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Abstract—Magnetic Resonance imaging based Electrical
Properties Tomography (MR-EPT) is a non-invasive tech-
nique that measures the electrical properties (EPs) of bi-
ological tissues. In this work, we present and numerically
investigate the performance of an unrolled, physics-
assisted method for 2D MR-EPT reconstructions, where
a cascade of Convolutional Neural Networks is used to
compute the contrast update. Each network takes in input
the EPs and the gradient descent direction (encoding the
physics underlying the adopted scattering model) and re-
turns as output the updated contrast function. The network
is trained and tested in silico using 2D slices of realis-
tic brain models at 128 MHz. Results show the capability
of the proposed procedure to reconstruct EPs maps with
quality comparable to that of the popular Contrast Source
Inversion-EPT, while significantly reducing the computa-
tional time.

Index Terms—Convolutional neural network, electrical
properties, inverse scattering problems, learning methods,
magnetic resonance imaging.
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Impact Statement— In this work, we present and numer-
ically investigate in 2D the performance of an unrolled,
physics-assisted technique for MR-EPT, wherein convolu-
tional neural networks iteratively take as inputs both the
EPs maps and the gradient descent directions, encoding
the scattering model’s physics.

I. INTRODUCTION

MAGNETIC Resonance based Electrical Properties To-
mography (MR-EPT) is a non-invasive imaging modal-

ity to extract the spatial distribution of the electrical conductivity
and relative permittivity of living biological tissues by process-
ing the magnetic field data acquired using a magnetic resonance
(MR) scanner [1], [2], [3].

The knowledge of electrical properties (EPs) is relevant in
several applications because they encode information about the
typology and composition of biological tissues. Moving towards
biomedical imaging, the values of EPs can be related to the health
condition of biological tissues, hence variations from predicted
reference values could reveal the presence of pathologies [2], [3],
[4], [5], [6]. Indeed, the conductivity of healthy tissues differs
significantly from that of pathological tissues [4]. This is useful
as diagnostic tool for cancer and stroke in several biomedical
applications [4], [5], [6], [7]. Additionally, the knowledge of
the EPs allows for the evaluation of the electromagnetic (EM)
fields inside tissues and this is very useful in all those medical
applications wherein one needs to calculate tissue heating, that
is related to the specific absorption rate induced by EM waves.
Some examples are radiofrequency (RF) ablation and hyperther-
mia for cancer treatment [8], [9].

Different methods were proposed in the literature for MR-
EPT. Most of them fall into two main groups: local derivative
approaches [10], [11], [12], [13], [14] and global integral ap-
proaches [15], [16], [17], [18], [19], [20], [21], also known
respectively as direct and iterative methods [2], [3], [22]. The
main features, including advantages and limitations, of these
methods are detailed in [22].

In the last few years, learning techniques have shown out-
standing results on inverse problems, thanks to the rapid progress
in the field of artificial intelligence. These techniques aim at
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making the reconstruction process as reliable as possible while
reducing the computational time [23], [24], [25], [26], [27], [28],
[29], [30], [31], [32], [33], [34], [35]. They are very popular and
widely used in several fields including biomedical imaging and
diagnosis.

Among the above methods, learning approaches were pro-
posed to deal with the inverse scattering problem (ISP) under-
lying MR-EPT. For instance, in [26] a feedforward approach
employing a CNN was used to reconstruct the EPs with higher
accuracy with respect to direct approaches. In [27] a two-step
approach was proposed, where CNN-based reconstructions were
solely used as initial guesses for 3D-Contrast source inver-
sion based EPT (CSI-EPT). The procedure seeks to reduce
the heavy computational load of 3D CSI-EPT without compro-
mising quality. Nonetheless, convergence still required a huge
number of CSI iterations and time. Moreover, in [27] the adopted
end-to-end CNN does not incorporate any physical knowledge,
compromising its generalizability to unseen cases.

Generalizability of out-of-distribution (OOD) data is a critical
challenge in learning strategies. A possible strategy to make
learning approaches more generalizable is acting on the training
dataset creation [34], e.g., by increasing the size as well as the
variety of the dataset the network was trained on ([32], [34] of
the paper), or by using data augmentation during training, e.g.,
by transforming the input data.

