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Abstract—Goal: In recent years, deep neural networks
have consistently outperformed previously proposed meth-
ods in the domain of medical segmentation. However, due
to their nature, these networks often struggle to delineate
desired structures in data that fall outside their training dis-
tribution. The goal of this study is to address the challenges
associated with domain generalization in CT segmentation
by introducing a novel method called BucketAugment for
deep neural networks. Methods: BucketAugment leverages
principles from the Q-learning algorithm and employs vali-
dation loss to search for an optimal policy within a search
space comprised of distributed stacks of 3D volumetric
augmentations, termed ‘buckets.’ These buckets have tun-
able parameters and can be seamlessly integrated into ex-
isting neural network architectures, offering flexibility for
customization. Results: In our experiments, we focus on
segmenting kidney and liver structures across three dis-
tinct medical datasets, each containing CT scans of the ab-
dominal region collected from various clinical institutions
and scanner vendors. Our results indicate that BucketAug-
ment significantly enhances domain generalization across
diverse medical datasets, requiring only minimal modifica-
tions to existing network architectures. Conclusions: The
introduction of BucketAugment provides a promising so-
lution to the challenges of domain generalization in CT
segmentation. By leveraging Q-learning principles and dis-
tributed stacks of 3D augmentations, this method improves
the performance of deep neural networks on medical seg-
mentation tasks, demonstrating its potential to enhance the
applicability of such models across different datasets and
clinical scenarios.

Index Terms—Medical image segmentation, image aug-
mentation, domain generalisation, abdominal CT, reinforce-
ment learning.

Impact Statement—BucketAugment significantly en-
hances domain generalization in CT segmentation, improv-
ing deep neural network performance across diverse medi-
cal datasets by utilising Q learning to find the most suitable
augmentations.
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I. INTRODUCTION

D EEP learning architectures, especially convolutional neu-
ral networks, have had a significant impact on the field

of medical image segmentation. Introduction of U-Net archi-
tecture [15], have increased interest and caused significant im-
provement in this area, while simultaneously providing pillar
concept for further modifications and improvements, that re-
shaped neural network architectures for a decade. Thanks to
the altered modifications of U-Net such as U-Net++ [16],
ResNet [17], DenseNet [18] clinicians could have been able to
perform everyday clinical tasks like analysis of medical scans,
delineation of pathological structures and prognosis prediction
more accurately and in shorter amount of time.

However, these segmentation based on experimental setups
applied in controlled environments often don’t reflect real-world
healthcare conditions, and medical image segmentation remains
a daunting challenge nowadays [32], [33], [34]. The main
challenge concerns the variability and complexity of medical
datasets, which often consist of data gathered across several
medical institutions and captured by several scanning protocols.
This variability leads to a shift in the datasets, where statistical
characteristics of scans differ from one source to another. As a
result, a neural network trained on one dataset may perform
poorly and exhibit limited generalization when applied to a
different dataset, even if it represents the same group of patients
with similar diagnoses.

To mitigate this issue, one of the possible solutions is to gather
large amounts of diverse data acquired from various medical in-
stitutions and different vendors. Although it is common practice
in general computer vision domain, this solution is inadequate
in the medical imaging domain. This is mainly limited due
to government data sharing restrictions, patient privacy, and
their resilience to provide confidential information about their
health status. Moreover, number of patients with some specific
diagnosis, such as tissue cancer or other rare abnormalities, is
limited.

Domain generalization in medical imaging is critically im-
portant due to the inherent variability in medical data across
different healthcare settings. This variability arises from differ-
ences in imaging equipment, protocols, patient populations, and
even the way images are processed and interpreted. Domain
generalization ensures that diagnostic models can accurately
interpret medical images regardless of where they were captured.
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This means that a model trained in one hospital can effectively
analyze images from another, potentially reducing diagnostic
errors associated with model overfitting to a single source of
data. By mitigating the need for model retraining on institution-
specific data, domain generalization facilitates the broader adop-
tion of AI and machine learning tools in clinics and hospitals
that may not have the resources for extensive model customiza-
tion. This democratizes access to advanced diagnostic tools,
especially in under-resourced settings.Generalizable models can
support more reliable and timely diagnoses, leading to faster
and more accurate treatment decisions. For patients, this means
better healthcare outcomes and potentially reduced treatment
costs.

