
Computational simulation of virtual patients reduces dataset bias and improves machine learning-based detection of
ARDS from noisy heterogeneous ICU datasets. Mechanistic virtual patient modeling is used to infer model-derived
parameters on individual patients, significantly reducing biases introduced by learning from heterogeneous datasets
and allowing improved discovery of patient cohorts driven exclusively by medical conditions.

This article has been accepted for publication in IEEE Open Journal of Engineering in Medicine and Biology. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/OJEMB.2023.3243190

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



  

 

 

ABSTRACT   Goal: Machine learning (ML) technologies that leverage large-scale patient data are promising tools predicting 
disease evolution in individual patients. However, the limited generalizability of ML models developed on single-center datasets, 
and their unproven performance in real-world settings, remain significant constraints to their widespread adoption in clinical 
practice. One approach to tackle this issue is to base learning on large multi-center datasets. However, such heterogeneous datasets 
can introduce further biases driven by data origin, as data structures and patient cohorts may differ between hospitals. Methods: In 
this paper, we demonstrate how mechanistic virtual patient (VP) modeling can be used to capture specific features of patients’ 
states and dynamics, while reducing biases introduced by heterogeneous datasets. We show how VP modeling can be used for data 
augmentation through identification of individualized model parameters approximating disease states of patients with suspected 
acute respiratory distress syndrome (ARDS) from observational data of mixed origin. We compare the results of an unsupervised 
learning method (clustering) in two cases: where the learning is based on original patient data and on data derived in the matching 
procedure of the VP model to real patient data. Results: More robust cluster configurations were observed in clustering using the 
model-derived data. VP model-based clustering also reduced biases introduced by the inclusion of data from different hospitals 
and was able to discover an additional cluster with significant ARDS enrichment. Conclusions: Our results indicate that 
mechanistic VP modeling can be used to significantly reduce biases introduced by learning from heterogeneous datasets and to 
allow improved discovery of patient cohorts driven exclusively by medical conditions. 
 
INDEX TERMS   ARDS, Computational Simulation, Dataset Bias, Machine Learning, Virtual Patients 
 
IMPACT STATEMENT   Mechanistic virtual patient modeling can be used to infer individualized parameters approximating disease states of 
patients, significantly reducing biases introduced by learning from heterogeneous datasets and allowing improved discovery of patient cohorts 
driven exclusively by medical conditions. 
 
 
 

I. INTRODUCTION1 
rtificial intelligence (AI) and machine learning (ML) 
models have already shown their potential applicability 

in diverse areas of healthcare [1-3]. Several models have 
been developed for the early diagnosis and prediction of 
critical states and conditions in the ICU, e.g., ARDS [4], 

 
 

sepsis [5] and COVID-19 [6-9]. 
However, the more data-driven models are applied in 

healthcare settings, the more the issue of impaired 
performance on different datasets, i.e. poor generalizability 
of such models, is becoming apparent [5, 10-13]. If ML 
models are developed on one dataset, they learn data 
distributions which are specific or characteristic for this 

Computational simulation of virtual patients 
reduces dataset bias and improves machine 

learning-based detection of ARDS from noisy 
heterogeneous ICU datasets 

 Konstantin Sharafutdinov1,2,3, Sebastian Johannes Fritsch3,4,5, Mina Iravani1,2,3, Pejman Farhadi 
Ghalati1,2, Sina Saffaran6, Declan G. Bates6, Jonathan G. Hardman7, Richard Polzin1,2,3, Hannah 

Mayer3,8, Gernot Marx3,4, Johannes Bickenbach3,4, Andreas Schuppert1,2,3  
1 Institute for Computational Biomedicine, RWTH Aachen University, Aachen, Germany 

2 Joint Research Center for Computational Biomedicine, RWTH Aachen University, Aachen, Germany 
3 SMITH Consortium of the German Medical Informatics Initiative, Leipzig, Germany 

4 Department of Intensive Care Medicine, University Hospital RWTH Aachen, Aachen, Germany 
5 Juelich Supercomputing Centre, Forschungszentrum Juelich, Juelich, Germany 

6 School of Engineering, University of Warwick, Coventry, UK 
7 School of Medicine, University of Nottingham, Nottingham, UK 

8 Systems Pharmacology & Medicine, Bayer AG, Leverkusen, Germany 
CORRESPONDING AUTHOR: Konstantin Sharafutdinov (e-mail: ksharafutdin@ukaachen.de) 

This publication of the SMITH consortium was supported by the German Federal Ministry of Education and Research (Grant Nos. 
01ZZ1803B and 01ZZ1803M) 

This article has supplementary downloadable material 

A 

This article has been accepted for publication in IEEE Open Journal of Engineering in Medicine and Biology. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/OJEMB.2023.3243190

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



 

 

particular dataset and perform worse on data obtained from 
other sources with potentially different distributions [14-16]. 
Moreover, attempts to apply models developed in a single 
hospital to patients from another hospital have also already 
revealed significant limitations [17, 18]. In medicine 
generally, but particularly in the ICU setting, there are 
multiple reasons why data from different hospitals can differ 
significantly, e.g., different admission strategies, guidelines 
for treatment, patients’ baseline values, protocols on settings 
of medical support devices or definitions of cut-off values 
[19-21].  