Alternatively, one can introduce physical model information
through the network [28], [29], [30], [33], [35], [36]. A first
attempt to bridge the gap between learning approaches and
problem physics was reported in [30], wherein a supervised
descent method is proposed to update the inverted models by
exploiting the descent directions collected from the training
stage. Another further attempt is described in [36], where the
EPT equations were combined with DL to iteratively reduce the
error in the final reconstructions.

By taking advantage from the idea in [28], in this work,
we propose an unrolled optimization based on a cascade of
physics-assisted CNNs for MR-EPT, that explicitly considers
the physics underlying the scattering model. Integrating physical
knowledge into a deep learning (DL) approach is crucial for
achieving physically meaningful results. Then, in the proposed
strategy, the physics is introduced through the computation of the
gradient descent direction of the cost function considering the
misfit between the data and the scattering model, as in standard
iterative optimization methods.

Unlike straightforward end-to-end learning procedures (as in
[26], [27]) which discard the physics of the problem and aim
at learning the relation between measured fields and electrical
properties, the presented physics-assisted framework interleaves
physics-based calculations (ensuring data consistency) with
CNN (for a more reliable and fast contrast update).

The term “unrolled” refers to a cascade of CNNs with the
same structure, imitating standard iterative optimization strate-
gies. Moreover, it alleviates the limitations of iterative methods,
such as the possibility during optimization to get trapped in local
minima [37] and the high computational burden (as few rolls are
required).

In the following, the proposed procedure is tested for
brain EPs reconstructions. In particular, the current work is a

numerical investigation of the performance of the proposed
method in silico in the case of 2D realistic human head models.
Also, a comparison with the performance obtained with the
standard contrast source inversion CSI-EPT is given.

II. METHOD: UNROLLED OPTIMIZATION VIA

PHYSICS-ASSISTED CNNS

The proposed procedure involves a cascade of CNNs to mimic
the overall iterative scheme of the minimization procedure un-
derlying gradient based techniques (more details about the most
common one, that is CSI-EPT, is reported in the supplementary
materials (SM)). As such, the proposed approach is referred
to as ‘unrolled’. This kind of algorithm allows to maintain the
data consistency of iterative algorithms and it offers promises
of reducing one of the main issues of DL techniques (i.e., the
generalizability and the need for very large training sets).

The main idea is to consider the contrast function χ (en-
coding the target EPs) as unique unknown and minimize the
misfit between the data and the scattering model [38]. Then,
the update of χ is performed by means of a CNN, trained
for each roll separately (instead of using (S1.1a) as the pop-
ular iterative method CSI-EPT). From a mathematical point of
view, the update χk+1 is realized according to the following
relation [28]:

χk+1 = Nθk (χk, ∇k) (1)

where in Nθk identifies at each roll the kth CNN and θk are the
learned parameters. Note that the functions Nθk correspond to
CNNs with the same architecture but with different parameters
θk, which are learnt separately at each roll (each roll identifies
a single block, including a CNN). The inputs of the network
at the kth roll are the complex contrast profile χk and the
descent gradient-determined direction ∇k (see Fig. 1), which
enforces the physical model. Hereafter, we refer to the method
as CNNs-EPT.

The update (1) is a key step of the proposed procedure, as
the physics of the problem is maintained in the reconstruction
framework. Indeed, unlike a straightforward end-to-end learn-
ing procedure, which discards the physics of the problem and
aims at learning the relation between measured fields and EPs,
the presented framework combines physics-based calculations
(ensuring data consistency, see the light pink box in Fig. 1) with
CNNs (for contrast update). This is a much easier task than a
domain shift of end-to-end methods.

As the only unknown of the problem is the contrast function,
the relevant cost function and the gradient direction ∇k are
different from the ones in CSI-EPT. More details about the new
cost functional as well as the gradient direction ∇k are given in
Section S2.A of SM.

