
Technology

FetSAM: Advanced Segmentation
Techniques for Fetal Head Biometrics

in Ultrasound Imagery
Mahmood Alzubaidi , Member, IEEE, Uzair Shah , Marco Agus , and Mowafa Househ

Abstract—Goal: FetSAM represents a cutting-edge deep
learning model aimed at revolutionizing fetal head ultra-
sound segmentation, thereby elevating prenatal diagnos-
tic precision. Methods: Utilizing a comprehensive dataset–
the largest to date for fetal head metrics–FetSAM incorpo-
rates prompt-based learning. It distinguishes itself with a
dual loss mechanism, combining Weighted DiceLoss and
Weighted Lovasz Loss, optimized through AdamW and un-
derscored by class weight adjustments for better segmen-
tation balance. Performance benchmarks against promi-
nent models such as U-Net, DeepLabV3, and Segformer
highlight its efficacy. Results: FetSAM delivers unparalleled
segmentation accuracy, demonstrated by a DSC of 0.90117,
HD of 1.86484, and ASD of 0.46645. Conclusion: FetSAM
sets a new benchmark in AI-enhanced prenatal ultrasound
analysis, providing a robust, precise tool for clinical appli-
cations and pushing the envelope of prenatal care with its
groundbreaking dataset and segmentation capabilities.

Index Terms—Fetal Ultrasound Imaging, Image Segmen-
tation, Prompt-based Learning, Prenatal Diagnostics, Ultra-
sound Biometrics.

Impact Statement— FetSAM introduces a transformative
approach in prenatal care, significantly enhancing the ac-
curacy and efficiency of fetal head biometrics analysis in
ultrasound imagery.

I. INTRODUCTION

IN THE transformative realm of biomedical imaging, fetal ul-
trasound serves as a critical juncture between technology and

healthcare [1]. It has revolutionized prenatal care by providing
a non-invasive window into the womb, enabling real-time mon-
itoring of fetal growth and development [2]. The significance
of standardizing quantification and achieving precise fetal head
segmentation goes beyond technicality; it serves as a beacon for
advancing prenatal care [3]. Reducing variability in data collec-
tion is crucial for reliable monitoring across multiple scans. Fur-
thermore, the cost-effectiveness and widespread accessibility of
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ultrasound imaging make it a powerful tool for global healthcare
improvement [4]. Future integration of AI-enabled tissue seg-
mentation with ultrasound imaging could catalyze earlier inter-
ventions, safer deliveries, and healthier beginnings, positioning
this research as an essential cornerstone in prenatal care [5].

Accurate estimation of fetal age and weight is pivotal in mon-
itoring standard prenatal development [1]. Ultrasound imaging
facilitates the non-invasive observation of the fetus, encom-
passing the brain structures. Modern advancements in image
processing and segmentation methods have paved the way for the
automatic delineation and measurement of essential fetal brain
regions from ultrasound images [6]. In particular, segmenting
the fetal brain, cavum septum pellucidum (CSP), and lateral
ventricles (LV) from ultrasound images can offer indispensable
biomarkers for gestational age and fetal growth models [1]. The
CSP is a crucial midline fluid-filled cavity, the size of which
fluctuates significantly during gestation [7], while the size of
the LV augments with progressing gestational age [8]. Thus,
a quantitative analysis of the CSP and LV dimensions derived
from segmented ultrasound images can offer profound insights
into the developmental milestones of the fetus. Moreover, the
total volume of the brain tissue, determined from the automatic
segmentation of the brain, has exhibited a strong correlation
with the fetal weight [9]. By amalgamating the measures from
the segmented multiple brain structures, sturdy machine learning
models can be devised to determine fetal age and weight from
ultrasound images with automation and efficiency [10]. The
automation of this analytical procedure has the potential to
enhance prenatal risk assessments and ameliorate outcomes by
promoting more comprehensive and quantitative surveillance of
fetal development [11].

The precise segmentation of fetal head ultrasound images into
four paramount categories–background, fetal brain, CSP, and
LV–is at the heart of this study. Each category plays a pivotal role
in deriving essential biometrics. Automated tools have made it
possible to segment vital anatomical structures, such as the fetal
skull and brain, paving the way for the accurate and efficient
determination of crucial biometric measures, including the head
circumference [12], [13]. Refer to Fig. 1 for an illustration that
depicts the locations of the Fetal Brain, CSP, and LV in the
ultrasound image.

The background class, essentially all ultrasound data outside
the fetal skull, allows for the automatic cropping of images
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Fig. 1. Illustration depicting the location of Fetal Brain, CSP, and LV in
the ultrasound image.

to focus on the region of interest, namely the fetal head [14].
The fetal brain class encapsulates all brain tissue within the
skull. Accurate delineation of this class enables the measure-
ment of head circumference, a critical indicator of fetal growth
and developmental milestones [6]. Further, segmenting internal
structures like the CSP and LV provides deeper insights into
fetal neurodevelopment [3]. The CSP, a naturally occurring
division between the left and right hemispheres, can serve as
an early indicator of potential brain abnormalities [15]. The LV,
on the other hand, are fluid-filled cavities related to conditions
such as ventriculomegaly and neural tube defects [16]. Accurate
segmentation of these structures is critical for monitoring fetal
brain development, thereby enabling better-informed parental
decisions and preparing the clinical team for post-birth inter-
ventions.

One of the most salient challenges in fetal ultrasound imaging
is the quality of the images themselves [17]. Ultrasound images
often suffer from speckle noise, low contrast, and ambiguous
boundaries, making it difficult to segment anatomical structures
like the brain, CSP, and LV [12], [18]. Wu et al. [19] highlight the
importance of CSP, an essential structure for normal fetal brain
development, and discuss the challenges of manual measure-
ment. They propose a data-driven system using a novel network
called CA-Unet to segment CSP and other related structures,
achieving high precision and Dice scores. Similarly, Coronado-
Gutiérrez et al. [20] introduce a pipeline to automatically delin-
eate and measure fetal brain structures, offering a comprehensive
solution for assessing fetal brain development and anomalies.
Alzubaidi et al. [21] introduced the ETLM framework, which
leverages ensemble learning for fetal brain segmentation and
employs regression models to estimate fetal age and weight
based on biometric measurements.

The CSP and LV are particularly challenging due to their
small sizes and low visibility, often occupying only a few pixels
in 2D ultrasound slices [13]. The fetal brain undergoes rapid
development, complicating the segmentation task further due to
fluctuations in visibility at different gestational stages [18], [22].