On the one hand, the issue of poor generalizability of 
developed models cannot be solved by blindly increasing the 
size of the training dataset, as this does not necessarily 
guarantee a good performance of a model on another dataset 
[10]. On the other hand, pooling of data from diverse origins 
for development of AI/ML tools introduces further biases 
driven by data origin. This can represent a challenge for the 
application of both supervised and unsupervised AI/ML 
methods, as relevant medical information can be hidden 
behind biases introduced by different datasets [22]. 

A potential solution to these challenges is to exploit 
models that allow to infer the core information 
approximating a patient’s status. Such computer models, 
which are complex enough to model heterogeneous human 
pathophysiological states, are often referred to as "virtual 
patient (VP) models" or "in silico" patients [23]. These 
mechanistic models rely on real patient data and represent a 
specific pathophysiological state of a patient. Therefore, they 
can be considered a "digital twin" of a real patient at a given 
point in time. VP models aim to capture specific features of 
patient dynamics while avoiding excessive detail. They are 
based on well accepted and understood physiological 
principles and can be adapted to represent individual patients 
[24]. VP modeling, therefore, enables data augmentation 
through identification of individualized model parameters in 
the matching procedure of the VP model to real patient data. 
These model-derived parameters represent an approximation 
of a disease state of a patient and potentially should not 
depend on the assessment protocols of the underlying 
dataset. Therefore, models integrating these parameters are 
expected to be generalizable across different application 
sites. In the area of in silico clinical trials encouraging results 
support this hypothesis. Thus, the responses of the matched 
VP cohorts to the insulin therapy were generalizable across 
different hospitals once they were compared to the responses 
of original cohorts in corresponding hospitals [25]. 
Moreover, previous applications of hybrid approaches 
incorporating both mechanistic and data-based modeling  
have already resulted in successes in other areas of research. 
Thus, model-derived parameters of individual patients were 
used to infer important clinical covariates for a patient state 
[26] or stratify patients [27]. 

In this paper, we investigate how a mechanistic VP model 
can be employed to infer model-derived individualized 
parameters from ICU data pooled from diverse hospitals. We 
show that such data augmentation allows a reduction in the 

bias introduced by diverse datasets, and provides clinically 
meaningful information from noisy heterogeneous data, for 
instance from data pooled from different hospitals, which 
allows improved discovery of patient subpopulations 
through clustering. We demonstrate our approach on a cohort 
of patients with suspected acute respiratory distress 
syndrome (ARDS) - a potentially life-threatening condition 
assessed from multiple hospitals in Germany as part of the 
ASIC project [28]. 

During the development of ARDS, due to an inflammatory 
process and a diffuse damage of alveolar-capillary 
membrane, protein-rich fluid enters the alveolar space 
impairing gas exchange. The weight of such a “wet lung” 
leads to an increased gravitational pressure on the lower, 
dependent lung compartments. This pressure in combination 
with the already present edema leads to the formation of 
atelectases, especially under mechanical ventilation (MV) 
with inadequate settings [29-31]. This leads to respiratory 
insufficiency with relevantly impaired pulmonary gas 
exchange and possible multi-organ failure and fatal 
outcomes [32, 33]. Despite the existence of an explicit 
clinical definition (the Berlin definition [34]), significant 
numbers of patients with ARDS are unrecognized or 
recognized late by clinicians [35-37]. Thus, diagnosis is 
difficult and often delayed resulting in incomplete adherence 
to guideline-based therapy and high morbidity and mortality 
rates [32, 33]. Failure to recognize ARDS in a timely fashion 
leads to failure to use strategies that improve survival [37]. 
Early diagnosis of ARDS may facilitate measures to avoid 
progression of the lung injury, including protective 
mechanical ventilation, fluid restriction, and adjunctive 
measures proven to improve survival such as prone 
positioning. 

Therefore, there is an urgent need for methods that could 
assist clinicians in early recognition of ARDS in the ICU 
setting. Several ML models have been developed for the 
early diagnosis of ARDS in the ICU [4]. However, 
insufficient quality of ARDS labeling in retrospective 
datasets, which is caused by under-recognition of ARDS by 
clinicians [35-37] and by the ambiguities in the use of the 
Berlin definition [4], represents an important challenge for 
successful development of applicable ML models, as they 
must be trained on properly labeled ARDS events. In this 
paper we provide a way to address this issue. We show that 
a mechanistic VP model can be used to infer a set of model-
derived parameters approximating disease states of 
individual patients from raw data, which can be used to 
identify non-diagnosed ARDS patients, providing a route to 
improved ML model development for early ARDS 
recognition. 

II. MATERIALS AND METHODS 
A. Computational model 
The simulator used in this study includes a comprehensive 

model of the pulmonary system based on mechanistic models 
of ventilation and gas exchange [38]. It was later extended to 
include cardiovascular components [39]. The simulator has 
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already been validated using real patient data [40, 41]. 
Internally, the model is constructed as a system of 
differential algebraic equations obtained from published 
literature, experimental data, and observational studies, that 
quantitatively represent established physiological processes. 
The equations are solved iteratively, with the solutions of one 
iteration at a time point used as inputs to the iteration at the 
next time step. This allows accurate representation and 
observation of gradual changes in several parameters that are 
otherwise difficult to estimate. The simulator consists of 
different modules representing the airways, the lung as a 
collection of ventilated alveolar compartments coupled to 
mechanical ventilator, anatomical shunt, dead space and the 
tissue compartment. The lung is modeled using 100 alveolar 
compartments, each of which may have different properties 
such as flow resistance, vascular resistance, compliance, etc. 
Thus, ventilation-perfusion mismatch can be modeled, 
allowing the simulation of conditions such as ARDS [42-44]. 

