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ABSTRACT Currently, many global organizations collect personal data for marketing, recommendation
system improvement, and other purposes. Some organizations collect personal data securely based on a
technique known as ε-local differential privacy (LDP). Under LDP, a privacy budget is allocated to each
user in advance. Each time the user’s data are collected, the user’s privacy budget is consumed, and their
privacy is protected by ensuring that the remaining privacy budget is greater than or equal to zero. Existing
research and organizations assume that each individual’s data are completely unrelated to other individuals’
data. However, this assumption does not hold in a situation where interaction data between users are collected
from them. In this case, each user’s privacy is not sufficiently protected because the privacy budget is actually
overspent. In this study, the issue of local differential privacy for person-to-person interactions is clarified. We
propose a mechanism that satisfies LDP in a person-to-person interaction scenario. Mathematical analysis
and experimental results show that the proposed mechanism can maintain high data utility while ensuring
LDP compared to existing methods.

INDEX TERMS Ethics and privacy, local differential privacy, person-to-person interaction.

I. INTRODUCTION
Although the analysis of Big Data, including personal data,
has enabled the emergence of new services, privacy infor-
mation leakage is a serious issue [1], [2]. Several large
organizations such as Apple, Google, and Microsoft have
been collecting users’ information while protecting their pri-
vacy [3], [4], [5], [6] using the ε-local differential privacy
(LDP) technique [7]. Although LDP is considered the best
technology for privacy protection [8], [9], these organizations
additionally apply explicit privacy policies for data collection.
For example, Apple collects data from users regarding their
emoji usage through LDP; however, it does not collect the
users’ identities.

In LDP, each user is assigned a privacy budget, which
is a non-negative real value. When the user data are sent
to the data collector, an amount (or the entirety) of the
privacy budget of the user is consumed. The total privacy
budget and the value of each privacy budget consumed can
be controlled by an agreement between the data collector
and user. For example, suppose that the privacy budget for

user A is 10.0, and each privacy budget value consumed to
transmit the data of this user is 1.0. The data collector can
retrieve user A’s data 10 times. To ensure continuous data
collection, the total privacy budget of each user is regularly
restored.

If the data collected by the data collector refer to a user’s
information regardless of other users, there are no issues
because the user has already agreed to the privacy policy.
However, what happens if the data collected refer to person-
to-person interaction information? Suppose that user A sends
an email to user B, and the data collector gathers word usage
information through LDP under the privacy policy agreed
upon with user A. The data collected are the word informa-
tion used by user A, but for user B, the data are the word
information they have received. In other words, it is equivalent
to collecting user B’s data. Therefore, the data collector must
also consider user B’s privacy. However, currently, it is not
checked whether user B has agreed to the privacy policy or
not. Even if user B has agreed to this policy, no one has control
over user’s B privacy budget.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

304 VOLUME 3, 2022

https://orcid.org/0000-0002-2552-6717
https://orcid.org/0000-0001-6717-7028
mailto:seiuny@uec.ac.jp


FIGURE 1. Assumptions in existing studies and this study.

Fig. 1 shows the difference between the assumptions in
existing studies and this study. When user u1 sends LDP value
y1 of their true value x1 to the data collection server, only u1’s
private information is provided to the data collection server in
existing studies. This is because the values of each user are
completely unrelated to each other. Moreover, suppose that
each value depends on the other. In this case, when user u1

sends LDP value y1, u1, u2, and u3’s information are provided
to the data collection server. In other words, although u2 does
not send any information to the data collection server, through
the behavior of u1, partial information of u2 is provided to the
data collection server.

In this study, this problem was formalized as a person-to-
person interaction in LDP. To concentrate the discussion in
this paper on the new concept of person-to-person interac-
tion under ε-LDP, we targeted the relatively simple task of
obtaining average values from users. The recommendations
in this paper are expected to have a considerable impact on
all organizations that collect person-to-person interaction data
using ε-LDP.

The main contributions of this paper are as follows. First,
we formalized a person-to-person interaction problem under
ε-LDP, and we demonstrated that several existing studies on
LDP do not ensure ε-LDP in a person-to-person interaction
scenario. Second, we proposed a method that can ensure
ε-LDP. Third, the approximate amount of error between the
true average value and the average value estimated by the
proposed method was analyzed mathematically. Fourth, based
on the results of extensive simulations, we showed that the
proposed method outperformed existing methods and that the
results of the mathematical analysis were in perfect agreement
with the experimental results.