Classical models like active contours and atlas-based ap-
proaches have been widely used but often struggle with the
aforementioned challenges. For instance, active contours often
fail to converge to the correct boundaries [18]. The advent of

deep learning has brought a revolution in this domain. U-Net
architectures, for example, have shown promise but are also
subject to limitations like overfitting and lack of generalizabil-
ity [18].

In addressing the challenges of fetal brain segmentation, we
explore a spectrum of methodologies, significantly benefiting
from advancements in 2D fetal ultrasound neuroimaging. While,
recent studies have demonstrated notable success in enhancing
segmentation accuracy and reliability.

Zeng et al. [23] introduce a deep learning method specifi-
cally tailored for fetal ultrasound image segmentation, achieving
remarkable precision in head circumference biometry. Their
approach, incorporating attention-gated modules into a V-Net
model, underscores the effectiveness of deep supervision and
attention mechanisms in focusing on relevant features, thus
improving segmentation accuracy.

Similarly, Zhao et al. [24] present TransFSM, a hybrid deep
learning framework for automated segmentation and biometric
measurement, which employs a convolutional neural network
encoder alongside a global transformer module. This innovative
combination facilitates the learning of long-range dependen-
cies, enhancing the model’s ability to segment multiple fetal
anatomies accurately from 2D ultrasound images.

In addition, Wu et al. [19] detail a novel approach for the
automatic segmentation and measurement of the CSP using
a U-Net-based network augmented with a channel attention
module. Their results indicate superior performance in CSP
segmentation, contributing valuable insights into fetal neural
development assessment.

Drawing on the latest advancements in 2D fetal ultrasound
imaging, our study methodically integrates advanced segmen-
tation techniques to address critical challenges within the field.
Through the strategic implementation of class weighting, be-
spoke loss functions, and comprehensive data augmentation, we
precisely target dataset imbalances, with a particular focus on
the LV class. This multifaceted approach not only capitalizes
on foundational research to enhance segmentation accuracy and
expand its generalizability but also highlights areas ripe for fur-
ther exploration, as evidenced by our targeted ablation studies.
Our commitment to refining fetal ultrasound segmentation is
clear, marking a significant step forward in prenatal diagnostic
technologies.

In the realm of fetal brain segmentation, the scarcity of
annotated data poses a significant challenge, prompting a shift
towards innovative approaches such as weakly supervised and
semi-supervised methods. These methods, exemplified by the
work of Zheng et al. [25] with their ‘shadow confidence maps’
and Yang et al. [26]’s use of attention mechanisms and RNNs,
represent a broader endeavor to refine segmentation accuracy
under data constraints. Similarly, hybrid models like those de-
veloped by Chen et al. [27] and Yang et al. [28] blend traditional
segmentation techniques with deep learning advancements to
overcome these limitations.

Despite these efforts, as evidenced by the achievements in
Dice scores for CSP and LV segmentation reported by Huang
et al. [18], the quest for highly accurate, robust, and generalizable
segmentation methods remains ongoing. This backdrop of con-
tinuous exploration and innovation in addressing data scarcity
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and enhancing segmentation precision frames the context for our
study. Our work contributes to this dynamic field by introducing
FetSAM, a model designed to advance the state-of-the-art in
fetal head ultrasound image segmentation. By situating our con-
tributions within this evolving landscape, we aim to underscore
the significance of our advancements and the potential for further
research to navigate the complexities of fetal brain, CSP, and LV
segmentation.

In addressing the significant challenges of fetal brain, CSP,
and LV segmentation, such as dataset scarcity, image noise, and
the minute size of anatomical structures, our methodology is
deliberately designed for precision. By constructing a custom
dataset that includes detailed structures of CSP and LV, we
tackle the issue of data scarcity head-on. To mitigate inherent
noise and enhance segmentation precision, we’ve implemented
an extensive data augmentation strategy, applying ten different
techniques that simulate real-world imaging challenges, thus
preparing our model for a wide range of imaging conditions.
Recognizing the challenges posed by the small size and class im-
balance of CSP and LV, we developed a sophisticated combined
loss function that integrates weighted DiceLoss and Weighted
Lovasz loss mechanisms. This approach ensures that these criti-
cal, yet smaller, structures receive adequate attention during the
learning process, significantly boosting segmentation accuracy.
Additionally, our use of prompt-based segmentation acts as a
magnifying glass, bringing regions of interest into clearer focus,
which is crucial for the detailed segmentation of CSP and LV,
thereby enhancing the accuracy of biometric measurements.
Our comprehensive methodology has been rigorously validated
against ten state-of-the-art segmentation models, including those
based on modern mixed transformer architectures, ensuring our
approach’s transparency and superiority in addressing these
unique challenges. Guided by these challenges, we’ve metic-
ulously developed a comprehensive approach, outlined below,
to not only address these specific issues head-on but also to set
new benchmarks in the accuracy and reliability of fetal brain,
CSP, and LV segmentation.

1) New Fetal Head Ultrasound Dataset: We address data
scarcity by creating a unique dataset with comprehensive
coverage of CSP and LV structures across various brain
planes, ensuring robust training and validation.

2) Data Augmentation: To combat image noise and ambi-
guities, we implemented advanced data augmentation,
applying techniques that closely mimic real-world imag-
ing variations, thereby enhancing model adaptability and
generalization capabilities.

3) Class Weight Calculations and Loss Mechanism: Ac-
knowledging the small size and imbalance of CSP and
LV, we introduce a custom combined loss function,
integrating weighted DiceLoss and Weighted Lovasz loss,
to prioritize precision in segmenting these critical but
underrepresented structures.

4) FetSAM (Fetal Segment Anything Model): This novel
prompt-based model excels in discerning anatomical
structures with unmatched accuracy, evidenced by su-
perior metrics like a Dice Similarity Coefficient (DSC)
of 0.90117, Hausdorff Distance (HD) of 1.86484, and

Average Surface Distance (ASD) of 0.46645, challenging
conventional segmentation approaches.

5) Comparative Analysis: Our extensive evaluation against
ten leading models, including U-net, DeepLabV3, and
Segformer, highlights FetSAM’s advanced performance,
marking a significant leap in segmentation technology for
prenatal care.