There are two main approaches for the domain generalisation
the generative neural networks (GANs) and the data augmenta-
tion [4]. The first group of methods utilizes GAN [21]. The main
goal here is to adapt network to learn data-specific attributes
and overall dataset distribution, so it can generalize well on
target domain. This is typically achieved via domain adaptation
process [23], which focuses on optimizing the representation
of hidden features to minimize domain gap. One of the form
of domain adaptation in the context of generative models is
referred to image-to-image translation. Image translation can
be achieved in two ways, the difference being the nature of the
data provided. Traditionally, Pix2Pix network [25] or its variants
such as Vox2Vox [26] accomplishes image-to-image translation
through the utilization of paired datasets. In these datasets, each
image from the original domain is matched with a corresponding
image transformed into the target domain. However, availability
of reasonable amount of samples from source and target dataset
is quite rare, thus application of paired translation is limited in
real world scenarios, especially in medical domain. Alternative
approach is to utilize only one domain, this refers to process
of unpaired image translation and was introduced together with
CycleGAN architecture [27]. Moreover, this architecture can be
used in the scenario, where translation is used to enrich source
dataset with synthetic samples from target domain [24]. Despite
its promising usability, one of the limitations in medical domain,
which still remains a serious factor to consider, is that generated
samples often present anatomically incorrect representations of
organs or other human body structures.

The second method, data augmentation, is probably the most
promising one and is widely used in many deep-learning do-
mains [22]. Data augmentation represents sets of image trans-
formations, which are coupled in specific order and its goal is
to increase number of samples in training dataset. Moreover,
it mitigates imbalance problem and due to increased variety of
samples it helps to prevent network overfitting. These trans-
formations often operate on single image, but some methods
like mixups [28] require multiple samples. In common, they
alter image spatially via operations such as rotation, flipping,
zooming or operate on pixel/voxel level to increase brightness,
contrast and other visually based properties. However, it is not
trivial to identify the most beneficial set of transformations for
a specific task.

Motivated by the several successful applications of data aug-
mentations we propose novel automated augmentation method

named BucketAugment, which utilises reinforcement learning
to identify the best combination of augmentation operations.
This novel automated augmentation method takes advantage
of optimization algorithm to find optimal stacks of augmen-
tation operations and their hyper-parameters, simultaneously
providing effective reduction of search space consisting of these
hyper-parameters. We hypothesize that properly designed op-
timization algorithm can further boost network performance
and more importantly it can minimize performance gaps, when
unseen data are presented. We evaluated the proposed method on
the task of semantic segmentation of abdominal CT scans. The
obtained results demonstrate that automatically crafted sets of
volumetric augmentations can increase robustness and precision
of the neural network in medical image segmentation when
unseen data are presented.

The rest of the paper is organized as follows. At first, we
focused our research on description of problems related to do-
main generalisation and provided short overview of commonly
used methods. Related work is focused on recent improvements
of automated augmentations in the area of medical imaging
and in computer vision as well. Paper continues with detailed
description of our proposed method, followed by definition of
used publicly available medical datasets and set of experimental
results. In the end of the paper we discuss current limitations
of BucketAugment and outline possible improvements together
with future direction of our research in this domain.

II. RELATED WORK

Automated augmentation techniques have been primarily pro-
posed and verified in the field of image recognition on generic
datasets such as CIFAR-10, MNIST or ImageNet, thus it is ar-
guable how these methods can perform on complex datasets such
as medical ones [44]. Task of image segmentation is considered
to be more challenging and in general it requires comprehensive
augmentation methods, complex training process and precisely
labeled datasets [35]. These conditions are even more restrictive,
when it comes to the field of medical imaging, mainly because
of lack of publicly available datasets with proper annotations.