II. RELATED WORK AND REAL APPLICATIONS
A. LOCAL DIFFERENTIAL PRIVACY
In technical terms, LDP is defined as ε-LDP, where parameter
ε represents a privacy budget. There are several relaxation
concepts of ε-LDP such as (ε, δ)-LDP and Renyi differential
privacy [10]. Although the concepts discussed in this paper
can be applied to the relaxations of LDP, we focused on
ε-LDP to simplify the discussion. ε-LDP is defined as follows.

Definition II.1 (ε-LDP): Let X represent a domain of the
data of a user and let Y be an arbitrary set. A randomized
mechanism M provides ε-LDP if and only if for any x, x′ ∈ X
and any y ∈ Y ,

P(M(x) = y) ≤ eεP(M(x′) = y). (1)

Several techniques have been proposed to achieve LDP.
One of the most commonly used techniques is the Laplace
mechanism [11]. To introduce the Laplace mechanism, the
concept of global sensitivity is defined.

Definition II.2 (Global sensitivity): For a function f : X →
Y , the global sensitivity of f is defined as follows.

� f = max
x,x′∈X

| f (x)− f (x′)|. (2)

Theorem II.3 (Laplace mechanism [11]): Let � f be the
global sensitivity of a function f : X → Y and let L(v) rep-
resent the Laplace distribution, with the mean as zero and the
scale parameter as v. The following mechanism M ensures
ε-LDP.

M(x) = f (x)+ L
(

� f

ε

)
. (3)

Many methods have been proposed for estimating a his-
togram distribution of users’ values under ε-LDP, such as the
Randomized Aggregatable Privacy-Preserving Ordinal Re-
sponse, Sarve, and so on [4], [12]. Although such methods
achieve high accuracy, their techniques cannot be applied to
a person-to-person interaction scenario. This is because they
assume that each user’s value is not dependent on another
user’s value.

There are also several methods for estimating the average
value of users. Xue et al. proposed (τ, ε)-personalized local
differential privacy (PLDP) as a privacy metric, Duchi’s solu-
tion with PLDP (DCP), and piecewise mechanism with PLDP
(PWP) [13]. The (τ, ε)-PLDP is a privacy metric that weakens
ε-LDP, but DCP and PWP can be used for ε-LDP. We can
assume that the range of a value is [−1, 1] without loss of
generality. In DCP, each user sends a randomized value v with
a probability

Pr(ε, x) = (eε − 1) · x
(eε + 1) · 2 +

1

2
. (4)

In PWP, each user randomly selects a value from a range
around the true value with probability p, where the value of
p is determined from ε. With probability 1− p, a value from
a wider range is randomly selected, and the selected value is
sent to the server. Because the ratio of p/(1− p) is eε , PWP
ensures ε-LDP.

Li et al. proposed a square wave mechanism (SW) [14].
This mechanism is similar to PWP, but the range of LDP
values to be selected is different.

Many other LDP methods have been proposed. Navidan
et al. proposed a framework that estimates the number of peo-
ple in each area while protecting each user’s location privacy
using local differential privacy [15]. In the framework, users
measure the Received Signal Strength Indicator (RSSI) and
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TABLE 1. Notations

determine their locations based on the RSSI. The users then
perturb their location information and send it to the data ag-
gregator, who estimates how many users are in each location.
The experimental results showed that the proposed framework
could estimate location frequency while ensuring differential
privacy.

Kim and Jang [16] proposed a data collection method of
workload-aware differentially private positioning. They as-
sume that location is hierarchical and aim to estimate the
density at each location for each level of the hierarchy by
utilizing local differential privacy. Their method can provide
an optimal perturbation scheme to minimize the estimation
error for a given workload.

Although many studies target one-shot data-sharing scenar-
ios, several studies consider data stream cases. Please note
that our proposed method can be used for data stream cases
by dividing the privacy budget by the number of data acquisi-
tions. By using methods for specified data stream cases, the
accuracy of the data analysis can be enhanced. For exam-
ple, Ren et al. [17] proposed an LDP mechanism for infinite
data stream that targets w-event privacy, which ensures LDP
for arbitrary time windows consisting of consecutive w time
steps. In the future, we will propose a specialized method for
measuring time series’ data.

Ren et al. [18] proposed an anonymous data aggregation
scheme that allows the server to estimate the number of users
located within each value area without knowing the location
of individual users. In particular, the authors focus on high-
dimensional values. The domain sizes of datasets used in the
experiments in [18] were 216, 252, and 277. Future experiments
with such high-dimensional data sets should be conducted to
test our proposed method.

These studies are excellent, but do not take user interaction
into account.