During the training, starting from χk and ∇k, at each roll,
the CNN learns an update of the contrast by minimizing a loss
function (in particular, the half-mean-squared-error) between
the predicted updated contrast and the ground truth (GT). Then,
the output from the kth roll becomes the initial guess for the
next one and so on, iteratively.
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FIGURE 1. Scheme of the proposed unrolled physics-assisted MR-EPT method. B+
1,s = B+

1,tot −B+
1,inc is the scattered magnetic field data. At

the first roll, the input of the CNN χk is equal to the starting guess χ0, which is a homogenous contrast map. The starting guess is the same for
both training and testing. Then, at the next roll, the input of the CNN is the output of the previous roll, i.e., the updated contrast map χk+1, and
so on. The method uses a fixed structure (roll) which is repeated several times. Each roll interleaves physics-based calculations (full wave forward
solver and gradient calculations in the light pink box) with a CNN (for the contrast update).

TABLE 1
DETAILS OF THE PERFORMED NUMERICAL ANALYSIS

Even if the proposed unrolled strategy computes at each kth

roll the gradient∇k, it is important to note that the proposed strat-
egy can converge to a reliable solution in a few rolls compared
to standard iterative ones. This means that the computation of
the gradients is performed only a few times. Then, in the testing
phase, the trained networks allow to quickly generate the EPs
prediction.

The stopping criterion of the overall procedure is based on the
evaluation of the difference between the contrast map in input
and output. The iterative procedure stops, if no improvements are
observed in terms of permittivity and conductivity reconstruc-
tions in terms of the computed normalized mean square error
NMSE through the last two iterations, across all training data.

In the following numerical tests, three rolls were considered.
Then the gradients were computed only three times, reducing the
computational burden with respect to standard iterative methods.
For more details about the CNN design, the reader is referred
to Section S2 of SM.

III. RESULTS

In this paper, a numerical investigation of the proposed strat-
egy is presented against 2D realistic head models (more details
on EM simulation setup, times and the involved brain models are
in Section S3 of SM). All the performed tests are summarized
in Table 1.

In the following, the results from a test-case example are
shown, i.e., on a head model with a tumor-like anomaly. As
far as the case of pathology-free head models is concerned, the
readers are referred to [29] for preliminary results.

To provide a quantitative understanding, the boxplots
reporting the median of the mean absolute percentage error
(MAPE) (see Section S4 of SM) over all the test data (with the
25th-bottom edge and 75th-top edge percentiles) and for the
WM, GM, CSF, and tumor (when present) are shown. In case
of noisy data, a white Gaussian noise with a SNR = 18 dB
was superimposed on the real and imaginary parts of the total
magnetic field, separately.
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FIGURE 2. Test 1: known transmit phase. EPs estimations through the three rolls for a slice of a brain model with tumor-like anomaly. Ground-truth
(a); reconstructed EPs maps (conductivity top/permittivity bottom) noiseless (b) and with noise 18 dB (c). The NMSE values for the reconstructed
slice are reported for all three rolls (red values) for the tissues considered all together. The reconstruction time for both cases (b) and (c) is about a
few seconds. The boxplots showing the median MAPE (with the 25th-bottom edge and 75th -top edge percentiles), for WM, GM, CSF and tumor-like
anomaly conductivity (d) and permittivity (e) reconstructions across all head models in DStest respectively without and with noise (18 dB). CNNs
were trained with DStrain,h. These boxplots reveal that the error drops as the number of rolls increases, for both noiseless and noisy cases. As far
as GM, WM and CSF are concerned, the average error both for permittivity/conductivity at the third roll settles below 15% and 20% for the noiseless
and noisy cases, respectively. Instead, for the tumor, the error settles around 10% for permittivity, for both noiseless and noisy cases. Performance
is slightly worse in the case of conductivity, for which the tumor error is roughly 40%.