II. MATERIALS AND METHODS

Fig. 2 illustrates our optimized pipeline for comparing Fet-
SAM with state-of-the-art models in multi-class segmentation of
fetal head ultrasound imaging. The pipeline encompasses five
critical stages: Dataset Split and Consistency, Data Augmen-
tation Strategies, Class Weight Calculation and Custom Loss,
Model Fine-Tuning and Optimization Functions, and Inference
and Evaluation. Starting with our unique fetal head ultrasound
dataset, the pipeline integrates advanced techniques such as
extensive data augmentation, class weight calculation based on
inverse frequency, custom loss mechanisms, and fine-tuning op-
timization techniques. The pipeline culminates in a comparative
analysis of FetSAM against established segmentation models
like U-Net, DeepLabV3, and Segformer, assessed using a variety
of metrics including DSC and HD. The following subsections
will delve into each stage of this pipeline, from dataset de-
scription and augmentation strategies to model architecture and
evaluation metrics.

A. Dataset Description and Split

Our research utilizes a comprehensive dataset compiled from
two public repositories, featuring four distinct ultrasound fetal
head planes: Trans thalamic, Trans ventricular, Trans cere-
bellum, and Diverse Fetal Head images. Comprising 3,832
high-resolution images, this dataset emphasizes critical fetal
brain structures, including the CSP and LV. To facilitate broad
computational tool compatibility, data is available in 11 widely
accepted formats, verified by a rigorous dual-stage process
involving multiple domain experts.

For experimental consistency, a custom script was used to
segment the dataset across different ultrasound planes, allocat-
ing 60% (2,299 images) for training. The remaining 40% was
divided equally between a validation set (20%, 766 images)
and an untouched test set (20%, 767 images), reserved for
future clinical validation. This test set remains unused in the
current study to ensure the model’s future clinical applicability
and effectiveness are assessed independently. The validation set
includes a balanced class distribution of background, brain, CSP,
and LV instances, offering a solid basis for model evaluation.
This distribution and strategic data split underscore our commit-
ment to a methodical and future-oriented approach to research
validation. For further details on this dataset, readers are referred
to the original publication by Alzubaidi et al. [29].

B. Data Augmentation Strategies

To bolster the robustness of our model and effectively uti-
lize our training dataset, we employed a comprehensive data
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Fig. 2. Schematic of the optimized pipeline for comparing FetSAM with state-of-the-art models in multi-class segmentation of fetal head ultrasound
imaging.
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augmentation strategy. While the original training dataset con-
sisted of 2,299 images, these augmentation techniques expanded
it to a total of 20,691 images. Importantly, the validation dataset
was left unaugmented to ensure an unbiased evaluation of the
model’s performance.

Our data augmentation pipeline comprised a series of transfor-
mations, each designed to simulate real-world variations that the
model might encounter. Below are the transformations applied:

1) Original Image Resize (Rz): The images were resized to
256× 256 pixels. No other transformations were applied
to maintain the originality of the dataset.

2) Random Crop (RC+Rz): Random crops of 128× 128 pix-
els were taken from the resized images, which were then
resized back to 256 × 256 pixels.

3) Vertical Flip (VF+Rz): A vertical flip was applied with a
probability of 0.3.

4) Horizontal Flip (HF+Rz): A horizontal flip was applied
with a probability of 0.3.

5) Rotation (ROT+Rz): The images were rotated within a
limit of 30 degrees, applied with a probability of 0.3.

6) Combined Transformations (CMB): A chain of transfor-
mations, including random crop, vertical flip, horizontal
flip, and rotation, was applied.

7) Random Resized Crop (RRC+Rz): The images were
randomly resized within a scale of 1.2 to 1.4, and then
cropped to 256 × 256 pixels.

8) Padding and Random Crop (PAD+RC+Rz): Padding was
applied to increase the image size, followed by a random
crop to bring it back to 256 × 256 pixels.

9) Advanced Transformations (RB+ET+GN+GB): This set
of sophisticated techniques was designed to simulate
complex variations and artifacts commonly found in ul-
trasound images. All transformations were applied with
a probability of 0.5 and include:

� Brightness and Contrast Adjustments(RB): Random ad-
justments simulate variations in lighting and visibility.

� Elastic Transformations(ET): Elastic deformations with
an alpha parameter of 1 and a sigma parameter of 50 mimic
natural variations in tissue elasticity.

� Gaussian Noise(GN): Noise with a variance limit ranging
from 10.0 to 50.0 simulates the speckle noise commonly
found in ultrasound images.

� Gaussian Blur(GB): A blur with a limit ranging from 3
to 7 simulates the effects of blurring due to factors like
patient movement or low-quality imaging devices.

These advanced transformations aim to train the model to be
more resilient to real-world variations, thereby enhancing its
generalizability and robustness. Implemented using the Albu-
mentations library for consistency.

C. Class Weight Calculation and Custom Loss
Mechanism

1) Class Weight Calculation: To address the challenges
posed by our dataset, we opted for a specific type of class
weighting for multiple reasons. First, our dataset is imbalanced;
the number of instances for the “background” and “fetal brain”

classes significantly outnumber those for the “CSP” and “LV”
classes. Second, the geometric characteristics of the classes also
vary; while classes like “CSP” and “LV” are represented by
small rectangles, the “fetal brain” class is represented by a larger
ellipse. This class-weighting approach aims to compensate for
these disparities, enhancing the model’s ability to accurately
segment all classes.

1) Initialize Class Counts: We initiate an array
class_counts with zeros to store the count of
each class. The size of this array is the number of classes
nclasses.

class_counts = 0 ∈ Rnclasses

2) Iterate Over the Dataset: For each batch of masks in the
data loader, we convert the one-hot encoded masks to
class labels.

masks = argmax(masks_one_hot, dim=1)

3) Update Class Counts: We then count the occurrences of
each class in these masks and update class_counts.

unique, counts = np.unique(masks, return_counts=True)

class_counts[unique]+ = counts

4) Handle Zero Counts: To avoid division by zero, we re-
place any zero count with one.

class_counts[class_counts = 0] = 1

5) Calculate Raw Weights: The raw class weights are cal-
culated as the inverse frequency of each class normalized
by the sum of these inverse frequencies.

total_count =
nclasses∑
i=1

class_counts[i]

class_weights =
total_count

class_counts

class_weights =
class_weights∑

class_weights

6) Smoothing and Normalization: We smooth the
weights to ensure they fall within a specified range
[min_weight,max_weight].

weights =

(
smoothed_weights−min(smoothed_weights)

max(smoothed_weights)

−min(smoothed_weights)

)