One of the first attempts to automate the transformation se-
lection process was method named AutoAugment (AA) [29].
It introduced concept of policy, which represents specific set
of transformations with predefined hyper-parameters and prob-
ability to be applied. This policy was later splitted into sev-
eral sub-policies, where one of those is randomly chosen for
images in each mini-batch. To find optimal combinations they
designed search algorithm that utilized another “child network”
together with RNN controller and Proximal Policy Optimization
algorithm. This search algorithm analyzed reward signal, which
represents validation accuracy obtained from validation set to
measure the generalization of a child model.

Several other improved versions of AutoAugment were pro-
posed in recent years [36], [37], [38], [39]. One of the no-
table versions named RandAugment [30], removed the need
for separate search task with the assumption that it may be
sub-optimal for learning and transferring augmentation policies.
Additionally, they proposed reduced search space of possible
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combination of hyper-parameters of specific transformations,
while leveraging grid search algorithm to find optimal policy.

Dramatic search space reduction was later proposed by
method named TrivialAugment [31], whose authors argued that
the application of an augmentation policy is relatively cheap, but
implementation and tuning of the search algorithm can be much
more expensive than the training itself. To mitigate this issue they
decided to remove all hyper-parameters tied to transformations
and to apply only one random transformation per image with
fixed randomly selected strength.

Another promising concepts such as utilization of mixup
process to find optimal policy was introduced in [40]. Sample-
aware augmentation policy network leveraging the mechanism
of meta-learning and gradient-based optimization was proposed
in [41]. TeachAugment [42] proposed a teacher based model
augmentation technique, which made process more informa-
tive and transparent without the need for hyper-parameters
fine-tuning.

While, all of the mentioned methods present promising re-
sults, we still argue that its capabilities were not verified in
complex domains, such as medical imaging or in other tasks
than image recognition [43]. Additionally, it is tedious and time
consuming to validate all of these methods on volumetric data
or in complex domains to achieve a trade-off between network
accuracy and computational resources. However, several papers
focused on the domain of medical imaging to alleviate this
gap [45], [46], [47], [48]. Our goal is to continue to minimize
this gap, while focusing on retaining performance gains and to
provide a tool, which allows fine control this trade-off based on
available resources.

III. MATERIALS AND METHODS

A. Data Augmentation for Domain Generalisation

Let us consider S source (training) domains Dsource =
{D1, . . . , DS}, where Di is the i-th domain. We assume that
domain is composed of data that are sampled from distribution
and denoted as D = {xi, yi}Ni=1 ∼ PXY . Here, xi denotes input
sample, yi is output label and PXY denotes the joint distribution
of the input sample and output label. The joint distribution
between domains is different, meaning P i

XY �= P j
XY .

In domain generalisation, our aim is to train neural network
represented by function f on the data from the source domain
Dsource in a way that a prediction error on the target domain
Dtarget (P target

XY �= P source
XY ) is minimised [4]:

min
f

E(x,y)∈Dtarget
∈ [L(f((x), y)]. (1)

In previous L(.,.) stands for loss function and E is expectation
operator.

Data augmentation is one of the approaches to improve model
generalisation. The conventional approach is to employ data aug-
mentation policy A(T ) = (T1(φ1), . . . , TN (φN )) to perform
transformation of input images from S. In practice N ≥ 1,
and φi represents set of tunable hyper-parameters specific to
transformation Ti. During training the input images xi are

transformed according to the policy A(T ) and used as alternative
input to f .

In this paper we propose BucketAugment as a augmentation
policy A(T ).

B. Bucketaugment

The key idea of existing automated augmentation methods is
to effectively determine set of transformations T . The number
of transformations and their hyper-parameters determine the
search space for optimisation algorithm deployed in augmenta-
tion policy. The search space can gradually grows due to many
possible combinations of transformations. Moreover, this num-
ber grows even dramatically, when we consider wide range of
hyper-parameters for each transformation. Another challenge in
area of automated augmentation methods is the need to properly
select search algorithm.

The proposed BucketAugment method allows to control the
size of search space based on domain requirements. We intro-
duced concept of “buckets”, which holds sets of transformations
with customizable size. The content of these buckets is randomly
initialized at start of training phase. We introduce two customiz-
able parameters: the number of buckets Nb and the number of
operations per bucket Nop.

