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Abstract—Goal: As an essential human-machine interactive
task, emotion recognition has become an emerging area over the
decades. Although previous attempts to classify emotions have
achieved high performance, several challenges remain open: 1)
How to effectively recognize emotions using different modali-
ties remains challenging. 2) Due to the increasing amount of
computing power required for deep learning, how to provide
real-time detection and improve the robustness of deep neural
networks is important. Method: In this paper, we propose a deep
learning-based multimodal emotion recognition (MER) called
Deep-Emotion, which can adaptively integrate the most discrim-
inating features from facial expressions, speech, and electroen-
cephalogram (EEG) to improve the performance of the MER.
Specifically, the proposed Deep-Emotion framework consists of
three branches, i.e., the facial branch, speech branch, and EEG
branch. Correspondingly, the facial branch uses the improved
GhostNet neural network proposed in this paper for feature
extraction, which effectively alleviates the overfitting phenomenon
in the training process and improves the classification accuracy
compared with the original GhostNet network. For work on the
speech branch, this paper proposes a lightweight fully convolu-
tional neural network (LFCNN) for the efficient extraction of
speech emotion features. Regarding the study of EEG branches,
we proposed a tree-like LSTM (tLSTM) model capable of fusing
multi-stage features for EEG emotion feature extraction. Finally,
we adopted the strategy of decision-level fusion to integrate
the recognition results of the above three modes, resulting
in more comprehensive and accurate performance. Result and
Conclusions: Extensive experiments on the CK+, EMO-DB, and
MAHNOB-HCI datasets have demonstrated the advanced nature
of the Deep-Emotion method proposed in this paper, as well as
the feasibility and superiority of the MER approach.

Index Terms—Multimodal emotion recognition, Electroen-
cephalogram, Facial expressions, Speech.
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each modality and an optimal weight distribution-based
decision-level fusion method.

I. INTRODUCTION

HUMAN emotions can be understood as people’s attitudes,
experiences, and corresponding behavioral responses to

the objective environment [1]–[3]. Emotions play an essential
role in people’s daily lives and work [4]. With the rapid
development of multimedia and human-computer interaction
applications, intelligent machines with emotion recognition
have been widely used in medical assistance [5], driving
safety [6], and other fields. The definition of emotion can
be divided into two paradigms, i.e., discrete paradigm and
multi-dimensional paradigm. The discrete paradigms refer to
the categories of emotions that people describe in daily life,
such as happiness, anger, depression, etc. In contrast, the most
commonly used multi-dimensional paradigm is the arousal-
valence 2D model proposed by Russell [7], arousal and valence
are levels of excitement and positivity, respectively, and this
definition method is conducive to our quantitative research on
emotions. The ways of expressing emotions can be broadly
classified into two categories: external representations, such
as facial expressions and speech, and internal representations,
such as electroencephalography (EEG) and heart rate [1].

Over the past decade, a majority of emotion recognition
studies have been focused on unimodal emotion recognition
(UER) using only one mode [8]–[10]. However, emotions
are considered a complex representation that cannot be reli-
ably captured with unimodal signals, since genuine emotion
can be hidden by different facial expressions or tones [11].
However, even so, facial expressions and speech are still
the dominant external channels for conveying emotion. One
study [12] showed that these two modalities account for 93%
of the emotional information in human communication, and
they are critical for multimodal emotion recognition (MER)
using external channels [13]. Some recent studies [14]–[16]
have attempted to leverage multiple modalities to boost the
performance of emotion recognition, which can demonstrate
the complementarity of emotion among multiple modes. These
fusion strategies still need internal representation modalities,
and their reliability still needs to be improved. In a previous
study [17], it was proposed that fusing facial expressions,
speech, and EEG could be a promising direction for future
research in emotion recognition. Inspired by this, on the basis
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of MER that integrates facial expressions and speech, this
paper introduces EEG, a signal that is not subject to the
individual subjective will, to improve the reliability of the
emotion recognition method [11].

EEG signals extracted from the central nervous system can
more accurately and objectively reflect changes in people’s
emotions than other signals [2], [11]. As mentioned above,
emotions can be expressed from multiple dimensions, and
facial expressions and speech, as the most critical external
representations of emotions [12], should also be considered.
This paper uses three modalities of facial expressions, speech,
and EEG to study MER for the first time. Unlike previous
MER methods, the proposed method considers the three most
relevant external and internal representations of emotions,
which has better accuracy and reliability.