A. Test 1

Fig. 2 shows EPs reconstructions for each roll both for noise-
less and noisy data of a single slice with a tumor-like pathology
under the assumption that the transmit phase was known. These
results show good conductivity and permittivity reconstructions,
also at tissue boundaries, where the quality of the reconstructions
improves from roll 1 to roll 3. In the presence of noise, the results
show more blurring. The good performance is also confirmed
by the NMSE (see Section S4 of SM for its definition) values
reported in the figure. Indeed, the NMSEs at the third roll for
conductivity and permittivity are equal to 0.05 and 0.01 without
noise, 0.1 and 0.02 with noise, respectively. The results also
show that such a network is able to infer the presence of the
anomaly, even if the network was trained only on healthy brain

maps. The MAPE trend across all the test population DStest is
reported in Fig. 2(d) and (e).

B. Test 2

Fig. 3 shows EPs reconstructions for each roll, both for
noiseless and noisy data of the same pathological slice shown
for Test 1, but using the TPA instead of the actual transmit phase.
More details about TPA in SM Section III.

The NMSEs at the third roll for conductivity and permittivity
are equal to 0.07 and 0.02 without noise and 0.12 and 0.02 with
noise, respectively. As observed in the first test case, again the
presence of noise leads to blurring in the results and higher
NMSE values. Fig. 3(c) and (d) reports the MAPE trend for
both noiseless and noisy cases.
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FIGURE 3. Test 2: TPA. EPs estimation through the three rolls for a slice of a brain model with tumor-like anomaly, ground-truth (a); reconstructed
EPs maps (conductivity top/permittivity bottom) noiseless (b) on the left and with noise 18 dB (c) on the right. The NMSE values for the reconstructed
slice are reported for all three rolls (red values) for the tissues considered all together. The boxplots showing the median MAPE (with the 25th-bottom
edge and 75th -top edge percentiles), for WM, GM, CSF and tumor-like anomaly conductivity (d) and permittivity (e) reconstructions across all head
models in DStest respectively without and with noise (18 dB). CNNs were trained with DStrain,h. Unlike Test 1, the MAPE trend shows that error
does not always monotonically decrease, both without and with noise. This circumstance is probably related to the approximation underlying the
TPA. However, the observed values in Fig. 3 are comparable to the range of values in Fig. 2, indicating that the introduced TPA did not significantly
affect the results.

C. Test 3

In the above tests, the proposed approach detects the tumor
location and morphology, even though it was absent in the train-
ing dataset. We also investigated how the performance would
change when tumors were included in the training set.

Fig. 4 shows EPs reconstructions for each roll, for noisy
data of the pathological slice in Tests 1 and 2, assuming the
TPA and also considering DStrain,nh. The displayed results
show an improvement in the reconstructions, especially for the
estimation of the tumor EPs. This is attributable to the fact that
training in this case was done considering a different dataset (i.e
DStrain,nh), which also includes pathological models.

In Fig. 4(c) and (d) the comparison of the MAPE obtained
by training the CNNs-EPT both with the DStrain,h and with the
DStrain,nh is shown, only for the third roll.

D. Test 4

In Fig. 5, a comparison of the proposed CNNs-EPT vs CSI-
EPT only is shown, as well as the possibility of using, in a
hybrid way the output of the proposed method as initial guess
for CSI-EPT. As it is clear from the figure, the CNNs-EPT show
for the tumor an underestimation of the conductivity and an over
estimation of the permittivity, with respect to the ground-truth
values. Starting from a homogeneous initial guess, CSI-only
reconstructions show comparable accuracy to the CNNs recon-
structions for the tumor. However, the CSI-only reconstruction
time for a single slice is much higher: 1min for CSI-only vs few
seconds for the cascade of three CNNs.