The search algorithm must be able to effectively find optimal
bucket without overwhelming complexity. To address this issue
we introduced Q-learning based optimization algorithm, which
iteratively evaluates quality and impact of pre-generated buckets
on overall performance of network. This evaluation is based on
reward signal R, which is determined by value of validation loss
Lval compared to loss achieved in previous iteration Lprev . As
a such algorithm is actively adjusting itself to produce the best
possible outcome. The reward itself holds three possible values:
−1 if newly produced validation loss is bigger then previous
one, 1 if it is smaller and it is equal to 0 if there is no change.
Based on this outcome the algorithm then adjust selection of
next bucket. Positive or neutral reward means that, there is no
change in currently applied bucket. On the other hand, if the
reward is negative the algorithm selects next bucket in a order
and applies it until the next validation phase occurs. This process
is graphically presented in Fig. 1.

End of the training phase results in Q-table with evaluated
buckets, where the most beneficial buckets have the highest
score. It is noticeable to mention that, this approach furthermore
preserves the original idea to not interfere or alter existing
solutions and to remove the need to prepare additional task for
search algorithm fine-tuning as it is incorporated into network
training loop. Overall concept of BucketAugment is depicted in
pseudocode 1.

1) Image Augmentations: To determine search space for
BucketAugment we decided to select 10 image augmentations,
commonly used in medical imaging to augment original datasets
and enhance models training. Namely from spatial transfor-
mations we used translation, rotation, elastic deformation and
zooming. From visual transformations we included image sharp-
ening, smoothing, intensity and contrast altering and addition
of Gaussian noise. We have additionally included identity as
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Fig. 1. Overview of BucketAugment algorithm.

Algorithm 1: Pseudocode of BucketAugment.
Ensure: Nb > 0, Nop > 0
Require: Set of transformations N > 1
Require: Set of buckets B = {B1, B2, B3, . . . , BNb

}
1: while i < Nb do
2: Bi = {T1, T2, T3, . . ., TNop} �Randomly selected
3: end while
4: Initialize validation losses Lnew = 0,Lprev = 1000
5: Initialize Q-table Q with zeros
6: Select random bucket Bc

7: while Training do
8: Perform validation each K epochs
9: if Lnew > Lprev then

10: Q[Bc]−−
11: Bc = Bi+1

12: else
13: Q[Bc] + +
14: end if
15: end while

separate operation, mainly because of the fact that operations
have application probability equal to 1. Each of these transfor-
mations have predefined uniform range of values, totally divided
into 15 bins, while specific magnitude is selected randomly
during initialization of buckets. Concrete ranges of possible
values were selected in a way to benefit from augmentation tech-
nique while preserving pathological characteristics of selected
structures. Selected ranges per transformation are presented in
Table I.

C. Datasets

To evaluate domain generalisation capabilities of the proposed
method, we identified three different datasets that contain two
same organs: liver and kidneys. We specifically chose to focus on
the liver and kidneys because these organs were present across
multiple datasets. This uniform presence enabled us to conduct
cross-validation and generalization experiments effectively. Fur-
thermore, by selecting these organs, we aimed to showcase our

TABLE I
OVERVIEW OF PREDEFINED TRANSFORMATIONS RANGES

segmentation capabilities across a spectrum of organ sizes–from
the larger liver to the smaller kidneys. This approach not only
demonstrates the versatility of our methods but also underscores
their applicability to organs of varying dimensions. Following
subsections describe datasets used in our experiments from
medical and technical perspective.

1) Beyond the Cranial Vault Dataset: The Beyond The
Cranial Vault (BTCV) [6], [7] consists of 50 CT volumes
gathered from CT scanners across the Vanderbilt University
Medical Center. In our experiments we utilized 30 volumes
that were labeled. For remaining 20 volumes annotations are
not provided. Dataset provides manual annotations of 13 or-
gans, including aorta, liver, spleen, right kidney, left kidney,
stomach, pancreas, gallbladder, esophagus, inferior vena cava,
portal vein and splenic vein, right adrenal gland and left adrenal
gland.