× (max_weight−min_weight)+min_weight
(1)

7) Return Weights: Finally, we return the normalized class
weights as a list and optionally as a dictionary mapped to
class names.
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2) Custom Loss Mechanism: To address the issue of class
imbalance and the distinct geometric characteristics of various
classes in our dataset, we have employed the class weights
derived from the data analysis phase to construct a bespoke
loss function. This function intensifies the model’s focus on the
smaller and less prevalent classes like CSP and LV. Specifically,
with class weights like [0.1,0.1,0.9,0.7], our custom loss func-
tion will allocate more attention to classes with larger weights,
ensuring that difficult-to-segment classes are prioritized during
training. Selecting the most effective loss functions was crucial
for the optimization of our model. We assessed several loss
functions such as JaccardLoss, DiceLoss, TverskyLoss, Focal-
Loss, and LovaszLoss, alongside their possible combinations.
Through thorough manual hyperparameter tuning and empirical
evaluation, we identified that an amalgamation of Weighted Dice
Loss and Weighted Lovasz Loss yielded the most promising
segmentation results.

The Weighted Dice Loss LDice is formulated as follows:

LDice = 1− 2×∑N
i=1(yi × pi × wi)∑N

i=1(yi + pi)× wi

(2)

where yi and pi denote the ground truth and the predicted
probabilities for pixel i, wi represents the class weight for pixel
i, and N is the total number of pixels.

Lovasz loss is an extension of subgradient methods for
convex optimization to the problem of optimizing the mean
intersection-over-union (IoU) measure, which is nonlinear and
non-differentiable. In the context of binary segmentation, the
Lovasz hinge loss effectively leverages the convex hull of the
Jaccard index, optimizing the IoU metric directly [30].

The Weighted Lovasz Loss LLovasz can be depicted as:

LLovasz =

N∑
i=1

Lovasz(yi, pi)× wi (3)

where Lovasz(yi, pi) is the Lovasz hinge loss for the true label
yi and the predicted label pi, and wi is the class weight for pixel
i.

The Combined Loss LCombined, a synthesis of the two losses,
is calculated as:

LCombined = α× LDice + β × LLovasz (4)

where α and β are the hyperparameters that modulate the in-
fluence of each loss term on the final combined loss. In our
fine-tuned model, we have set both α and β to 0.5, reflecting the
equal contribution of each loss term to the final loss value.

By merging these losses, our goal was to exploit the distinctive
advantages of both Dice and Lovasz losses, while considering
class weights, to achieve a segmentation model that is both
accurate and sensitive to the nuances of each class.

3) Optimizer Configuration: During the developmental
phase of our model, various optimizers and learning rate sched-
ulers, including the standard Adam optimizer, were extensively
explored and tested. Our empirical evaluations, coupled with
a rigorous process of trial and error, helped in steering the
choice towards the most optimal configuration for our specific
application.

In this study, we employ the AdamW optimizer, which has
manifested superior performance in terms of model convergence
and generalization. The learning rate and weight decay are both
set at 1× 10−4. To further refine the optimization process, we
utilize a MultiStepLR scheduler that dynamically adjusts the
learning rate at predefined epochs [10, 20, 30] with a gamma
value of 0.7. This intricate setup ensures a harmonious blend of
swift convergence and robust model generalization, vital for the
intricate task at hand.

D. Introduction to Fetal Segment Anything Model
(FetSAM)

In our study, we leverage the Segment Anything Model
(SAM) [31], a promptable foundation model developed for
generic image segmentation tasks. SAM consists of three main
components: an Image Encoder, a Prompt Encoder, and a Mask
Decoder (see Fig. 2). The Image Encoder is responsible for
processing the input image and generating a set of image fea-
tures. Simultaneously, the Prompt Encoder produces a prompt
embedding based on the input prompt, usually a spatial or textual
clue. The Mask Decoder then utilizes both the image features
and prompt embedding to generate a segmentation mask.

To adapt SAM for fetal head ultrasound imaging, we intro-
duce FetSAM (Fetal Segment Anything Model). We fine-tune
the mask decoder component of SAM using our custom loss
function, which incorporates class weights to address the imbal-
anced nature of our dataset. We also employ an extensive data
augmentation strategy to increase the diversity and size of our
training dataset.

The architecture of FetSAM is similar to SAM but includes
a few key customizations. The Image Encoder and Prompt En-
coder produce embeddings that are fed into the Mask Decoder.
Unlike in SAM, our Mask Decoder is trained to be more sensitive
to the fetal brain structures of interest, particularly Fetal brain,
CSP and LV, by incorporating our custom loss mechanism.
This enables FetSAM to generate more accurate and clinically
relevant segmentation masks for prenatal care (Fig. 2).

To generate prompt bounding boxes from the labeled masks,
we designed an algorithm that iterates through each class chan-
nel in a one-hot encoded mask to compute the minimum and
maximum coordinates that define the bounding box for each
class.

This algorithm 1 deriving prompt bounding boxes that takes
a one-hot encoded mask one_hot_mask with dimensions C ×
H ×W , where C represents the number of classes, H is the
height, and W is the width of the mask. Additional inputs to the
algorithm include the number of classes num_classes, a thresh-
old value threshold, and an offset offset to adjust the bounding
boxes. The algorithm outputs a dictionary bounding_boxes con-
taining bounding boxes for each class.

Initially, bounding_boxes is set as an empty dictionary. The
algorithm then iterates over each class i in C to find the y
and x indices where the mask value exceeds the threshold.
If either set of indices is empty, the algorithm continues to
the next iteration. Otherwise, it calculates the minimum and
maximum x and y indices and applies the given offset to them.
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Algorithm 1: Algorithm for Deriving Prompt Bounding
Boxes.
Require:One-hot encoded mask one_hot_mask of shape
C ×H ×W

Require:Number of classes num_classes
Require:Threshold threshold
Require:Offset offset
Ensure:Dictionary bounding_boxes containing bounding
boxes for each class

1: Initialize bounding_boxes as empty dictionary
2: for each class i in C do
3: yindices, xindices ← find where one_hot_mask[i] >

threshold
4: if yindices.size = 0 OR xindices.size = 0 then
5: Continue to the next iteration
6: end if
7: xmin, xmax ← min(xindices),max(xindices)
8: ymin, ymax ← min(yindices),max(yindices)
9: Apply offset to xmin, xmax, ymin, ymax

10: bbox← [xmin, ymin, xmax, ymax]
11: bounding_boxes[i]← bbox
12: end for
13: for each class i in num_classes do
14: if i not in bounding_boxes then
15: bounding_boxes[i]← [0, 0, 0, 0]
16: end if
17: end for
18: return bounding_boxes

The resulting bounding box bbox = [xmin, ymin, xmax, ymax] is
stored in bounding_boxes under the corresponding class i.