The simulator represents a dynamic cardiopulmonary state 
in vivo that is initialized with numerous input parameters. 
Some of these parameters are routinely measured in intensive 
care setting, such as blood gas analysis (BGA) measurements 
or respirator settings (the full list of parameters used as inputs 
for the model is given in the Supplementary List I). Others, 
however, are rarely measured, such as cardiac output, 
anatomical shunt or biophysical characteristics of individual 
alveolar compartments, and thus these must be estimated 
using optimization procedures. 

B. Creation of a virtual patient cohort 
To fully define each of the virtual patients, the simulator 

was fitted to individual patient data using advanced global 
optimization algorithm [45-47]. The model parameters that 
were identified in the optimization procedure included 2 
groups of parameters. Firstly, rarely measured physiological 
parameters (anatomical shunt, respiratory quotient, 
anatomical dead space volume, metabolic rate of O2, cardiac 
stroke volume, and inspiration to expiration ratio), were 
determined through optimization if they were missing in 
patient data. Parameters defining distributions of properties 
of alveolar compartmental parameters (vascular resistance 
and flow resistance of compartments) were also identified in 
the optimization process. To model ARDS development, 
another main parameter was introduced to the optimization 
procedure – the number of closed alveolar compartments 
(ncc), accounting for the formation of atelectases and 
modeled through increased external pressure on the 
compartment leading to no ventilation and complete alveolar 
shunt. The optimization problem was formulated to find a 
configuration of model parameters that minimizes the 
difference between the model outputs and the observed 
patient data (arterial blood gas values at all time points in a 
window). Further details on the optimization procedure are 
given in the Supplementary File. 

The optimization procedure was performed in two time 
windows relative to the onset of ARDS (t0): from t0 - 2d to t0 
- 1d (window 1) and from t0 to t0 + 1d (window 2), where d 
stands for 1 day. We assumed a patient to be in a steady non-

ARDS state in the window 1 and in a steady ARDS state in 
the window 2. The one day interval between the two 
windows was assumed to represent a transient state and was 
excluded from the optimization. The optimal 
parameterization of the simulator for each patient in the 
window 1 comprised a VP configuration. To model ARDS 
development, in the window 2 optimization was performed 
exclusively for the ncc keeping the VP configuration found in 
the first window intact. 

After fitting the simulator to individual patients, a list of 
parameters was calculated based on simulator outputs and 
parameters found in the optimization procedure in both time 
windows for each of the patients. These parameters, among 
others, included ncc, ventilation and shunted blood fraction 
(the full list of optimized and simulation output parameters 
is given in the Supplementary List II). For each of the 
patients, these parameters comprised model-derived data 
consisting of 18 features. 

C. Data 
Four German hospitals (later referred to as Hosp A, Hosp 

C, Hosp D and Hosp E) provided retrospective, fully 
depersonalized data on ICU patients collected during the 
project “Algorithmic surveillance of ICU patients with acute 
respiratory distress syndrome“ (ASIC) [28] of the SMITH 
consortium, which is part of the German Medical Informatics 
Initiative. The ASIC project was approved by the 
independent Ethics Committee (EC) at the RWTH Aachen 
Faculty of Medicine (local EC reference number: EK 102/19, 
date of approval: 26.03.2019). The ASIC project was 
registered at the German Clinical Trials Register 
(Registration Number: DRKS00014330). The Ethics 
Committee waived the need to obtain Informed consent for 
the collection and retrospective analysis of the de-identified 
data as well as the publication of the results of the analysis. 
Additionally, a historical dataset from one of the 
participating hospitals was included into the analysis (Hosp 
B). It comprised fully depersonalized data of ICU patients 
that were extracted according to the same rules as within the 
ASIC project. The time period for the historical dataset 
started with the introduction of the patient data management 
system in the ICU of the respective hospital and ended with 
the start of the ASIC project and covered a period of 10 years. 
Patient inclusion criteria were age above 18 years and a 
cumulative duration of invasive MV of at least 24 hours. 
There were no explicit exclusion criteria. Each patient’s data 
included routinely charted ICU parameters collected over the 
whole ICU stay, biometric data and ICD-10 codes. The full 
list of parameters used in this study is given in 

TABLE I 
INITIAL AND FINAL NUMBER OF PATIENTS IN THE HOSPITALS UNDER 

CONSIDERATION. 

Hospital Initial number of 
patients Final number of patients 

Hosp A  3,591  127  
Hosp B  13,067  467  
Hosp C  1,360  110  
Hosp D  2,217  114  
Hosp E  9,040  189 
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Supplementary List I. Data from all five datasets were 
brought to the same units of measurement and were checked 
for consistency. During depersonalization, the concept of k-
anonymity was applied to several parameters that posed a 
risk to privacy including age, height, weight, and BMI. These 
parameters were binned into intervals and the number of 
patients in each interval and in each combination of intervals 
of 4 parameters was assessed. If there were less than 8 
patients in a particular interval or less than 10 patients in any 
combination of intervals including this interval, all patients 
of this interval were excluded from the analysis. Due to this, 
not all datasets of patients who initially met the inclusion 
criteria could be extracted from the respective hospital and 
included in the final dataset. The overall number of patients 
in the final dataset comprised 29,275 patients. 