For multimodal fusion, fusion methods can be divided into
feature-level fusion and decision-level fusion [18]. We found
that in previous studies [19]–[21], decision-level fusion meth-
ods are not only easy to implement but also exhibit better per-
formance than feature-level fusion. For example, the winning
methods of the EmotiW challenge were almost decision-level
fusion [14]. However, the increase in patterns in decision-level
fusion means that multiple models must be designed, leading to
inefficient multi-pattern recognition algorithms that are difficult
to port to mobile devices and provide real-time detection in
daily use [22]. This implies that we need to pay attention to
the model’s size when designing sentiment recognition models
rather than just striving for accuracy.

With the improvement of chip computing processing power
and deep learning performance, many novel emotion recogni-
tion methods have emerged in recent years. Some mainstream
neural network models have achieved good results in emotion
recognition, such as CNN [4], LSTM [8], [20], DBN [23],
and GCN [24]. These deep learning methods have gradually
replaced traditional feature extraction methods as the primary
research methods for emotion recognition. The proposed Deep-
emotion recognition framework in this paper utilizes three
deep learning models to extract emotional features from facial
expressions, speech, and EEG, respectively. The decision-level
fusion method is then applied to integrate the recognition
results from each modality, resulting in a more comprehensive
and accurate recognition rate. In addition, to prevent the final
model from being too large due to excessive classification
models, we reduced the number of model parameters as
much as possible on the premise of ensuring the classification
accuracy of each model. Our contributions in this paper can
be summarized as follows:

• This study is the first attempt to combine the multiple
modalities of facial expressions, speech, and EEG for
emotion recognition. In the decision-level fusion stage, we
propose an optimal weight distribution algorithm. Com-
pared with traditional equal-weight fusion, this method
can better judge the reliability of each mode and thus
effectively enhance the fusion performance.

• In this paper, a carefully improved GhostNet [25] structure
is proposed for facial expressions recognition (FER).

This method can effectively alleviate the overfitting phe-
nomenon of the original GhostNet in the training process,
and effectively improve classification accuracy.

• For speech emotion recognition (SER), we design a
lightweight full convolutional neural network (LFCNN),
which has good feature learning performance with only
a few parameters. Reducing model parameters as much
as possible is also a factor to be considered in the model
design process for decision-level fusion requiring multiple
classifiers.

• In the work of EEG emotion recognition (EER), this
paper designs a tree-like LSTM (tLSTM) model that can
fuse multi-stage features. This model combines shallow
and deep features in the feature extraction process and
performs better.

The rest of this paper is organized as follows: Section II de-
scribes the proposed emotion recognition methods and related
experiments. Next, the comprehensive experimental results and
discussion are reported in Section III. Finally, Section IV
presents the conclusion of this work.

II. MATERIALS AND METHODS

A. Data preprocessing

The method of data preprocessing can be found in the
Supplementary Materials of this manuscript.

B. Deep learning model

1) The improved GhostNet for FER: GhostNet is mainly
composed of multi-layer Ghost bottlenecks, among which
Ghost bottlenecks are mainly composed of the Ghost module.
The structures of the Ghost module and Ghost bottleneck are
shown in Fig. 2 and Fig. 1(a), respectively. Our work focused
on improving the Ghost bottleneck architecture, as shown in
Fig. 1(b). The original Ghost bottleneck is divided into stride=1
and stride=2 modes, which perform feature extraction from
different scales to obtain different feature map sizes. However,
different sizes of feature maps have certain reference value
for subsequent feature extraction. Inspired by this, the Ghost
bottleneck proposed in this paper combines the characteristics
of these two modes to provide more comprehensive char-
acteristics. The specific implementation method introduces a
1×1 convolution for downsampling in the case of the original
stride=1 to obtain the same shape when the stride=2. When
the input shape is 48× 48× 1, the specific structure of the
improved GhostNet is shown in Table I.

2) Architecture of LFCNN for SER: The overall structure
of our proposed LFCNN is shown in Fig. 3, which is mainly
composed of three parts: parallel convolution structure, residual
structure, and serial convolution structure. Depthwise separable
convolution (DSC) has been found in past research to have
a smaller number of parameters than traditional convolution
[26]. The success of Xception proves the superiority of DSC
over traditional convolution, and we will use it to design
the LFCNN. The convolutional layers mentioned later in this
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(a) The original Ghost bottleneck. Top: when stride=1; Bottom:
when stride=2.