The hybrid method (HYB in the following), i.e., the output of
the CNNs used as input for CSI, further improve reconstruction
quality. Additionally, providing CNNs as initial guess leads to



510 IEEE OPEN JOURNAL OF ENGINEERING IN MEDICINE AND BIOLOGY, VOL. 5, 2024

FIGURE 4. Test 3: TPA with noisy data and training with DStrain,nh. EPs estimation through the three rolls for a slice of a brain model with
tumor-like anomaly, ground-truth (a); reconstructed EPs maps (conductivity top/permittivity bottom) with noise 18 dB (b). The NMSE values for
the reconstructed slice are reported for all three rolls (red values) for the tissues considered all together. The boxplots comparing the third roll
median MAPE (with the 25th-bottom edge and 75th -top edge percentiles) for CNNs trained with both DStrain,h and DStrain,nh, for WM, GM, CSF
and tumor-like anomaly conductivity (c) and permittivity (d) reconstructions across all head models in DStest with noise (18 dB). Focusing on the
conductivity trend (c), the error decreases by about 5% for all tissues GM, WM and CSF. As far as the tumor is concerned, it is clearly seen that
the error drops from around 45% to 15% when tumor models are also used in training. Conversely, for permittivity we do not observe an overall
improvement. This is related to the training dataset, which is not enough wide.

a reduction in the reconstruction time (16s for the HYB vs
1min for CSI only for one slice, under the same stopping rule).
Furthermore, by using the HYB the error arising from the low
E-field region in the CSI reconstruction is also reduced. The
boxplots with the MAPE for these three compared strategies are
shown in Fig. 5(e) and (f).

IV. DISCUSSION

Unlike most of the end-to-end learning approaches lacking
physics information, the proposed strategy does incorporate
the physics underlying the scattering model (i.e., the gradient
descent direction) as an input to the CNNs. The presented
results demonstrated the feasibility of CNNs-EPT to reconstruct
conductivity and permittivity maps, starting from simulated B+

1

data. It allows EPs reconstructions, for noiseless and noisy data

as well as for known transmit phase and for TPA, with results
comparable with the ones by CSI-based approaches but in a
much shorter reconstruction time.

As shown in the boxplots, median MAPE values tend to
decrease through the rolls, which confirms the effectiveness
of the procedure. Simultaneously, the reconstructions get more
detailed, especially at the tissue boundaries. First, only the
actual transmit phase (assumed known) was considered; af-
terwards, the more realistic TPA was also added. The results
demonstrate the method’s ability to handle the TPA. Yet, tumor
reconstructions for the cases trained with healthy models only
are not yet accurate, even though the tumor is recognized by
its spatial location within the brain and its shape. However,
the reconstruction quality improves especially for the con-
ductivity value, when DStrain,nh is considered. This suggests
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FIGURE 5. Test 4: known transmit phase and noiseless data. EPs estimation from different EPT reconstruction approaches for a head model
with tumor-like anomaly. Ground-truth (a); reconstructed EPs maps (conductivity top/permittivity bottom) noiseless (b)-(d), on the top. The NMSE
values, for the reconstructed slice are reported (red values) for the tissues considered all together. Reconstruction time for case b) is about a few
seconds, for case c) is about 1minute and for case d) is about the time for case b) plus the time to reach 980 iterations (i.e.,14s). The boxplots
comparing the median MAPE (with the 25th-bottom edge and 75th -top edge percentiles) for three different reconstruction methods for WM, GM,
CSF and tumor-like anomaly conductivity (e) and permittivity (f) reconstructions across all head models in DStest. The hybrid technique improves
tissues reconstruction for both conductivity and permittivity in WM, GM, and CSF. Notably, for the tumor, the error for the reconstructed conductivity
decreases from 35% to 7% when the HYB is used instead of CNNs, whereas for the permittivity this decrease is from 8% to 6%. In Fig. 5(e) and (f),
the variance of the CNNs-EPT reconstructions is larger. This is probably due to the fact that the training is performed using the dataset DStrain,h.
Then, in testing, the anomaly represents an OOD case for the CNNs. This issue is partially overcome when the HYB approach is considered. On
the other hand, a wider and more varied training dataset can reduce the variability and improve the reconstructions (see results in test 3). Unlike
the previous cases, in test 4 the noisy case is not considered as no further regularization technique is adopted. Indeed, the CSI-EPT algorithm fails
in the case of noisy data (also in the more realistic case of TPA) as it needs to be properly equipped with a robust regularization technique.

that both using physics and increasing the dataset improve
generalizability.