After traversing all the classes in C, the algorithm checks
for any classes missing in num_classes. For any such missing
classes, it assigns a default bounding box [0, 0, 0, 0]. Finally,
the algorithm returns bounding_boxes, thus providing a com-
prehensive set of bounding boxes for each class based on the
input segmentation mask.

E. Traditional Sate of the Art Segmentation Models

In this section, we delineate the procedure employed for the
fine-tuning of various conventional segmentation models. Our
approach involved a systematic evaluation of multiple encoder
architectures for each segmentation model to ascertain the most
efficacious combinations.

1) Encoder Models: In this subsection, we present the en-
coder architectures that were evaluated for their efficacy in seg-
mentation tasks see (Fig. 2. Four distinct encoder models were
chosen based on their computational efficiency, performance,
and architectural innovations. They are as follows:

1) EfficientNet-B0 (ImageNet) [32]: EfficientNet is a con-
volutional neural network architecture that scales up
CNNs in a principled way using compound scaling.
EfficientNet-B0 is a lightweight variant that achieves
strong performance on ImageNet while being very com-
putationally efficient.

2) EfficientNet-B0 (AdvProp) [33]: This model retains the
EfficientNet-B0 architecture but incorporates the Ad-
vProp training methodology. The latter dynamically ad-
justs the scaling factor for adversarial examples during
training, thereby enhancing both robustness and accuracy.

3) MiT-B0 (ImageNet) [34]: The Mix Transformer (MiT)
replaces the standard convolutional backbone with a
transformer encoder, enabling the modeling of longer-
range dependencies in images. The B0 variant maintains
high ImageNet accuracy while being computationally
efficient.

4) MobileViTv2_075 (ImageNet) [35]: Designed for mobile
applications, MobileViTv2 employs an inverted bottle-
neck convolutional stem and depthwise convolutions in
its transformer blocks. The _075 variant further improves
efficiency with a width multiplier of 0.75x.

2) Segmentation Model Selection and Optimization: In
this subsection, we delve into the process of fine-tuning tradi-
tional segmentation models for our specific task as we illustrated
early in Fig. 2. We experimented with ten different segmentation
architectures, each paired with multiple encoder models. The
goal was to identify the optimal configuration that achieves high
segmentation performance while maintaining computational ef-
ficiency. Follow is a brief about Each Segmentation Model with
Additional Information:

1) U-Net (Mvit075_Unet) [36]: The U-Net architecture
consists of an encoder network followed by a decoder
network with skip connections between them. The en-
coder extracts features and the decoder upsamples and
reconstructs the segmentation mask. The skip connec-
tions retain fine-grained information. In our case, the
model is paired with the MobileViTv2_075 encoder and
has an encoder depth of 5.

2) U-Net++ (Efb0_Unet++) [37]: U-Net++ improves on
U-Net by redesigning the decoder component with a
series of nested, dense skip pathways to better lever-
age encoder features at multiple scales. This enhances
segmentation detail. We optimized this model with the
EfficientNet-B0 encoder.

3) MA-Net (Mvit075_Manet) [38]: MA-Net introduces a
new attention refinement module between the encoder
and decoder that models inter-dependencies between
encoder features. This improves feature representation
and segmentation accuracy. The model utilizes the Mo-
bileViTv2_075 encoder with an encoder depth of 5.

4) LinkNet (Efb0_Linknet) [39]: LinkNet is built from an
encoder network followed by a decoder. The key aspect
is linking the encoder and decoder directly with residual
connections that improve information flow. Our imple-
mentation employs the EfficientNet-B0 encoder.

5) FPN (Mvit075_FPN) [40]: Feature Pyramid Network
(FPN) creates a pyramid of hierarchical encoder fea-
tures. Decoder stages then upsample and merge these
multi-scale features to capture both local and global
context. The model uses the MobileViTv2_075 encoder.

6) PSPNet (Mvit075_PSPNet) [41]: Pyramid Scene Pars-
ing Network uses pyramid pooling modules after the
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encoder to aggregate different-region contextual infor-
mation. This global context aids challenging segmen-
tation tasks. It is paired with the MobileViTv2_075
encoder.

7) PAN (Efb0_PAN) [42]: Path Aggregation Network adds
a bottom-up path augmentation through adaptive fea-
ture pooling to complement the original top-down fea-
ture propagation in the decoder. The model uses the
EfficientNet-B0 encoder.

8) DeepLabV3 (Mvit075_DLabV3) [43]: DeepLabV3 em-
ploys atrous convolution in the encoder and decoder
to extract dense feature maps. It also uses pyramid
pooling to encode multi-scale context. The model uses
the MobileViTv2_075 encoder.

9) DeepLabV3+ (Efb0_DLabV3+) [44]: DeepLabV3+ en-
hances DeepLabV3 by adding a decoder module to
refine the segmentation results, especially along ob-
ject boundaries. It’s optimized with the employs the
EfficientNet-B0 encoder with AdvProp pre-trained.

10) SegFormer (Mit_SegFormer_b0) [34]: SegFormer em-
ploys a hierarchical Transformer encoder, specifically
MiT-B0, in combination with a lightweight decoder.
This configuration achieves robust performance without
the need for dense prediction layers.

F. Models Evaluation

In this section, we elaborate on the evaluation metrics em-
ployed for assessing the segmentation performance of the pro-
posed FetSAM model alongside other traditional segmentation
algorithms. Each metric is calculated separately for the four seg-
mented classes: background, Brain, CSP, and LV. Subsequently,
the mean values are also calculated to furnish a comprehensive
evaluation of the model’s performance. All models are validated
using the same dataset to ensure a fair comparison.

1) Metrics Optimized for Maximum Values:
� Dice Similarity Coefficient (DSC): The DSC is defined as

DSC(A,B) =
2× |A ∩B|
|A|+ |B|

where A and B are the sets of pixels belonging to the
predicted and ground truth masks, respectively. |A ∩B|
denotes the size of the intersection of the two sets. The
DSC ranges from 0 to 1, where a higher value indicates
better similarity.