(b) Our improved Ghost bottleneck.

Fig. 1. Structure of Ghost bottleneck.

(a) The traditional convolution layer.

(b) The Ghost module.

Fig. 2. Structure of traditional convolution and Ghost module.

section are DSC. Further details on the structure of LFCNN
can be found in the Supplementary Materials accompanying
this manuscript.

3) Architecture of tLSTM for EER: Our proposed tLSTM
structure is shown in Fig. 4. For the tree part, the LSTMs of
the leaf nodes all have the same number of neurons to ensure

TABLE I. Structure of the proposed improved GhostNet model for
FER. EXP: expansion size. OUT: the number of output channels. SE:
whether using the SE module.

Operator Output
Ghost bottleneck Setting

·EXP ·OUT ·SE

Conv2d, 16, 3×3 (batch, 24, 24, 16) - - -

Ghost bottleneck (batch, 12, 12, 40) 120 40 True

Dropout, 0.3 (batch, 12, 12, 40) - - -

Ghost bottleneck (batch, 6, 6, 80) 240 80 False

Dropout, 0.3 (batch, 6, 6, 80) - - -

Ghost bottleneck (batch, 3, 3, 160) 672 160 True

Dropout, 0.3 (batch, 3, 3, 160) - - -

Ghost bottleneck (batch, 2, 2, 160) 960 160 False

Dropout, 0.3 (batch, 2, 2, 160) - - -

Conv2d, 256, 1×1 (batch, 2, 2, 256) - - -

Dropout, 0.3 (batch, 2, 2, 256) - - -

GAVPool, Reshape (batch, 1, 1, 256) - - -

Conv2d, 512, 1×1 (batch, 1, 1, 512) - - -

Dense, Softmax (batch, 7) - - -

that their output shapes are consistent since their outputs will
be merged and fed into the sequence part. Our proposed tree
structure consists of four levels, each representing a stage of
features. The leaf nodes are located at different levels, which
are used to fuse the features of each stage together to obtain a
more comprehensive feature. It is worth noting that the output
of the LSTM we use in the tree part is the output of the entire
sequence, while the output of the LSTM in the sequence part
is the last hidden layer. Finally, the network outputs the arousal
and valence scores separately through the dense layer.

C. Proposed decision-level fusion strategy

To find the reliability of each mode, we developed an
optimal weight distribution algorithm. Taking arousal score
decision fusion as an example, assume that there are n modes
corresponding to n regression models and that a total of T
trials are used for prediction. The predicted average arousal
score for trial t in the kth model is Atk, k ∈ {1,2,3 . . . ,n}, t ∈
{1,2,3 . . . ,T}. Let the weight set ϖ to be {0.00, 0.01, 0.02. . . ,
0.98, 0.99, 1.00}, an array that starts at 0.00 and ends at 1.00
with a step size of 0.01. The root mean square error (RMSE)
is used as a measure to evaluate the performance of the current
weight distribution. When it is in the best performing weight
distribution, RMSE should be the smallest, denoted as RSmin. In
accordance with relevant provisions of the above, the optimal
weight distribution algorithm steps are as follows:

Step 1: The weights of n modes are enumerated in ϖ. Let the
weight of the kth mode be ωk; then, go to Step 2 when (1) is
satisfied. The algorithm ends when the enumeration is finished
and the optimal weight distribution is saved.

n

∑
k=1

ωk = 1 (1)
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Fig. 3. Structure of the proposed LFCNN model for SER. (A): When the task is expressed with a discrete paradigm. (B): When the task is expressed with a
arousal-valence 2D model.

Fig. 4. Structure of the proposed tLSTM model for EER.

Step 2: Calculate the predicted arousal score under the
current weight distribution. Assuming that the predicted arousal
score of trial t is ŷt , then the calculation formula can be
expressed as:

ŷt =
n

∑
k=1

ωkAtk (2)

Step 3: The RMSE of T trials under the current weight

distribution, denoted as RScut , is calculated as (3), where yt
is the actual arousal score of trial t. By comparing the size
relationship between RScut and RSmin, when RScut < RSmin,
the current weight distribution is considered to have better
performance. Thus, RSmin is updated to RScut , and the cur-
rent weight distribution is saved. When RScut ≥ RSmin, it is
considered that the current weight distribution does not exhibit
better performance. Regardless of the size relationship, Step 1
is performed again.