In recent years, studies on federated learning with LDP
have gained attention [19], [20], [21]. In typical federated
learning using LDP, the server sends the machine-learning
model parameters under training to the clients. Each client in-
dependently trains the machine-learning model using private
local data samples. The updated gradient information is sent
to the server under the protection of LDP. If each private local
data sample is completely unrelated to the private local data

samples of other users, ε-LDP can be ensured in these studies.
However, for the person-to-person interaction data envisioned
in this study, when one user sends information to a server
through LDP, there is a need to consider the loss of privacy
of other users as well.

All the extant studies on LDP such as [4], [9], [22], [23]
assume that one user’s value is independent of that of any
other user. In many cases, this assumption is correct. However,
in some scenarios, this assumption does not hold, as discussed
in Section II-B.

Example 1: Alice transferred $50 to Bob in a day. Alice
has agreed to a 10-LDP (i.e., the amount of the privacy budget
is 10), which allows a data collector to gather the amount per
day transferred by Alice. Based on this policy, Alice sends
the LDP value (e.g., $53) to the data collector by consuming
a 10-privacy budget. Since Alice’s identity is not sent to the
data collector, it only knows that someone transferred $53 on
that day.

In the above example, the information sent is related to
Alice’s money transfer. However, for Bob, the information
sent is related to Bob’s receipt of money. In this case, Alice’s
10-privacy budget and Bob’s 10-privacy budget are consumed.
Therefore, if Bob’s transmission information is also collected,
the total amount of privacy budget consumed will be 20,
surpassing the upper limit of 10. Such problems occur in
person-to-person interactions in LDP.

B. APPLICATION OF LDP UNDER PERSON-TO-PERSON
INTERACTIONS
Recently, LDP has been widely applied to many real services.
Apple collects pictogram usage information from a user under
LDP to analyze the use frequency of each pictogram [3].
However, Apple does not seem to care about the receiver’s
privacy.

Several email datasets contain anonymized text information
and pseudo personal, sender, and receiver IDs [24]. Such data
can be collected under LDP from each user. Emails are gener-
ally considered personal data that must be handled with care,
regardless of the data that are sent or received. Therefore, if
the email information of a sender is collected under LDP, this
collection should consume the privacy budget of not only the
sender but also the receiver.

Human relationship information such as information from
online social networks is another form of privacy information.
There are several anonymized datasets on human relation-
ships, such as Epinions social network [25]. If the data
collector gathers information about who a user is connected
to and trusts, the privacy budget of not only the user but also
the other person must be consumed.

III. PROBLEM DEFINITION
We defined the problem of LDP for person-to-person interac-
tions. This scenario was not assumed in existing studies, but it
is present in real-world scenarios. One of the most important
contributions of this work is to clarify this problem. Numerous
forms of person-to-person interactions are possible, but to
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simplify the discussion in this paper, we will limit our analysis
to the following interactions.

Definition III.1 (ε-LDP in a person-to-person interaction
scenario): Let Xi represent a domain of user ui’s data and
let Xi, j represent a domain of interaction data between two
users ui and u j (i, j = 1, . . . , n (i �= j)). The value of xi ∈
Xi is obtained from xi, j ∈ Xi, j for all j except for i = j;
i.e., xi = f (xi,1, . . . , xi,i−1, xi,i+1, . . . , xi,n) for a function
f : X n−1

i, j → Xi.
User ui sends information xi under ε-LDP using mechanism

M, which is defined in Definition II.1.
Theorem III.2 (Consumed privacy budget of ε-LDP for

person-to-person interactions): In a scenario of ε-LDP for
person-to-person interactions, the consumed privacy budget of
user ui is ε. The privacy budget of user u j is also consumed,
and this amount is represented by

min ε j, s.t . P(M( f (xi,1, . . . , xi,n)) = y)

≤ eε j P
(
M( f (. . . , xi, j−1, xi, j,

′ xi, j+1, . . .)) = y
)
, (5)

for any xi, j, x′i, j ∈ Xi, j .
Proof: Regarding user ui, the consumed privacy budget is

ε because xi is collected under ε-LDP.
For user u j ( j �= i), the following expression should be

satisfied for any xi, j, x′i, j ∈ Xi, j to ensure ε j-LDP because of
Definition II.1.

P(M( f (xi,1, . . . , xi,n)) = y)

≤ eε j P(M( f (xi,1, . . . , xi, j−1, x′i, j, xi, j+1, . . . , xi,n)) = y).
(6)

The smaller the value of ε j , the smaller the privacy budget
consumed and the more robustly the privacy is protected.
Therefore, the consumed privacy budget is the minimum value
that satisfies (6). �

The problem definition in this paper is as follows.
Problem III.3 (Obtaining the average value under ε-LDP in

a person-to-person interaction scenario): Assume there are
n users (u1, . . . , un), and each privacy budget is set to εi. In
a person-to-person interaction scenario, the average value of
x1, . . . , xn is obtained with high accuracy while ensuring εi-
LDP for each user ui.