CT scans were captured during portal venous contrast phase
with variable volume sizes ranging from 512 × 512 × 85 to 512
× 512 × 198 and field of views ranging from approximately
280 × 280 × 280 mm3 to 500 × 500 × 650 mm3. The in-plane
resolution varies from 0.54 × 0.54 mm2 to 0.98 × 0.98 mm2,
while the slice thickness ranges from 2.5 mm to 5.0 mm.

2) Whole Abdominal Organ Dataset: Whole abdominal
organ Dataset (WORD) [3] contains 150 abdominal CT vol-
umes from single radiation therapy center that were acquired by
Siemens CT scanner without any further visual enhancement.
All provided annotations were annotated by one senior oncol-
ogist with seven years of experience and then verified by an
experts with more than 20 years of experience.

Dataset provides annotations of 16 organs in abdominal part of
body, including liver, spleen, left kidney, right kidney, stomach,
gallbladder, esophagus, duodenum, colon, intestine, adrenal,
rectum, bladder, left head of the femur, and right head of the
femur.

Each CT volume consists of 159 to 330 slices of 512 ×
512 pixels, with an in-plane resolution of 0.976 × 0.976 mm
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and slice spacing of 2.5 mm to 3.0 mm. We used 120 scans for
whose the annotations were publicly available.

3) CT-ORG Dataset: CT-ORG [5] dataset consists of 140
CT scans with annotations of liver, lungs, bladder, kidneys,
bones and brain. Dataset is extension of well-known Liver
Tumor Segmentation Challenge (LiTS) [49] dataset. The data
were collected from various medical centers, while exhibiting
multiple imaging protocols including high-dose and low-dose,
with and without contrast, abdominal, neck-to-pelvis and whole-
body views. Additionally, many CT scans contains liver cancer
lesions and other metastatic disease derived from cancer in the
breast, colon, bones and lungs. The axial resolution ranges from
0.56 mm to 1.0 mm. We used 140 annotated volumes.

Annotations for specific organs were created in various ways.
Lungs and bones were delineated by unsupervised morpho-
logical algorithms, which were accelerated using 3D Fourier
transforms to reduce time. The lungs were manually annotated
in the test set only. The liver, kidneys, bladder and brain were
manually annotated in both sets. All manual annotations were
created or supervised by graduate students with several years of
experience annotating CT images.

D. Numerical Experiments

To evaluate the performance of BucketAugment we carry out
set of experiments focused on segmentation of kidneys and liver
in abdominal CT scans. The data are gathered from three medical
datasets: BTCV, WORD and CT-ORG. To measure quality of
segmentation annotations we employ Sørensen–Dice coefficient
through whole sets of experiments. In experiments, we compare
our results with baseline models with no augmentation and with
3D volumetric version of TrivialAugment, which was shown
to outperform several state of the art automatic augmentation
methods such as AA, fast AA, Population-based Augmentation
or others.

The first experiment investigates impact of BucketAugment
on overall segmentation performance on source dataset. Model
is validated on separate test data from the same dataset, as which
is used to train the model. Here, our goal is to confirm that overall
concept of BucketAugment improve segmentation performance.

The second set of experiments investigates scenario, where the
model is trained on one source dataset and is used to perform
segmentation on unseen target datasets. In this case we perform
cross inference on all combinations of utilised datasets to provide
detailed insights on generalisation capabilities.

In the third experiment, we combine two source datasets and
the third dataset is used as target dataset to measure segmenta-
tion precision and generalisation capabilities in the context of
Sørensen–Dice coefficient.

1) Implementation Details: To keep experiments consis-
tent across all datasets, we always followed same preprocessing
steps. First, the voxel spacing for each axis was calculated and
averaged over all samples from a given dataset. Then individual
voxels values were scaled and normalized to interval [0, 1].
Here we utilized minimum and maximum of Hounsfield units
obtained from the CT scans, which were calculated per sample.
To minimize computational resources, all scans were cropped

TABLE II
SEGMENTATION PERFORMANCE IN SINGLE DOMAIN SCENARIO FOR KIDNEYS

MEASURED BY SØRENSEN–DICE SCORE

TABLE III
SEGMENTATION PERFORMANCE IN SINGLE DOMAIN SCENARIO FOR LIVER

MEASURED BY SØRENSEN–DICE SCORE

and padded into smaller groups of patches with ROI size of 96
× 96 × 96.