The results presented demonstrate performance comparable
to end-to-end methods presented in literature. For instance, if
the same level of noise as in [26] is considered, for a head model
(see Supplementary Table S9 in [26]), the average NMSE (for
the main three tissues WM, GM and CSF considered together)
is about 12% in the best network configuration. Contrary, in our
procedure the NMSE is about 9%. Additionally, for the head
model with a tumor inclusion with noisy data, the approach
in [26] and the proposed one show that for the reconstructed

tumor conductivity the NMSE is about 15%, while for the
permittivity value is more accurate, as the NMSE is about 5%.
It is important to note that in [26], two distinct trainings are per-
formed to obtain conductivity and permittivity reconstructions,
whereas the technique proposed in our work enables the direct
reconstruction of contrast through a single network, saving time
needed for training and testing. Lastly, the proposed method
starts from a homogenous profile and does not exploit tissue
contrast information as a priori knowledge, which was instead
needed in [26]. On the other hand, unlike [27] which pertains
to a 3D case, our technique is proposed and tested on a 2D
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geometry. However, in the case of TPA with noise, we compared
our method against [27]. In this case we see that, the proposed
strategy shows lower NMSE for conductivity and permittivity:
in terms of conductivity for the head model the average NMSE
is about 10% for our method, while it is about 55% for the one
in [27]; for permittivity is about 3% versus 25%, respectively.

Ultimately, if compared with standard iterative methods, this
approach allows significant computational advantages. With
respect to CSI-EPT, it allows similar accuracy but faster recon-
structions (2s versus 1min for a given 2D slice), which will be
extremely relevant when moving to 3D-reconstructions (which
take hours). The proposed learning procedure skips the computa-
tion of the step length adopted in CSI to guarantee the maximum
decrease of the functional along the gradient direction. On the
other hand, in CSI the full wave forward solver is not required
at each roll. As far as the hybrid method is concerned, using the
output of the proposed method as a convenient starting guess
allows to reduce the number of iterations required for CSI to
converge to the final solution (5422 versus 980).

Yet, the proposed method still presents some limitations. First
of all, the method was tested on 2D simulated human brain data
at 128 MHz, but other Larmor frequencies should be eventually
considered. Second, the procedure should be extended and as-
sessed in the case of a 3D scenario. This will require network
adaptations to cope with 3D input data, as well as adaptations
to the input patches to deal with the increased computational
burden in training. Third, the rundown of reconstructed and (par-
tially) shown head models was obtained starting from simulated
data. This paper is a first numerical investigation, as done in
many other recently published works [27], [33]. Future work
should then be focused on translating this method to measured
data, first in phantoms, where reference electrical properties
values can be measured independently, and then in-vivo.

Moreover, as with most of the methods in the literature, the
developed one does not include the RF shield in the Green’s
function. Then, future works should be devoted to the analytical
or numerical inclusion of RF shields in the Green’s function. In
this respect, a possibility could be found in [15], in which the
RF shield is numerically implemented to model the RF fields
inside the MRI scanner, by using mirror currents.

Furthermore, CNNs are not the only possible architecture
that can be used to resolve ISPs. Recurrent Neural Networks
(RNN) are other common structures [25]. The real advantage of
these kinds of networks is that they have a memory state, which
allows them to mimic an iterative minimization procedure. In
this regard, a future work may investigate the use of an RNN
performing like the herein proposed unrolled CNNs-EPT.

Finally, this approach can also be adapted and extended to
other imaging problems, e.g., microwave imaging [39], [40].

V. CONCLUSION

In this work, we presented a numerical investigation of a
novel unrolled optimization method for MR-EPT reconstruc-
tions, which includes physics-assisted CNNs. Promising re-
sults are observed indicating substantial advantages in terms of
computational time compared to iterative reconstructions (e.g.,

CSI-EPT). This computational improvement will be even more
relevant when moving to 3D reconstructions in future studies.
The presented analysis is for 2D MR-EPT reconstructions for
noiseless reconstructions and reconstructions in presence of
realistic noise levels. This work is therefore a necessary precur-
sor before moving on to experimental data, where knowledge of
ground-truth electrical properties is not available.
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