-
iction
class

0 13 0 0 0 3
1 0 9 1 1 0
2 0 0 17 3 0
3 0 0 0 21 1
4 1 1 0 1 91

7. Edges actual class
0 1 2 3 4

pred-
iction
class

0 14 0 0 0 0
1 1 25 8 0 0
2 0 4 97 1 0
3 0 0 2 10 0
4 0 0 0 0 1

8. Skin actual class
0 1 2 3 4

pred-
iction
class

0 43 10 0
1 5 90 1
2 0 1 13
3
4

TABLE IV. Model Comparison for PWAT subscore: 2. Depth and
Confusion Matrices
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EfficientNet achieved a mean testing accuracy of 0.9039,
outperforming the ResNet50 baseline model by more than
10%.

The data augmentation methods using pix2pixHD and semi-
supervised GAN decreased the model’s performance and re-
sulted in testing accuracy with only about 60%. By ex-
amining the method and testing the model multiple times,
it was observed that the performance of model with these
two data augmentation methods remained the same, which
was counter intuitive. The Frechet Inception Distance (FID)
between the GAN-synthesized images and the WoundNet was
70.6107, which is acceptable and indicates that the quality
of the synthesis wound images was acceptable but decreased
the model’s performance for some reason. It is possible that
our PWAT subscore classification is a fine-grained image
classification problem and required the images to show high
resolution, detailed features of the wounds while the wound
features in images augmented from GAN methods are not clear
enough. Therefore, we decided not to use GAN based data
augmentation method in developing our wound deep learning
architecture. Fig. 4c shows some examples of the synthesis
chronic wound images.

E. Confusion matrices

Table IVb and Table IVc show a sample of the confusion
matrices of the test set results from SS-PMG-EfficientNet for
all 8 PWAT sub-scores. Due to space limitations, although there
were 3 different results from 3 set of training and testing set,
only confusion matrices of the best results are shown here.

The numbers on the diagonal position represent images
classified correctly in the confusion matrices. It can be ob-
served that the majority of test images are on the diagonals
of the confusion matrices and the misclassified images are
mainly distributed beside the diagonal position. The confusion
matrices and the small difference between accuracy and F1
scores in our results show that the imbalanced data does not
significantly affect our models’ performance.

IV. DISCUSSION

The proposed PMG-SS-EfficientNet effectively augmented
our small labeled wound dataset and predicted all 8 PWAT sub-
scores with clinically usable accuracy In general, improving
the machine learning model and providing it with adequate
data, especially when the original dataset is small, are two
important approaches to improving a machine learning model’s
performance. Most research on fine-grained image classifica-
tion problems focused on proposing novel and sophisticated
deep learning architectures [58] [59]. These architectures
typically had large capacities and performed well when trained
and evaluated on large datasets. However, since our WoundNet
dataset is relatively small, deep learning architectures with
large capacity would overfit on our dataset. The original PMG
mechanism integrated into ResNet50 was a relatively simple
but effective design that did not add too much capacity to the
baseline ResNet50 model. Therefore, it enables EfficientNet
B0 to better learn fine-grained features in wound images and

improve its performance by integrating the PMG mechanism,
which also keeps the architecture’s capacity relatively small.

State-of-the-art data augmentation methods including GANs
did not work well on the PWAT wound classification problem
An alternate approach to improve the model’s performance is to
provide it with more data through data augmentation. However,
traditional data augmentation techniques did not significantly
improve the model in our chronic wound scoring problem,
which prior research has demonstrated [15]. This paper utilized
semi-supervised learning with DFUC 2021 [33] [47] as large,
secondary dataset and our own WoundNet dataset as reference,
to facilitate another form of data augmentation and improve
the model’s performance. This method allowed our model to
learn chronic wound features from both our own dataset and
the DFUC 2021 dataset. On the other hand, to train the PMG
mechanism model to learn the corresponding granularity level’s
information for different stages, the jigsaw puzzle generator
generates different images with different granularity regions
from the original dataset image. The original image and the
generated images were all input into the PMG mechanism
model for training, which could be considered as another form
of data augmentation. These two data augmentation methods
both helped to improve the model’s performance and showed
significant improvement after integrating together.

As mentioned in Sub-section III-D, the data augmenta-
tion using GANs method, including pix2pixHD and semi-
supervised GAN, decreased our model’s performance. Al-
though data augmentation using GANs methods can increase
model’s performance in other medical imaging research [36]
[40] [41], it is proved to be unhelpful in our chronic wound
scoring problem after multiple times of examining the method
and testing the model. In some computer vision tasks, it is
possible that models can still benefit from large amount of
synthetic images even when they are of low quality with rough
shapes and unclear features. However, our chronic wound
scoring problem is a fine-grained image classification problem,
which is difficult even for human eyes to distinguish the
detail. To improve the model’s performance on this problem,
it requires the wound images to have clear detail and wound
features so that the model is able to classify the images based
on this subtle information. It can be observed in Fig. 4c that
although the synthetic wound images have good quality, their
details and wound features, such as textures and colors, are not
as good as the original high-resolution wound images.

V. CONCLUSION

Due to challenges with collecting and labeling adequate
image data on all wound severities, existing wound datasets
frequently are imbalanced and relatively small, which limits the
accuracy of deep learning-based wound grading models. The
goal of this paper was to augment a small, imbalanced, wound
dataset by using semi-supervised learning with a secondary
dataset. The augmented wound dataset was then utilized for
deep learning-based wound assessment. The primary, labeled
wound dataset utilized in the semi-supervised approach was
labeled with ground-truth wound assessments based on the
comprehensive, clinically-valid wound grading rubric called
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PWAT. We proposed a Semi-Supervised PMG EfficientNet
deep learning architecture, which estimated all 8 PWAT sub-
scores. We applied transfer learning to SS-PMG-EfficientNet
model to learn each of the 8 PWAT subscores separately.
In rigorous evaluation, the proposed Semi-Supervised PMG
EfficientNet architecture performed well on assessing chronic
wounds including diabetic foot ulcers, pressure ulcers, vascular
ulcers and surgical wounds. Our proposed Semi-Supervised
PMG EfficientNet (SS-PMG-EfficientNet) approach estimated
all 8 PWAT sub-scores with classification accuracies and F1
scores of about 90% on average, and outperformed a compre-
hensive list of baseline models and had a 7% improvement
over the prior state-of-the-art (without data augmentation). We
also demonstrate that synthetic wound image generation using
Generative Adversarial Networks (GANs) did not improve
wound assessment.

In future work, we plan to systematically investigate the
reason why data augmentation using GANs-generated images
does not improve our wound assessment model’s performance.
We will also explore methods to further improve our proposed
model’s performance for predicting PWAT sub-scores that it
did not perform well on, such as subscore 3. Necrotic Type. We
will also investigate whether the focal loss can further improve
our model’s performance on imbalanced data.
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