The criteria for the diagnosis of ARDS are defined in the 
Berlin criteria [34]. As medical imaging data were missing 
in our dataset, only suspected ARDS onset time could be 
determined according to the Berlin criteria. It was defined as 
the timepoint when the ratio of arterial partial pressure of 
oxygen (PaO2) and the inspired fraction of oxygen (FiO2), 
also known as P/F ratio or Horovitz index, dropped below 
300 mmHg for the first time and stayed below this threshold 
for at least 24 hours. Moreover, to be able to fit a simulator 
to the ICU data and create a cohort of virtual patients, only 
patients having specific MV, blood gas analysis and other 
parameters charted both before and after the suspected 
ARDS onset were selected. The final number of patients 
fulfilling these criteria comprised 1,007 patients. The initial 
and final number of patients in corresponding hospitals is 
given in Table I. A full description of data preparation is 
given in the Supplementary File. 

D. Consensus clustering and enrichment analysis 
We generated two datasets from the patient data 

representing the individual disease status to be used in the 
clustering algorithm. The first dataset comprised mean 
values of original measured parameters, which were used as 
inputs to the simulator, calculated on time windows 1 and 2 
(before and after suspected ARDS onset respectively, see 
Supplementary List III). The second dataset comprised 
model-derived data: simulator outputs and parameters found 
in the optimization procedure (see Supplementary List II). 
The former dataset thus represented data from the cohort of 
original patients, while the latter represented the model-
derived data, i.e. data from the virtual patient cohort.  

Consensus k-means clustering was performed for different 
number of clusters in each of the cases. Consensus clustering 

is based on repeated multiple times (1000 times) clustering 
of the sampled data from the original dataset and is known to 
produce robust clusters [48]. To further increase robustness 
of discovered clusters, another step was introduced to the 
clustering procedure. It was allowed to assign an outlier label 
to some patients, if they could not be securely assigned to 
any of observed clusters. In the clustering procedure, quality 
of clustering was assessed using mean cluster’s consensus, 
as described in [48]. This metric is introduced based on 
consensus matrix D:  

𝐷𝐷(𝑖𝑖, 𝑗𝑗) = ∑ 𝑀𝑀(ℎ)(𝑖𝑖,𝑗𝑗)ℎ
∑ 𝐼𝐼(ℎ)(𝑖𝑖,𝑗𝑗)ℎ

 (1), 

where M(h) is a connectivity matrix of the perturbed dataset 
obtained in the h-th resampling of the original dataset and 
M(h)(i, j) is equal to 1, if items i and j belong to the same 
cluster in h-th clustering repetition and 0 otherwise. I(h) is the 
(N × N) indicator matrix such that its (i, j)-th entry is equal 
to 1 if both items i and j are present in the perturbed dataset 
and 0 otherwise. Then, a cluster’s consensus m(k) is defined 
as the average consensus index between all pairs of items 
belonging to the same cluster k: 
 

𝑚𝑚(𝑘𝑘)  =   1
𝑁𝑁𝑘𝑘�𝑁𝑁𝑘𝑘 − 1�

2

∑ 𝐷𝐷(𝑖𝑖,  𝑗𝑗) 
𝑖𝑖, 𝑗𝑗 ∈ 𝐼𝐼𝑘𝑘, 𝑖𝑖<𝑗𝑗  (2), 

where Ik is the set of indices of items belonging to cluster k 
and Nk is a number of items in cluster k. Finally, the mean 
cluster’s consensus is the cluster’s consensus averaged over 
all clusters. This metric is a summary statistic which reflects 
the mean stability of clusters discovered in the consensus 
clustering algorithm and represents the overall robustness of 
discovered configuration of clusters. Mean clustering quality 
with 95 % confidence intervals was calculated by repeated 
(100 times) clustering on subsamples (80%) of dataset. A full 
description of the clustering procedure is given in the 
Supplementary File. 

For each of the discovered clusters, enrichment with 
respect to clinical conditions and to each of the 5 underlying 
hospitals was evaluated using one-sided hypergeometric test 
for enrichment with a significance level of α = 0.05 [49]. 
Analogously to gene set enrichment analysis, this method 
allows to identify clinical conditions (or hospitals) that are 
over-represented in a particular cohort (cluster) of patients 
compared to the whole population. For instance, if patients 
of Hosp A are encountered in a particular cluster more 
frequently than in the overall patient population formed of 5 
hospitals, then that cluster is enriched with patients of Hosp 
A. Observed statistical significance values for each of 
conditions under consideration were corrected for multiple 

TABLE II 
CLUSTERING QUALITY FOR CONFIGURATIONS WITH DIFFERENT NUMBER OF CLUSTERS IN CASE OF CLUSTERING ON ORIGINAL MEASURED DATA AND MODEL-

DERIVED DATA. MEAN CLUSTERING QUALITY WITH 95 % CONFIDENCE INTERVAL AND RESULTS OF A TWO-TAILED STUDENT’S T-TEST FOR MEAN QUALITY OF 
CLUSTERING ARE SHOWN. 