Note that we do not propose a new privacy metric, but
we strictly follow ε-LDP. The difference between the target
of this paper and the existing studies is whether or not each
user’s data contain information on other users’ data, which
should be protected. To simplify the discussion, the target
of this analysis is to obtain the average value of all users’
data. However, the concept of ε-LDP in a person-to-person
interaction scenario can be applied to any other analysis such
as histogram estimation and machine learning. Such analysis
remains to be undertaken in future work.

FIGURE 2. A directed graph of Examples 2 and 3.

IV. PROPOSED METHOD
The main notations used in this study are listed in Table 1. We
mainly used a Laplace mechanism. To use this mechanism,
the global sensitivity of each user should be clarified.

Definition IV.1 (Global sensitivity for a person-to-person
interaction): For user ui, the global sensitivity is the same as
that given in Definition II.2.

For user u j ( j �= i), the global sensitivity of f is defined as

� fi, j = max
xi, j ,x′i, j∈Xi, j

| f (. . . , xi, j, . . .)− f (. . . , x′i, j, . . .)|. (7)

Theorem IV.2 (Consumed privacy budget of the Laplace
mechanism in a person-to-person interaction): Suppose user
ui sends the value of xi to the data collector under εi-LDP
using a Laplace mechanism. Let � fi represent the global
sensitivity of xi and let � fi, j represent the global sensitivity
of xi, j . In this case, εi of the privacy budget of user ui and
εi� fi, j/� fi of the privacy budget of everyone else pi, j are
consumed.

Proof: For xi, this mechanism ensures εi-LDP according
to (1).

For xi, j , the global sensitivity is �i, j . The value sent to the
server is represented by

f (xi )+ L
(

� fi

εi

)
= f (xi )+ L

(
� fi, j

εi� fi, j/� fi

)
. (8)

Therefore, according to (1), this mechanism ensures that
(εi� fi, j/� fi )-LDP regarding xi, j . �

Example 2: Consider people u1, u2, and u3 giving money
to each other. The maximum amount of money given is lim-
ited to $100. Therefore, � f1 = � f2 = � f3 = 100. User u1

gave $10 and $20 to u2 and u3, respectively. User u2 gave
$30 to u1. User u3 gave $40 and $50 to u1 and u2, respec-
tively (see Fig. 2). User u1 sends information about how
many dollars u1 gave on average to the server. In this case,
x1 = f (x1,2, x1,3) = 15 where function f is a function that
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calculates the average. In this example, � fi, j = 50 because
a change of xi, j can affect the value of xi by up to 50.

When user u1 sends a value under 1-LDP to the server, i.e.,
the result of 15+L(100/1) is sent to the server, this behav-
ior consumes 1, 0.5, and 0.5 of the privacy budget of users
u1, u2, u3, respectively.

So far, we assumed that only one user (ui) sends their
LDP value to the data collection server. When several users
send their LDP values, the interaction-composition should be
considered.

Theorem IV.3 (Interaction-composition property of LDP in
person-to-person interactions): Suppose that the private in-
formation of ui(i = 1, . . . , n) is collected under εi-LDP by the
data collection server. Let εi, j represent the consumed privacy
budget of user u j by the collection of the private information
of ui. In this case, the total privacy budget consumed for ui is
represented by

ε̂i = εi +
∑
j �=i

ε j,i� f j,i/� f j . (9)

Proof: The information related to ui is represented by{
xi,1, . . . , xi,i−1, xi,i+1, . . . , xi,n

x1,i, . . . , xi−1,i, xi+1,i, . . . , xn,i.
(10)

The value of xi is calculated based on the upper part of (10);
that is, xi = f (xi,1, . . . , xi,i−1, xi,i+1, . . . , xi,n). This value is
sent to the server under the privacy budget εi.

Each value x j,i of the lower part of (10) is sent by user u j

under the privacy budget ε j,i for x j,i. Because of the sequential
composition property of differential privacy [26], the total
privacy loss is calculated by (9). �

Example 3: Consider the same case described in Example
2. The values of x1, x2, x3 are 15, 30, and 45, respectively.
Consider people u1, u2, and u3 sending their values x1, x2, x3

under 1-LDP, 2-LDP, and 3-LDP, respectively. In this case, in
each report of user ui, the total privacy loss of u1, u2, and u3

are (1+2/2+3/2 = 3.5), (2+1/2+3/2 = 4), and (3+1/2+2/2 =
4.5), respectively.