RScut =

√
1
T

T

∑
t=1

(ŷt − yt)2 (3)

To provide a clear illustration of the algorithm’s implemen-
tation, the flow chart of the algorithm execution as well as the
pseudo-code for the case of fusion of three modes is presented
in the Supplementary Materials of this manuscript.

D. Experiment

The setup and various details of the experiment can be found
in the Supplementary Materials of this manuscript.

III. RESULTS AND DISCUSSION

A. Results on CK+

Tenfold cross-validation was conducted on CK+ using both
GhostNet and our improved GhostNet. The confusion matrix
is shown in Fig. 5(a) and Fig. 5(b). The results show that our
improved GhostNet achieved an average accuracy of 98.27%,
outperforming the traditional GhostNet (90.21%).
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Furthermore, we found that the overfitting phenomenon of

the GhostNet model appears in the training process. In this
regard, we introduced well-designed multiple dropout layers
while modifying the Ghost bottleneck to alleviate the overfit-
ting phenomenon. The curves of the accuracy and loss obtained
during training of the GhostNet model on CK+ before and
after improvement, as a function of epoch, can be found in
the Supplementary Materials of this manuscript. The improved
GhostNet achieved an average accuracy of 98.27%, but the
accuracy of fear expression was only 95%, which may be
because fear and contempt have similar features. Nevertheless,
our proposed method has achieved advanced results in recent
research. Table II shows the comparison with some recent
studies. It can be seen from the table that the improved
GhostNet proposed by us performs better than other classical
classification models, which fully proves the superiority of our
proposed method.

(a) GhostNet.

(b) Our improved GhostNet.

Fig. 5. The confusion matrix obtained by Ten-fold cross-validation on the CK+
dataset.

TABLE II. Comparison with recent studies on CK+ datasets.
Val:Validation method, Acc: Accuracy.

Literatures Model Val Acc(%)

Nasri et al. 2020 [27] Xception 10-fold 98.20

Chowdary et al. 2021 [28] Vgg19 - 96.00
Inception-v3 - 94.20

Priya et al. 2021 [29] MobileNet 10-fold 96.00

Mishra et al. 2022 [30] ResNet50 5-fold 89.80

Shaik et al. 2022 [31] CNN-Attention 10-fold 97.67

Ours GhostNet 10-fold 90.21
Imporved GhostNet 10-fold 98.27

TABLE III. Comparison with recent studies on EMO-DB datasets.
Val: Validation method, Acc: Accuracy.

Literatures Val Acc(%) Model size(MB)

Chen et al. 2018 [32] 10-fold 82.82 323.46

Sajjad et al. 2020 [8] 5-fold 85.57 128.00

Muppidi et al. 2021 [33] 5-fold 88.70 31.20

Kwon et al. 2021 [34] 5-fold 93.00 14.40

Andayani et al. 2022 [35] 10-fold 85.55 -

Ours 10-fold 94.36 2.28

B. Results on EMO-DB

For experiments on EMO-DB, we achieve an average accu-
racy of 94.36% with an F1-scores of 94.38%, which almost
surpasses most recent studies. The size of our proposed model
is only 2.28 MB, which is much smaller than other models and
is more likely to be applied to future mobile devices. The num-
ber of parameters for each component of the LFCNN structure
can be found in the Supplementary Materials accompanying the
manuscript. Table III shows the comparison between our work
and previous work. The table shows the prediction accuracy
and the size of the model. According to the comparison table
data, we can see that the superiority of our method was thus
validated.

C. Results on MAHNOB-HCI

The experimental results obtained in the MAHNOB-HCI
dataset show that the tLSTM model has obtained advanced
results in EER and the feasibility of the decision-level fusion
method. Fig. 6 shows the verification results of subjects 1 to
15. Table IV shows the average RMSE of some subjects after
fusion. We found that the fusion method of Deep-Emotion
proposed in this paper has improved performance in both
arousal and valence dimensions. However, the fusion method
is only significantly higher than that of the speech mode
(p < 0.05, paired t test). We did not find that the fusion
method outperformed the facial expressions or EEG mode
(p > 0.05, paired t test). In emotion recognition experiments,
facial expressions are often associated with high volatility since
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TABLE IV. The average RMSE report of some subjects under our proposed decision-level fusion method.