Number of Clusters Mean Quality Measured Mean Quality Simulated Statistic p-value 

2 0.965 (0.960, 0.970) 0.994 (0.993, 0.995) 11.726 9.481E-21 
3 0.869 (0.860, 0.878) 0.994 (0.993, 0.995) 26.205 1.103E-46 
4 0.825 (0.815, 0.835) 0.936 (0.930, 0.942) 18.137 2.373E-41 
5 0.830 (0.823, 0.837) 0.993 (0.992, 0.994) 43.713 3.222E-67 
6 0.788 (0.782, 0.794) 0.935 (0.931, 0.939) 39.515 2.879E-88 
7 0.738 (0.732, 0.744) 0.854 (0.848, 0.860) 28.077 6.148E-71 
8 0.693 (0.688, 0.698) 0.801 (0.796, 0.806) 29.223 2.781E-73 

 
 

This article has been accepted for publication in IEEE Open Journal of Engineering in Medicine and Biology. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/OJEMB.2023.3243190

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



 

 

testing using Benjamini-Hochberg correction [50]. 
E. Modules used in the study 
In this study, the RBFOpt package [39] was used for 

fitting the VP model to real patient data in the optimization 
procedure. The following Python programming language 
[47] implementations were used in the study: scikit-learn 
[48] implementation of k-means clustering was used in the 
consensus clustering algorithm (sklearn.cluster.KMeans); 
scipy [49] implementations of hierarchical clustering were 
used in the consensus clustering algorithm 
(scipy.cluster.hierarchy, scipy.spatial.distance); statistical 
analysis was performed with scipy library 
(scipy.stats.hypergeom, scipy.stats.ttest_ind). Clustering 
results were compared using a two-tailed Student's t-test with 
a significance level of α = 0.05. 

III. RESULTS  
A.  Creation of a virtual patient cohort 

Fitting quality of the optimization procedure for all patients 
is shown in Fig. 1. Acceptable quality of fitting (simulator 
outputs within 2 standard deviations of measured data) was 
observed for 95.9% patients in the window before suspected 
ARDS onset and for 84.5% patients in the time window after 
suspected ARDS onset. Acceptable quality of fitting in both 
windows was observed for 81.7% or 823 patients. Thus, 
reliable model-derived data were obtained for 823 patients, 
which were used in the subsequent analysis.  

B. Clustering results 
Clustering quality for different configurations of the 

number of clusters is shown in Fig. 2. For original measured 
data the best clustering quality was observed for 2 clusters, 
followed by a steep decrease in clustering quality for 3 
clusters and gradual decrease of clustering quality for 
clustering configurations with a cluster number larger than 5.  

In contrast to the clustering on the original measured data, 
the clustering quality on model-derived data was found to be 
significantly higher for all configurations of number of 
clusters (see Fig. 2 for the results of clustering and Table II 
for the results of the t-test). While on the original measured 
data, the quality decreased significantly already after 

increasing the number of clusters to 3, in the case of the 
model-derived data, the quality remained high for 2, 3 and 5 
clusters. However, a cluster number above 5 also resulted in 
a steep decrease in clustering quality in this dataset. Thus, 
the number of clusters for further investigation was fixed to 
5 for both clustering on original and model-derived data. 

In case of clustering on original data each of the 5 
discovered clusters had certain clinical conditions, which 
were over-represented in the respective clusters. However, 
all clusters were found to be driven by data from one or 
several particular hospitals, i.e. significant enrichment with 
respect to the hospital was found. Furthermore, 4 out of 5 
clusters were dominated by significant over-representation 
of underlying hospitals, i.e. the highest enrichment was 
observed with respect to the hospital and not to the clinical 
condition, see Fig. 3 (a). Enrichment results are given in 
Supplementary Table I. Finally, none of the discovered 
clusters had significant enrichment of diagnosed ARDS 
patients (according to ICD-10 code J80.x).  

In contrast, clustering on model-derived data revealed 2 
mixed clusters, i.e. clusters without over-representation of 
any underlying hospital. In the remaining 3 clusters, although 
such an over-representation could be observed, it was 
significantly lower than in the clustering on measured 
original data, see Fig. 3 (b) and Supplementary Table II 
(significance of 5.0E-49, 2.2E-34, 1.2E-12, 2.5E-8, 5.8E-5 in 
measured data vs. 1.3E-8, 6.9E-7, 1.2E-6 in model-derived 
data). 

Additionally, clustering on model-derived data was able 
to discover a cluster with significant ARDS over-
representation of diagnosed ARDS patients. This group of 
patients exhibited multiple properties which are specific for 
ARDS patients. These encompass the lowest Horovitz index 
among all clusters, the lowest number of ventilation-free 
days and the highest mortality. Finally, this cluster showed 
the largest increase in number of closed alveolar 
compartments (ncc) among all clusters. 

 
                          (a)            (b) 

Fig. 1.  Quality of fitting the simulator to real patient in the time window before 
suspected ARDS onset (a) and after suspected ARDS onset (b). Cohort of 1007 
patients with suspected ARDS. Acceptable quality of fitting (simulator outputs 
within 2 standard deviations of measured data) was observed for 95.9% 
patients in the window before suspected ARDS onset and for 84.5% patients 
in the time window after suspected ARDS onset. 
  