2) Metrics Optimized for Minimum Values:
� Hausdorff Distance (HD): The HD is defined as the max-

imum of two directed Hausdorff distances:

HD(A,B) = max

(
sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(a, b)

)

where sup and inf denote the supremum and infimum, and
d(a, b) is the Euclidean distance between points a and b.
A lower HD indicates better similarity.

� Average Surface Distance (ASD): The ASD is the mean
of all the surface distances between the border points of

the predicted and ground truth masks. It is defined as

ASD(A,B) =
1

|Aborder|
∑

a∈Aborder

min
b∈Bborder

d(a, b)

where Aborder and Bborder are the sets of border points in
A and B, respectively. A lower ASD indicates a better
match.

G. Experimental Environment

The experiments for this study were conducted on a robust
computational setup powered by a 12th Gen Intel(R) Core(TM)
i7-12700KF processor, complemented by 128 GiB of system
memory. The graphics-intensive tasks were handled by an
NVIDIA GeForce RTX 3090 graphics card, equipped with
24 GB of GDDR6X VRAM.

In terms of software frameworks, we primarily relied on
PyTorch for constructing the model architectures, training, and
evaluation. To streamline the training process and for better
experiment tracking, PyTorch Lightning was utilized. For lever-
aging pre-trained models and additional utilities, we also made
use of the Hugging Face Transformers library.

To ensure optimal model performance and avoid overfitting,
training was monitored with an early stopping mechanism, con-
figured with a patience of 5 epochs. This approach allowed us to
halt the training process when the model’s performance ceased
to improve on the validation set, thus saving computational
resources and time.

III. RESULTS

In this section, we present a comprehensive evaluation of
the proposed FetSAM model against ten state-of-the-art seg-
mentation models. The assessment is multi-faceted, involving
both quantitative and qualitative metrics to provide a thorough
comparison. First, we delve into the performance of each model
as gauged by individual metrics DSC, HD, and ASD –across the
four classes of interest: Background, Brain, CSP, and LV. Next,
we aggregate these metrics in a comprehensive table to offer
an overall perspective on how FetSAM stands in comparison
to other models. Finally, we provide a visual evaluation to
supplement the quantitative metrics, showcasing the efficacy of
FetSAM in real-world applications. The aim is to furnish a well-
rounded view of FetSAM’s performance, thereby substantiating
its advantages and potential areas for improvement.

A. Quantitative Evaluation

1) Dice Similarity Coefficient (DSC): DSC serves as our
primary metric for evaluating segmentation accuracy, a measure
that directly compares the overlap between predicted and ground
truth masks. Fig. 3 visualizes these DSC scores across four
classes—Background, Brain, CSP, and LV—as well as the mean
DSC for each model.

Overall performance: Our proposed model, Fet-
SAM, exhibits unparalleled performance, achieving a remark-
able mean DSC score of 0.90117. This is substantially higher
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Fig. 3. Comparison of DSC across models and classes, highlighting the superior performance of FetSAM.

Fig. 4. Comparison of HD across models and classes, highlighting the superior performance of FetSAM.

than its closest competitor, Efb0_DLabV3+, which has a mean
DSC of 0.85322.

Class-wise insights:
� Background: All models exhibit strong performance in

segmenting the background, with DSC values above 0.98.
However, FetSAM stands out with a nearly perfect DSC
of 0.99506.

� Brain: FetSAM dominates in the Brain class as well,
with a DSC of 0.98508. The nearest competing model,
Efb0_DLabV3+, lags behind with a DSC of 0.97806.

� CSP: This class proves challenging for many models, with
DSC scores as low as 0.56203 for Mvit075_PSPNet. Fet-
SAM, however, excels with a DSC of 0.8037, substantially
higher than any other model.

� LV: Again, FetSAM leads with a DSC of 0.82084, while
the lowest performer, Mvit075_Manet, only achieves a
DSC of 0.51384.

Comparative analysis: The consistently high DSC
scores across all classes underline FetSAM’s advanced segmen-
tation capabilities. Even in more complex classes like CSP and

LV, FetSAM demonstrates a significant margin of superiority
over other models. The closest competitor, Efb0_DLabV3+,
does well but falls short in these challenging classes.

By outperforming all other models in each individual class and
on average, FetSAM validates its effectiveness and reliability for
ultrasound image segmentation tasks.

2) Hausdorff Distance (HD): The Hausdorff Distance (HD)
is a pivotal metric for evaluating the segmentation models. It
measures the maximum distance of a set to the nearest point
in the other set and focuses on the worst-case distance be-
tween the predicted segmentation and the ground truth. This
attribute makes HD especially useful for understanding the
model’s performance when errors occur. Fig. 4 offers a detailed
comparison of HD performance across various models and
classes.

Outstanding performance of FetSAM: FetSAM
excels in the HD metric, registering the lowest mean HD value
of 1.86484 across all classes. This performance is notably better
than the second-best model, Mit_SegFormer_b0, with a mean
HD of 38.98057. FetSAM’s individual class HD values are
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Fig. 5. Comparison of ASD Across Models and Classes, Emphasizing the Exceptional Performance of FetSAM.

2.67867 for Background, 3.07074 for Brain, 1.05123 for CSP,
and 0.65873 for LV.

Role of prompts in FetSAM: The use of prompts in
FetSAM appears to focus the model’s attention more effectively
around the Region of Interest (ROI). This focused attention is
likely a significant factor contributing to FetSAM’s exceptional
performance in minimizing the HD.

Comparative analysis: On the other end of the
performance spectrum, Efb0_Linknet has the highest mean
HD of 96.60033, indicating less accurate segmentations in
worst-case scenarios. Other models like Efb0_DLabV3+ and
Mvit075_DLabV3 also demonstrated higher mean HD values,
specifically 81.11064 and 79.6815, respectively.

Potential Areas for Improvement: Although Fet-
SAM sets the standard in HD performance, there remains room
for improvement in other models. The LV class consistently
shows higher HD values, suggesting a focus area for future
model enhancements.

3) Average Surface Distance (ASD): ASD is another met-
ric of importance in evaluating the performance of segmentation
models. This metric computes the mean distance between the
points on the predicted segmentation and their closest points on
the ground truth. Fig. 5 shows a bar chart comparison of ASD
across different models and classes.

Exceptional performance of FetSAM: FetSAM
demonstrates a spectacular performance in the ASD met-
ric, with a mean ASD of just 0.46645. This is a consid-
erable improvement over the next best-performing model,
Mit_SegFormer_b0, which has a mean ASD of 5.0018. The
individual class ASD values for FetSAM are 0.67628 for Back-
ground, 0.67105 for Brain, 0.33891 for CSP, and 0.17955
for LV.