Subject Id 1 4 9 15 18 Average

Arousal
Sc

al
e [1-9] 0.6235±0.2153 0.7412±0.3162 0.8526±0.2431 0.7812±0.2162 0.8512±0.1425 0.7628±0.2913

[0-1] 0.0642±0.0246 0.0758±0.0186 0.0813±0.0283 0.0784±0.0213 0.0902±0.0182 0.0813±0.0241

Valence

Sc
al

e [1-9] 0.9842±0.3120 1.0143±0.3124 0.8975±0.1962 1.1321±0.2548 0.8458±0.3465 0.9450±0.2627
[0-1] 0.1031±0.0326 0.0968±0.0274 0.0862±0.0164 0.1063±0.0205 0.0872±0.0242 0.0952±0.0176

(a) Arousal dimension.

(b) Valence dimension.

Fig. 6. The accuracy of UER and MER for each subject in the MAHNOB-HCI dataset. The horizontal axis represents the subject ID, and the vertical axis
represents the accuracy rate (%). FE: facial expressions. (a) Arousal dimension accuracy. (b) Valence dimension accuracy.

subjects may deceive the machine by mimicking certain facial
expressions. In this case, the gap between the error associated
with facial expressions and the error of accurate emotion
detection can be filled by adding information sources (e.g.,
EEG and speech). Furthermore, in the MAHNOB-HCI dataset,
the subjects were asked to behave normally rather than mimic
certain facial expressions, which may be the main reason we
could not find solid statistical evidence indicating significant
improvement after fusion. For example, in this study, the FER
accuracies of subjects 2 and 13 are higher than the result of
the fusion method because the fusion result combines multiple
modes for comprehensive consideration.

In addition to having a relatively high accuracy rate, Deep-
Emotion can also show relatively good robustness. For exam-
ple, when subjects express facial expressions that are different
from their real emotions, the results obtained by MER fusion
will not deviate significantly from the real ones. This is
because the subjects’ EEG still represents their real emotion.
A comparison of this study with other research on emotion
recognition in the MAHNOB-HCI dataset can be found in the
Supplementary Materials. Moreover, SER is a very challenging
task in MAHNOB-HCI. This is because the speech signal in
this dataset includes not only the voice of the subject but also
the voice of the stimulus material, which makes it challenging
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to extract the voice of the subject. This may be the reason for
our relatively average recognition rate in SER.

Currently, our work is primarily based on the analysis of
open source datasets, and we have not conducted independent
data collection to further verify our findings. In future research,
we plan to design a standardized experimental paradigm to col-
lect additional data from subjects to more thoroughly evaluate
the capabilities of Deep-Emotion.

IV. CONCLUSION

In our work, we propose a new MER method named
Deep-Emotion, based on deep learning techniques to
develop emotion recognition models for facial expressions,
speech, and EEG. An improved GhostNet is proposed
for facial expressions, which effectively alleviates the
overfitting phenomenon and dramatically improves the
model’s performance. An LFCNN model is developed for
speech signals, which can greatly reduce the model size
on the premise of ensuring recognition accuracy. For EEG
signals, a tLSTM model that can better learn the emotional
characteristics of each stage was designed. Furthermore, we
designed an optimal weight distribution search algorithm to
find the reliability of each mode and achieve decision-level
fusion. Our proposed methods are tested with open source
datasets in MER experiments. To the best of our knowledge,
this study is the first attempt to combine facial expressions,
speech, and EEG for MER. The experimental results obtained
in multiple public datasets validate the feasibility of the
proposed method. In future work, we can further improve the
fusion method that can dynamically assign weight to each
mode to enhance the overall robustness of the algorithm.
Dynamic weight allocation is a method of assigning different
weights to different modalities, or sources of information, in a
multimodal learning system. This allows the model to assign
higher weights to the modalities that contain more relevant
and useful information and lower weights to the modalities
that contain less relevant or noisy information. This can
improve the performance of the model by focusing on the
most useful information and filtering out the noise. Overall,
we believe that dynamic weight allocation is a promising
approach for multimodal learning, and we will explore its
potential in future research.

SUPPLEMENTARY MATERIALS

The Supplementary Materials of this manuscript include
relate work on emotion recognition. The data preprocessing
is described, and the full structure of LFCNN is detailed. The
flow chart of the algorithm execution as well as the pseudo-
code of the optimal weight distribution algorithm is also
provided. The experimental process of this study is described in
detail. Finally, supplementary explanations of the experimental
results are provided. This document can be accessed in the
”Media” section of IEEE Xplore.
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