 

 
Fig. 2.  Clustering quality for different numbers of clusters for clustering on 
original measured data (orange line) and model-derived data (blue line) 
data. Mean clustering quality with 95 % confidence intervals over repeated 
(100 times) clustering on subsample (80%) of dataset is shown. Mean 
clustering quality and results of a two-tailed Student’s t-test for mean quality 
of clustering are given in Table II. 
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IV. DISCUSSION  
Data which are gathered in the ICU setting consist of 

global indices and parameters that reflect the state of the 
lung, such as BGA values or MV settings. However, these 
features in reality represent surrogate markers for the real 
pathophysiological state of the patient, leading to a 
significant simplification of clinical reality. In essence, ICU 
data are based on systematic monitoring of the enormous 
complexity of mechanisms accompanying the occurrence 
and progression of acute syndromes in individual patients. 
The development of complex syndromes is controlled not 
only by the core processes of disease progression (often 
molecular), but also by a large number of covariates arising 
from a diverse genetic background, lifestyle, exobiotic stress 
factors, and comorbidities. Another important factor is the 
large number of medical interventions in the context of 
intensive care, such as drug administration or MV. All these 
factors form highly complex feedback systems, in which the 
patient's condition causes and influences the interventions to 
be performed, which in turn influence the patient's condition. 
Such interventions can differ significantly among diverse 
hospitals introducing additional bias to the datasets [54, 55]. 
Subsequently, relevant medical signals about a patient’s state 
are often disturbed by noise or are missing completely. For 
instance, the human lung has inhomogeneous characteristics 
such as structural asymmetries and regional variations in 
ventilation and perfusion that cannot be captured by standard 
diagnostic methods. 

To be able to infer relevant patient information, 
approaches of systems medicine and computational 
physiology can be used. Systems medicine aims to describe, 
model, and simulate living, medically relevant systems using 
methods similar to those used for complex technical 
processes. The main goal of computational physiology as a 
part of systems medicine is the adequate description of these 

relationships in a computationally efficient manner and the 
development of models that consider unique properties of the 
living organisms in response to their environment [23, 56]. 
One of the pillars of computational physiology is VP 
modeling. The overall VP approach relies on the ability to 
determine parameters from data that are both patient-specific 
and time-varying, accounting for variability within and 
between patients. The ability of VP models, when 
appropriately adapted, to create a digital twin for a real 
patient also enables assessment of patient-specific 
parameters that are not readily measurable (e.g., vascular 
resistances, transpulmonary pressures, anatomic shunt, etc.). 
These unmeasurable parameters contain potentially 
important information about the patient's health status, which 
cannot be extracted from routinely measured ICU data due 
to the previously mentioned reasons [24]. 

In this paper, we demonstrate how a VP modeling 
framework can be applied to large ICU patient cohorts 
pooled from different hospitals to reduce dataset bias and to 
infer parameters approximating patients’ disease states. First, 
we show how a mechanistic VP model can be used to derive 
model parameters of individual patients with suspected 
ARDS, which comprise model-derived data. Secondly, we 
show how these data can be further utilized to improve 
clustering quality and discover medically relevant patient 
subpopulations. 

A comprehensive physiological model, that was used in 
this study was already validated against real patient data [40, 
41]. However, in the current study, the simulator was firstly 
used to create a large (>1000 patients) cohort of virtual 
patients based on the retrospective observational data pooled 
from different hospitals. VP model fitting to real ICU 
patients showed a reasonable fitting quality. Acceptable fit 
in both time windows was observed for 81.7% of the patients 
in the cohort. The larger ratio of patients with acceptable 
quality of fitting in the first window can be explained by the 

 

 
Fig. 3.  Significance of enrichment of clinical conditions and underlying hospitals in discovered clusters for clustering on original measured data (a) and model-
derived data (b). The highest enrichment in each of the clusters is shown both for enrichment of clinical conditions (green bar) and for enrichment with respect to 
a hospital (red bar). In clustering on original data, all 5 discovered clusters are significantly enriched with data from some hospitals. In clustering on model-derived 
data, 2 clusters without enrichment for a hospital are observed and overall magnitude of enrichment with respect to a hospital is decreased. 
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fact that 11 parameters were optimized in the window 1, 
whereas only 1 parameter, namely ncc, was determined in the 
window 2. Therefore, reliable model-derived data were 
obtained for 823 patients. The optimization was performed 
separately for 2 time windows, which allowed to 
parameterize a patient in a steady non-ARDS state (window 
1), and then track the ARDS development by changes in the 
number of closed compartments. The optimization using the 
data from both time windows together to parametrize a VP 
would potentially enable a better average fit in the time 
windows. However, this parametrization would correspond 
to an “average” state and would not allow to follow the 
progression of the ARDS. Moreover, the optimization of VP 
parameters other than ncc in the window 2 would potentially 
allow a better fitting quality in that window. Thus, in the 
future studies our modeling approach can be improved by 
allowing other VP parameters to vary within physiologically 
meaningful ranges during ARDS development, which might 
improve quality of ARDS modeling. The cohort of patients 
for whom acceptable fitting quality could not be achieved is 
of particular interest for further research. On the one hand, 
our approach for ARDS simulation integrates several 
assumptions and cannot guarantee an accurate 
approximation of all pathophysiological processes of ICU 
patients. On the other hand, the virtual patient model itself 
may be limited and fail in modeling certain states of ICU 
patients. For instance, we found that the cohort of patients 
with low fitting quality is characterized by significantly 
lower end-inspiratory pressures in the window 2. However, 
no clinical condition was found to be enriched in this cohort. 
Nevertheless, further research is needed to fully inspect 
reasons for low fitting quality.  