Comparative analysis: Efb0_Linknet and
Mvit075_DLabV3 have the highest mean ASD values,
registering 17.20281 and 17.65179 respectively. These
models particularly struggle in the LV class, with ASD
values of 53.99729 for Efb0_Linknet and 55.44369 for

Mvit075_DLabV3, pushing their mean ASD values significantly
higher.

Potential areas for improvement: While FetSAM
sets a high standard in ASD performance, other models show a
wide range of ASD values, indicating room for improvement.
The LV class seems to be the most problematic for many models,
suggesting a potential focus area for future optimizations.

B. Comprehensive Model Comparison

In this section, we discuss the overall performance of the ten
segmentation models along with FetSAM, based on four key
evaluation metrics: DSC, HD, and ASD. Table I and Table II
summarizes the performance metrics for each model across the
different classes: Background, Brain, CSP, and LV.

FetSAM emerges as the standout model, leading in three out
of the four metrics. It achieves a mean DSC value of 0.90117,
an HD value of 1.86484, and an ASD value of 0.46645.

Among the other models, Efb0_DLabV3+ performs well in
terms of DSC struggles in HD and ASD. On the contrary, models
like Mvit075_DLabV3 and Efb0_Linknet show generally poor
performance across most metrics. Their lesser performance is
most evident in the LV class, thereby affecting their overall mean
metric values.

A consistent trend observed across most models is their sim-
ilar performance in DSC and ASD, but a noticeable struggle in
HD. This suggests that while these models are generally good
at segmentation, they are prone to larger errors. This makes
FetSAM’s robustness even more commendable as it maintains
low error rates across all these metrics.

It’s worth noting that the LV class is challenging for almost
all models, particularly in terms of HD. This could be an area
for future research and refinement of segmentation models.

The superior performance of FetSAM is likely due to its use
of prompts, which allow the model to focus more on the ROI.
This focused attention mechanism is a likely contributor to its
overall exceptional performance across metrics.
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TABLE I
COMPARISON OF SEGMENTATION PERFORMANCE METRICS FOR THE CLASSES OF BACKGROUND, BRAIN, AND CSP ACROSS VARIOUS

MODELS INCLUDING FETSAM

TABLE II
COMPARISON OF SEGMENTATION PERFORMANCE METRICS FOR THE CLASSES OF LV AND MEAN ACROSS VARIOUS MODELS INCLUDING FETSAM

In conclusion, while FetSAM sets a high standard in seg-
mentation performance, there is room for improvement in other
models, especially in the HD and ASD metrics and in challeng-
ing classes like LV.

C. Ablation Studies on Loss Functions and Model
Configuration

To assess the effectiveness of the chosen loss functions and the
robustness of the FetSAM model under various configurations,
extensive ablation studies were undertaken. These studies not
only evaluate the individual contributions of the Dice and Lo-
vasz loss functions but also investigate their combined effect.
Additionally, the adaptability and consistent performance of
FetSAM with different input prompts are analyzed. The findings
from these ablation studies are essential to validate the design
decisions made in developing FetSAM and to demonstrate its
enhanced performance in fetal ultrasound image segmentation.

1) Impact of Loss Function on Segmentation Perfor-
mance: The ablation study, presented in Table III , aimed to
assess the impact of various loss functions on the performance
of different segmentation models. The Dice Loss serves as a
baseline, while the Lovasz Loss, targeting the optimization of the
intersection-over-union metric, offers a nuanced approach. Our
findings suggest that a Combined Loss function, integrating both

Dice and Lovasz Losses, significantly outperforms the individ-
ual loss functions across all models. This combination notably
improves the DSC and reduces the HD and ASD, underscoring
its effectiveness in enhancing segmentation precision.

2) Ablation Study on FetSAM’s Sensitivity to Prompt
Size: In our comprehensive ablation study, we scrutinized the
influence of prompt size on FetSAM’s segmentation proficiency.
This examination is pivotal for fetal biometrics in prenatal
diagnostics, where precision is paramount. We initially deployed
FetSAM with bounding boxes formulated by our algorithm, then
we probed its adaptability to varying prompt dimensions by
expanding the bounding box offsets to 0, 10, and 20, respectively.

Table IV delineates a discernible performance degradation
concomitant with increased offsets. Operating with zero offset,
FetSAM showcases exemplary efficacy across the board. Yet, as
offsets extend to 10 and 20, a conspicuous downturn is observed
in DSC along with escalations in both HD and ASD metrics,
a trend that is especially pronounced within the LV class –
crucial for the fidelity of biometric computations. These results
articulate the criticality of prompt exactitude for FetSAM’s
optimal utilization in clinical milieus, which demands not
merely segmentation, but also the scrupulous reckoning of
biometrics. Armed with precise bounding prompts, FetSAM
transcends conventional models, bestowing enhanced HD
and ASD results. Such findings illuminate the exigencies of
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TABLE III
ABLATION STUDY RESULTS FOR DIFFERENT LOSS FUNCTIONS

optimizing FetSAM for variable prompt dimensions, bolstering
its versatility and clinical viability. It is this capability for precise
biometric elucidation that positions FetSAM as a harbinger
for transformation in fetal medicine, equipping practitioners
with data of unparalleled reliability for the assessment of fetal
well-being and progression.

Adding to our insights, the inclusion of baseline results
for FetSAM before fine-tuning, as depicted in the augmented
Table 4, further substantiates the significant enhancements post-
tuning. These enhancements are not trivial; they accentuate the
transformative impact of fine-tuning in advancing FetSAM from
a baseline model to one that sets new precedents in fetal bio-
metric segmentation. As we march towards clinical application,
these ablation studies serve as a testament to FetSAM’s potential
in real-world settings, where precision is not a luxury but a
necessity.

D. Qualitative Evaluation and Visual Comparison

Fig. 6 provides a side-by-side comparison of the segmentation
masks produced by each model, including our proposed FetSAM
model. This qualitative comparison is not just an accessory but
a critical aspect of our evaluation, as it allows us to understand
the nuanced performance of each model in various scenarios
that occur in different trimesters of fetal development. In the

first and second images, which focus on the fetal brain during
the first trimester, FetSAM stands out for its exceptional per-
formance. This is noteworthy because CSP and LV are not yet
visible at this stage. Other models that follow in terms of accu-
racy are Efb0_DLabV3+, Mit_SegFormer_b0, Mvit075_Unet,
Mvit075_FPN, and Efb0_Linknet.