As a network architecture we decided to use SegResNet [11]
architecture, which was previously successfully applied in med-
ical scenarios for segmentation [13] and was used as benchmark
model [8], [9], [10], [12].

We trained each model for 500 epochs with AdamW opti-
mizer, where the initial learning rate was set to 0.0001. AdamW
is a modification of the Adam optimization algorithm and it
was proposed to address weight decay issues in Adam. In
AdamW, the weight decay is applied directly to the model’s
parameters during optimization, which helps prevent excessive
parameter growth. This modification improves the algorithm’s
generalization and convergence properties.

To speed up convergence, we employed multi-step learning
rate scheduler to decay the learning rate by 0.1 after network
reaches 250 epochs. The batch size was set to two. As a loss func-
tion we used combination of Dice and Cross Entropy function.
During inference process we utilized sliding window technique
with ROI size of 128 × 128 × 128. For BucketAugment we
determined the number of operations per bucket to five, while
total number of buckets was set to ten.

Modification to labels were performed on BTCV and WORD
dataset, where it was needed to merge labels of right and left
kidney into one class.

IV. RESULTS

First, we describe results on single domain experiments and
then we provide results on domain generalisation performance
of BucketAugment. Example segmentation from experiments
can be seen in Fig. 2.

A. Single Domain Experiments

Tables II and III show results obtained by application of
BucketAugment as a augmentation policy on single domain. We
evaluated performance on every dataset separately for kidneys
(Table II) and liver (Table III). In these experiments dataset was
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Fig. 2. Comparison of segmentations between baseline model and BucketAugment. Blue contours - ground truth, yellow fill- BucketAugment
kidney, purple fill- baseline kidney, green fill - BucketAugment liver, red fill- baseline liver.

divided into training, validation and testing set with ratio of
70:10:20.

As can be seen BucketAugment provides significant improve-
ment over baseline model in kidneys and liver segmentation
task and outperform the TrivialAugment and model without
any augmentations. The improvements can be seen on all three
datasets and on both considered organs.

The most significant difference between model with no aug-
mentations and our method in terms of Sørensen–Dice score
was identified on CT-ORG dataset for kidney structure and on
BTCV for liver structure.

TrivialAugment was able to improve model performance
in almost every scenario, but it lags behind BucketAugment
method in all single domain experiments. This can be mainly
observed on overall results when compared on CT-ORG dataset.
The most competitive results of TrivialAugment in compar-
ison with our method can be seen on WORD dataset for
both structures. Given the growing interest in universal models
like Segment Anything Model (SAM) [2], we evaluated also
performance of SAM-Med3D [1] on all considered datasets.
Here, the number of points was set to one and image ROI was set
to 128 × 128 × 128. Observations from our results indicate that
SAM-Med3D struggled with kidney segmentation, likely due to
the smaller size of the kidneys. In contrast, its performance on
liver segmentation was more competitive, yet it notably trailed
behind BucketAugment in effectiveness.

To qualitatively illustrate the segmentation performance of
BucketAugment across all three datasets, we showcase several
examples in Fig. 2.

B. Experiments on Domain Generalisation

In first scenario the SegResNet was trained together with
BucketAugment on one dataset at time to segment kidneys and
liver structures. Inference was then performed separately on two
remaining datasets.

In the second scenario, the network was trained on two merged
datasets. Inference was then performed on the remaining third
target dataset. Here, our goal was to measure the impact of

TABLE IV
SEGMENTATION PERFORMANCE IN DOMAIN GENERALISATION SCENARIOS

FOR KIDNEYS MEASURED BY SØRENSEN–DICE SCORE

TABLE V
SEGMENTATION PERFORMANCE IN DOMAIN GENERALISATION SCENARIOS

FOR LIVER MEASURED BY SØRENSEN–DICE SCORE

BucketAugment on dataset with enlarged number of samples,
thus we investigated if BucketAugment is still capable to im-
prove network performance with significant difference.