To demonstrate the utility of the obtained model-derived 
data, we used a classic unsupervised learning approach, 
namely clustering. We compared the clustering on original 
data vs. clustering on inferred model-derived data. 
Intermediate clustering quality was observed in the 
clustering on original data, meaning that the consensus 
clustering method was struggling to split a full cohort into 
homogeneous groups and find a stable configuration of 
clusters. In contrast, clustering on model-derived data 
revealed significantly better clustering quality for all 
configurations of number of clusters.  

More importantly, clustering based on the original data 
was strongly affected by the diversity of underlying 
hospitals. In all discovered clusters, patients from a particular 
hospital were significantly over-represented. In 4 out of 5 
clusters, such enrichment was found to be the most 
significant for that cluster. These observations indicate that 
clustering on observed data is dominated more by the 
hospital source and much less by underlying medical 
conditions. Therefore, clustering on the pooled data is biased 
by the data source and does not allow to find mixed 
subgroups of patients. This finding is even more striking 
given the fact that we did not use external ICU datasets, e.g., 
MIMIC, HiRID, or AmsterdamUMCdb, for this study, which 
could have covered different patient populations. All patients 

in this study satisfied the same strict inclusion criteria and 
were later filtered and chosen according to uniform rules. For 
instance, chest X-ray data were not available during the 
study, which represented the main limitation for the 
retrospective ARDS diagnosis in the cohort. However, 
clustering on model-derived data obtained from each of the 
virtual patients allowed us to find 2 clusters of mixed hospital 
origin, i.e. clusters without over-representation of any 
underlying hospital. Moreover, although significant 
enrichment with respect to the hospital was still present in 3 
out of 5 clusters, its magnitude was much less than in the 
clustering on original data (see Fig. 3). 

These findings support the main characteristic of the VP 
models, namely the ability to identify relevant data patterns 
and infer individualized model parameters approximating the 
disease state from underlying data by leveraging mechanistic 
physiological principles while simultaneously avoiding an 
excessive level of detail. 

Another interesting observation was that clustering on 
original measured data was not able to find a subgroup of 
“true” diagnosed ARDS patients. Partially, these patients 
were uniformly distributed among discovered clusters and 
did not form a separate group with typical ARDS properties, 
e.g., an impaired oxygenation or high driving pressures for 
MV. In contrast, clustering on model-derived data was able 
to discover a cluster with significant ARDS over-
representation and clinical properties, which resemble those 
of ARDS patients. 

This finding is especially important in the context of 
unreliable ARDS labeling in retrospective data. Insufficient 
quality of labeling represents an additional factor that 
contributes to impaired generalization of AI/ML models 
developed on retrospective ICU data. For the proper 
development of ML models for ARDS diagnosis and 
prediction, such models have to be trained on reliably labeled 
data. On the one hand, patients labeled with ARDS ICD 
codes still represent a lower bound on the number of true 
ARDS cases, as large numbers of ARDS patients are not 
diagnosed [35-37]. On the other hand, reliable retrospective 
labeling constitutes a challenging task, since diagnosis 
according to the Berlin definition requires the clinical 
appraisal of certain conditions, such as hypervolemia, which 
are not assessable retrospectively. This lack of data is a 
critical point also for the future work on ARDS. A 
formalization of fluid overload is a challenging task, since 
there is no metric which is measured routinely to classify the 
fluid status of a patient. For instance, a cumulative fluid 
balance is not suitable to conclude on a hypervolemia. Thus, 
it remains a clinical appraisal which needs to be assessed at 
the bedside. Datasets containing this information are highly 
desirable for the future work on ARDS. However, they are 
not available yet and their generation would be quite 
laborious. Thus, it is questionable if they will ever reach the 
required size to be used in ML algorithms. Moreover, 
medical imaging data are frequently lacking in retrospective 
databases with observational ICU data. However, even if 
imaging data are available, reliable identification of the 

This article has been accepted for publication in IEEE Open Journal of Engineering in Medicine and Biology. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/OJEMB.2023.3243190

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



 

 

ARDS event remains a challenge due to a high interrater 
variability in chest imaging [57]. Finally, studies on the 
development of AI models for ARDS are utilizing diverging 
rules to retrospectively label ARDS patients [58-60]. 

All patients in the cohort under consideration had a time 
point (suspected ARDS onset), when a part of the Berlin 
definition which accounts for the impaired oxygenation was 
satisfied. Presence of “true” ARDS patients in the cohort was 
guaranteed by the fact, that some patients had ICD-10 code 
for diagnosed ARDS. However, some of the patients might 
have had ARDS, but were not diagnosed and therefore 
lacked the ICD-10 code for ARDS, since it is known that a 
relevant number of ARDS cases stays undiagnosed. 
Therefore, the “true” ARDS cohort would have consisted of 
these two groups of patients: the “true positives” and “false 
negatives”. Our hypothesis was that the patients from these 
two groups would be similar to each other and form a shared 
cluster in the clustering procedure. However, that was not the 
case for the clustering on original measured data, as none of 
the discovered clusters was enriched with diagnosed ARDS 
patients. Clustering on measured data was therefore not able 
to differentiate between ARDS patients and patients with 
other conditions, that could have led to decreased Horovitz 
index. In contrast, through clustering on model-derived data 
we were able to discover a cluster with significant ARDS 
over-representation and clinical properties, which resemble 
those of ARDS patients. At the same time this cluster was 
not enriched with other pathological conditions, which often 
have similar clinical picture, such as for instance Heart 
Failure [61]. Furthermore, this ARDS cluster had the largest 
increase in the number of closed compartments (ncc) in the 
model, which fully supports our approach of modeling 
ARDS by introducing closed alveolar compartments. Our 
findings suggest that the identified ARDS cluster might also 
include those ARDS patients which were not diagnosed by 
the ICU staff. Therefore, this approach could be additionally 
used to identify non-diagnosed ARDS patients, although 
further research and retrospective validation is needed to 
prove this hypothesis.   