Moving on to images 3, 4, and 5, which capture the fetal
head in the second trimester, FetSAM continues to impress.
Not only does it accurately predict the fetal brain, but it also
does an excellent job with the CSP and LV, which have now be-
come visible. Models like Mit_SegFormer_b0, Mvit075_Unet,
Mvit075_DLabV3, and Mvit075_FPN also perform well but lag
behind FetSAM. For instance, image 4 reveals that while some
models, such as Efb0_Unet++ and Mvit075_Manet, incorrectly
predict LV, FetSAM remains consistent with the ground truth.
This consistency is also observed in models like Efb0_PAN,
Efb0_DLabV3+, and Mit_SegFormer_b0.

The complexity increases with images 7 and 8, representing
the third and second trimesters, respectively. Here, many models
struggle to predict the complete shape of the fetal brain. Yet,
FetSAM, along with Mvit075_Unet and Efb0_PAN, rises to the
challenge in image 7. In image 8, FetSAM alone predicts the cor-
rect mask accurately, followed by Efb0_PAN and Efb0_Linknet.

Lastly, image 9 brings a unique challenge due to the different
orientation of the fetal brain, which complicates CSP detection.
Nevertheless, FetSAM, along with Efb0_DLabV3+, Efb0_PAN,
Mvit075_Unet, and Mvit075_Manet, manages to handle this
complexity effectively.

The visual observations confirm our quantitative findings, fur-
ther emphasizing FetSAM’s robustness and adaptability across
different developmental stages and imaging conditions.

IV. DISCUSSION

In this work, we have embarked on a pioneering study in the
domain of fetal brain segmentation, introducing the innovative
FetSAM model. Utilizing a novel dataset crafted specifically for
this study, our research stands as a groundbreaking effort in the
field, marked by the absence of pre-existing benchmarks in the
literature. This uniqueness renders our findings exceptionally
impactful.

The FetSAM model has demonstrated superior performance
across key quantitative metrics such as the Dice Similarity Co-
efficient (DSC), Hausdorff Distance (HD), and Average Surface
Distance (ASD). This high level of performance is attributed to
its prompt-based architecture, which facilitates targeted atten-
tion on regions of interest (ROI). Such precision is crucial in
complex anatomical tasks like fetal brain segmentation, where
anatomical structures undergo significant changes across differ-
ent trimesters.

Our methodological approach was robust, incorporating class
weighting, custom loss functions, and extensive data augmenta-
tion to address the challenges posed by the imbalanced dataset,
particularly for the LV class. Despite these enhancements, areas
for improvement remain, particularly in the DSC and HD met-
rics, indicating that the LV class could be a focal point for future
research and optimization.
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TABLE IV
ABLATION STUDY RESULTS FOR FETSAM MODEL WITH BASELINE AND VARYING PROMPT SIZES

Fig. 6. Comparison of predicted segmentation masks: A side-by-side comparison of the 10 masks produced by each segmentation model,
contrasted with the ground truth and our proposed FetSAM model.

While models such as Efb0_DLabV3+ and Mvit075_
DLabV3 exhibited competitive performance in certain metrics,
they were consistently outperformed by FetSAM, especially
in more challenging scenarios like third-trimester images or
varying fetal brain orientations. These observations underscore
FetSAM’s robustness and its potential for both further research
and practical clinical applications.

Notably, all models faced challenges in accurately segmenting
the LV class, highlighting a need for future research to focus on
achieving a more balanced dataset and possibly developing more
tailored attention mechanisms or custom loss functions.

The ablation studies conducted have further validated
FetSAM’s advanced segmentation capabilities, particularly
its utilization of prompt boxes to enhance segmentation
precision. This novel approach significantly reduces false

positives and false negatives, contributing to the model’s
exceptional performance in the HD metric. Such improvements
are critical for clinical applications where precise segmentation
of edges and small structures directly influences diagnostic
outcomes.

The remarkable HD improvement, outpacing the enhance-
ments seen in DSC, highlights the method’s efficacy in precise
edge and structure delineation. While DSC measures overall
accuracy, HD’s sensitivity to object boundary delineation makes
FetSAM’s focus on minimizing segmentation errors in these
areas a key factor in its superior HD performance.

Ultimately, FetSAM’s innovative prompt box utilization not
only enhances segmentation accuracy but also illustrates its
potential to significantly advance medical image segmenta-
tion. Future efforts will aim to further refine these techniques,
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improving FetSAM’s robustness and clinical utility across di-
verse scenarios.

In conclusion, FetSAM sets a new benchmark in fetal brain
segmentation, offering a solid foundation for future research
in this field. Future studies might explore alternative attention
mechanisms, advanced data augmentation techniques, and spe-
cialized loss functions to further refine FetSAM’s performance,
particularly in areas identified as needing improvement.

V. CONCLUSION

This study marks a significant advancement in fetal brain
segmentation by unveiling the FetSAM model, which is cali-
brated on a novel dataset and juxtaposed with a multitude of
segmentation models. FetSAM has demonstrated its robustness
and adaptability, excelling in critical quantitative metrics and
showcasing potential for real-world applications due to its su-
perior qualitative performance.

Looking ahead, we recognize the importance of transitioning
towards fully automated systems that encapsulate the entire
process from frame selection to segmentation, catering to the
emerging trends in the field. The current success of FetSAM
illustrates its potential to adapt to such an end-to-end automated
framework, which would accommodate variations in sonog-
rapher expertise–from novices to seasoned practitioners–and
enhance the consistency of fetal brain segmentation outcomes.

To further enhance FetSAM, our immediate research goals
include experimenting with diverse types of prompts for the
model, ranging from textual to point-based inputs, to opti-
mize segmentation accuracy. Moreover, a comparative analysis
between FetSAM’s performance and that of fetal ultrasound
sonographers is envisaged. Such a study would deepen our
understanding of FetSAM’s utility in clinical scenarios and
benchmark its efficacy against the human expertise that currently
defines the standard of care.

In sum, the FetSAM model establishes a solid groundwork for
both immediate usage and future enhancements in the arena of
fetal brain segmentation. Its commendable performance, allied
with the scope for further improvements, positions it as a strong
prospect for exhaustive clinical trials and applications in real-
world healthcare settings.
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