As it is depicted in Tables IV and V, BucketAugment was
able to achieve competitive results in both scenarios and to im-
prove generalisation capabilities. In general, we achieved more
consistent improvements in the segmentation of liver structure
in both scenarios. This can be explained by the fact that liver
represents larger portion of CT scans than kidneys. Moreover,
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liver has more consistent structure than kidneys, thus is it easier
and more convenient for network to learn this structure.

Major improvements in the first scenario for kidney can be
seen in the case, when model was trained on CT-ORG dataset.
Concretely, the difference in terms of Sørensen–Dice score in
comparison to models without any augmentations was equal to
0.159when target was WORD dataset and0.1083when BTCV
dataset was target. For liver structure the major improvements
was observed when model was trained on BTCV dataset and
CT-ORG was set as target dataset. The difference between
baseline model and BucketAugment was equal to 0.1694. This
may suggest strong correlation between the characteristics of
these datasets. On the other hand, the smallest difference, was
observed in case, where BTCV dataset was set as source dataset
and the goal was to segment kidney structure. This can be
explained by the fact that BTCV is the smallest dataset in our
experiments, thus exploring capabilities were limited.

The noticeable observation from this set of experiments is that
in multiple cases BucketAugment even outperformed the models
from single domain scenario, i.e when the model was trained and
tested on the same domain. Concretely, when model was trained
on CT-ORG dataset and inferenced on BTCV dataset for both
classes and when model was trained on CT-ORG and inferenced
on WORD dataset to segment liver structure. This improvement
was also observed when model was trained on WORD dataset
and inferenced to segment liver structure on BTCV dataset.

Results from the second scenario proved that our method
is capable to further improve segmentation precision even in
the situations, where network is trained with combined dataset,
which should capture more organ specifics, impact of scan-
ning protocols on final scans and other diversities between
medical datasets. The biggest improvements in comparison to
model without any augmentations can be seen, when BTCV and
CT-ORG are used for training to segment both kidneys and liver.

Achievements from the first scenario, where BucketAugment
outperformed target baseline model were similarly observed in
this scenario. It the context of kidney segmentation this phe-
nomena can be observed, when CT-ORG together with WORD
dataset and WORD with BTCV was used as training dataset. For
liver segmentation, this can be observed, when BTCV together
with CT-ORG and combination of CT-ORG and WORD was
used for training.

V. DISCUSSION

Obtained results clearly presented that application of rein-
forcement learning to find optimal augmentation policy can be
applied in domain of abdominal CT scans segmentation and to
improve domain generalisation.

Development of framework itself brought multiple
challenges, mainly connected with the characteristics of
datasets, such as different voxel spacing and intensity
accompanied by various field of views and patient orientation.
One can find difficult to gather reasonable amount of publicly
available datasets with aligned targeted structures to perform
cross-domain segmentation followed by validation to provide
measurable results. Another challenging step is to carefully
select proper augmentation with their magnitudes to preserve

pathological properties of targeted structures, while still
benefiting from augmentation technique to enhance given
datasets. Moreover, performing training of models and its
validations followed by inference across several datasets
required adequate computational power to obtain results in a
reasonable time, especially when dealing with medical volumes.

There are several limitations of this study, mostly determined
by data availability. First, we focus on two organs liver and
kidneys. Even though there are several datasets captured by
CT of abdominal area they usually focus on different organs.
We identified three datasets that share two same organs and
performed extensive experiments to validate the methods per-
formance. The application of the proposed method to segment
other structures, such as lung, is straightforward. However, since
we are dealing with 3D data, computational cost of such as
experiments is quite high and there is no compelling added value
in these experiments.

To evaluate method on other modality such as MRI or in
the inter-modality domain generalisation may bring interesting
results but this is beyond the scope of our current paper.