Our study has some limitations that have to be considered. 
First, as the actual ARDS clinical diagnosis time was not 
present in underlying data, the ARDS onset was identified 
retrospectively based on the Horovitz index. Potential 
availability of the ARDS diagnosis time would allow precise 
identification of the time windows for fitting of the VP model 
(at least for the diagnosed ARDS patients) enabling 
identification of more reliable VP configurations in future 
studies. However, to the best of our knowledge, no available 
database of clinical data contains clinical diagnosis 
timestamps. Therefore, datasets containing this information 
will have to be created from the ground up. Second, 
parameters of the virtual patients that were identified in the 
window before suspected ARDS onset were assumed to stay 
constant in the observation window of 2 days. This is only 
partially true, as most of the identified parameters are 
changing with time. Therefore, our approach to model ARDS 
development represents a significant simplification of the 

complex pathophysiological processes, which are happening 
during this critical condition. However, in our opinion, it 
covers the most important clinical manifestation of ARDS 
and can be used as the first approximation for the modeling. 
Moreover, our ARDS modeling approach was validated by 
the fact that the ARDS cluster, which was discovered in the 
data, had the largest increase in number of closed 
compartments, as expected. Nevertheless, VP modeling has 
the potential to infer additional information about the patient 
status which was not used in this study. For instance, by 
introducing physiologically meaningful changes in other VP 
parameters during ARDS development, one might 
significantly improve quality of ARDS modeling. However, 
it should be noted that model-derived parameters represent a 
virtual entity. Therefore, detailed clinical evaluation and 
validation should be performed before they are used in any 
support systems at the bedside. 

Extensive data requirements and complexity of the fitting 
process of the VP model constituted additional limitations of 
the study. The former did not allow us to use all available 
patient data and was the reason for the significantly lower 
number of patients in the final analysis cohort compared to 
the initial cohort (see Table I). It must be considered that to 
reach the aim to create a sufficiently large dataset for the 
analysis, not only data collected during the current project 
but also a historical dataset (Hosp B) were included. It cannot 
be ruled out that patient populations or therapeutic concepts 
have changed over the years introducing additional bias into 
the analysis. However, this limitation reflects the real-world 
situation, as ML models are mostly developed on 
retrospective datasets with some temporal separation from 
datasets, where such models are intended to be used. 
Furthermore, this limitation does not influence the overall 
conclusions of the study, as enrichment of a similar 
magnitude was observed with respect to the Hosp B and the 
other 4 hospitals (see Supplementary Table I). The latter 
limitation required the use of the computing cluster for the 
optimization procedure. Although our approach was limited 
only to the identification of at most 11 parameters for each 
of the virtual patients, it required the use of advanced global 
optimization algorithm and significant computational 
resources. Matching of the simulator to individual patient 
data and further analysis was performed on the 
computational cluster of the RWTH Aachen University 
using 10 nodes with 40 cores each, 2.66 GHz, 4 GB RAM. 
The longest runtime for one simulation comprised 5 min. 
Optimization for each patient required repetitive (100 
iterations) simulation for multiple time points in each of the 
2 windows. Therefore, the overall matching procedure took 
on average several days of computational time. All this still 
tremendously complicates a straightforward implementation 
of such methods at the bedside. 

In general, VP modeling possesses further limitations, 
restraining its applicability in real-world setting. First, it 
requires complex validation of the developed models. 
Second, VP models are usually limited to an organizational 
level of the human body and do not consider the influence of 
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exogenous covariates, e.g., preexisting diseases, lifestyle, 
genetic predispositions, or environmental influences [24].   

V. CONCLUSIONS  

In this study we have shown how a mechanistic VP model 
can be used to infer parameters approximating disease states 
of individual patients with suspected ARDS from 
observational data of mixed origin. Our results support the 
hypothesis that mechanistic modeling can be used to 
significantly reduce biases in data, introduced by pooling of 
data from different hospitals and to allow a discovery of 
patient cohorts driven exclusively by medical conditions. 
Overall, the continuous development of hybrid modeling 
approaches integrating diverse computational technologies, 
continuing increases in computational power, and ever-
growing numbers of available datasets leads to the 
expectation that these technologies will make a significant 
contribution to precision medicine, with benefits for patients, 
physicians, and the healthcare system as a whole. 

SUPPLEMENTARY MATERIALS 
Supplementary materials include description of data 

preparation, optimization, and clustering approaches used in 
the study. Supplementary List I contains the full list of 
parameters used as inputs for the model. Supplementary List 
II contains the full list of optimized and simulation output 
parameters which comprise model-derived data. 
Supplementary List III contains the full list of features which 
were extracted from original measured data and used in the 
clustering procedure. Enrichment analysis results for each of 
discovered clusters in case of clustering on original measured 
data are given in Supplementary Table I. Finally, enrichment 
analysis results for each of discovered clusters in case of 
clustering on model-derived data are given in Supplementary 
Table II. 
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