We have not conducted an extensive analysis of hyperparam-
eter sensitivity, including the number of buckets and operations.
However, preliminary experiments have shown that the model
is quite robust across a wide range of settings. This robustness
suggests that precise optimization of hyperparameters might not
be crucial for maintaining effectiveness in organ segmentation
tasks. While most configurations of bucket number (Nb) and
operations per bucket (Nop) yield stable performance for both
liver and kidney segmentation, a significant reduction in effec-
tiveness is observed only with the most minimal settings (Nb,
Nop ≤ 4). This indicates that an overly simplistic approach may
be inadequate for addressing the complexities of segmentation
tasks.

Proposed solution utilized reinforcement learning approach to
evaluate performance of currently applied set of augmentations
and to find optimal augmentation policy in overall. Current
research focused on applying an off-policy algorithm, which
updates its Q-values based on the maximum Q-value of the next
state. The main reason for this approach was that off-policy
algorithms are more tempted to explore environment, while
learning an optimal policy, thus it well-suited for our research
topic. It is worthy to investigate impact of other algorithms from
this category to evaluate and compare possible results with our
solution.

One of the possible candidate for implementation is deep-
learning based version of Q-learning named Deep Q-learning.
This variant can be more reliable in high-dimensional environ-
ments, where traditional Q-learning table is not sufficient to
capture and estimate all possible situations. To further improve
estimations of Q-values, Deep Q-learning introduced concept of
experience memory to store and sample a replay buffer of past
experiences to break the temporal correlation between separate
states. However, this method is sensitive to hyper-parameters
tuning, because it utilize neural networks and tends to be sample-
inefficient, thus requiring a large amount of experiences to train
effectively, which results in need for extensive exploration that
can slow down learning.
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Another approach could be replacement of single set of
Q-values by utilizing the idea of Double Q-learning variant,
which relies on two complementary sets used during the learning
process. This algorithm aims to mitigate issues connected with
overestimations of action values, which result from the fact that
Q-learning uses the maximum action value as an approximation
for the maximum expected action value. This was observed in
some scenarios, where Q-learning was performing poorly. On
the other hand, maintenance of second Q-table brings additional
complexity to overall solution, thus one must carefully design
and implement algorithm specifications.

In overall, Q-learning algorithm inspired many researchers
and provided fundamental concepts to other similar group of
algorithms, which may be beneficial even for our research topic,
but in practice, testing every variant is time-consuming and
computationally exhaustive task.

While proposed approach can offer advancements in terms of
segmentation accuracy, and efficiency the ultimate responsibility
for patient care lies with clinicians who understand the broader
clinical context, patient history, and the subtleties of medical
imaging. The integration of any AI based tool into clinical
workflows should therefore be approached with a collaborative
mindset, ensuring that these technologies serve as tools that
augment, rather than replace, the critical decision-making pro-
cesses of medical professionals. Rigorous training, transparent
communication about the capabilities and limitations, and adher-
ence to ethical standards are essential to foster trust and efficacy
in the use of AI based methodology in healthcare. Ultimately,
the goal is to leverage domain generalisation techniques to
enhance patient outcomes while maintaining the centrality of
professional medical judgment in guiding clinical applications.

VI. CONCLUSION

In this paper we focused on domain generalisation in abdom-
inal CT segmentation of kidneys and liver structures. We pro-
posed automated augmentation method BucketAugment, which
was evaluated within three medical CT datasets.

Obtained results proved that domain differences in CT scans
caused can be overcome by the combination of reinforcement
learning and carefully crafted search space of augmentation
operations. With minimal modifications of existing architec-
tures, we were able to improve accuracy of segmentation task
compared to baseline models and state of the art augmentation
method named TrivialAugment.

We believe that BucketAugment can be further extended with
additional modifications to produce even better results. One of
the possible modifications is adjustment of the reward function to
take into account current state of training process. Additionally,
the reward function can be replaced with customized rating
system, which remove the need to utilize validation loss and
thus improve bucket selection process. One can further optimise
selection method of next bucket to increase variability in search
space or to fine-tune search algorithm itself to find optimal policy
in shorter time and with less effort.

The promising results that were achieved within this study
indicate potential application on other organs such as lungs or

brain, or maybe even different modalities such as MRI. So in
our future work, we plan to extend the experiments to include
more diverse scenarios.
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