So far, we discussed generalized scenarios where the global
sensitivity and privacy budget are different for each user. Usu-
ally, however, these values are common for all users. In this
case, the following theorem holds.

Theorem IV.4: Consider that there are n users and each user
ui sends xi under ε-LDP. In this case, each transfer of data
of ui consumes ε/(n− 1) of the privacy budget of another
user. The total privacy loss of each user ui is represented by
ε +∑ j �=i ε/(n− 1) = 2ε.

In the following text, the expected amount of error of the
estimated mean under ε-LDP in a person-to-person interaction
is discussed. We assume that each privacy budget of each user
is ε and the global sensitivity for each is � f . Let L(x; s) rep-
resent the probability density function (PDF) of the Laplace
distribution with mean 0 and scale s. The probability distribu-
tion of the sum of n Laplace random variables is represented
by the following equation.

Ln(x; s) =
∫ ∞

x1=−∞
· · ·
∫ ∞

xn−1=−∞

L(x1; s) · · ·L(xn−1; s)L
(

x −
n−1∑
i=1

xi; s
)

dx1 · · · dxn−1

=
e−
|x|
s

n−1∑
i=0

an,is
i|x|n−i−1

2 sn
n−1∏
i=1

2i

, (11)

where

an,i =

⎧⎪⎨⎪⎩
0 (n = i or i = −1)

1 (n = 1 and i = 0)

an−1,i−1(n+ i − 2)+ an−1,i (otherwise.)

The resulting value represents the PDF of the summed
noise. The expected absolute value of (11) is calculated as

E [|x|Lk (x; s)] = 2
∫ ∞

x=0
xLk (x; s)dx = s

n−1∏
i=1

2i + 1

2i
. (12)

The value of (12) represents the expected magnitude of
error compared to the true value. The expected magnitude
of error is then adjusted based on the desired value. For
example, if the server wants to calculate the final average
value, the expected magnitude of error is the value of (12)
divided by n. When the target mean absolute error (MAE)
of the expected average value is θ , the value of s should
be

s = n · θ
√

π�(n)

2�(1/2+ n)
. (13)

The expected squared error is calculated using

E [x2Ln(x; s)] = 2 ns2. (14)

If the server wants to calculate the final average value, the
value (14) is divided by n2. When the target mean squared
error (MSE) of the expected average value is θ ′, the value of s
should be

s = n

√
θ ′

2n
=
√

nθ ′

2
. (15)

Algorithm 1 describes our proposed method.
If the target MSE is desired, Line 3 in Algorithm 1 is

replaced by s←√nθ ′/2.

V. EVALUATION
A. DATASETS
First, we generated synthetic datasets following the normal,
uniform, and delta distributions where the values lie in the
range [0,100].

Furthermore, four real datasets were evaluated. The first
dataset was an email dataset [24]. The first dataset was an
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Algorithm 1: Collection and Analysis of LDP Data in a
Person-to-Person Interaction.
Input: � f , target MAE θ or target privacy budget ε

Output: Expected average value
1: /*Process of the data collection server*/
2: if target MAE is set then
3: s← θ

√
π�(n)n

2�(1/2+n)

4: ε′ ← 2� f
s

5: else if target privacy budget is set then
6: ε′ ← ε

2
7: end if
8: Send ε′ to the users.
9: /*Process of each user ui*/

10: x′i ← xi + L( � f
ε′ )

11: Send x′i to the data collection server.
12: /*Process of the data collection server*/
13: v← 1

n

∑n
i=1 x′i

14: Return v.

email dataset [27]. We checked the sender, the receiver, and
the content of each email in the dataset and identified 19,753
distinct email addresses. Moreover, we counted the number
of swear words used by each user. We obtained the list of
swear words from https://www.noswearing.com/, which has
been used by many studies (e.g., [28], [29], [30]). Information
on how many swear words each user emailed was collected
under ε-LDP.

The second dataset was a who-trusts-whom network
dataset [25]. Information on how many users each user trusts
was collected under ε-LDP. The number of users was 36,692.
The minimum and maximum values were 1 and 3,044,
respectively.

The third dataset included observational contact data from
86 rural Malawian residents [31]. Participants wore pouched
sensors on the front of their clothing to detect close proximity.
A personal “touch event” between two people was identi-
fied when the devices exchanged approximately one radio
packet for 20-time intervals. After contact was established, it
was considered continuous as long as it kept exchanging no
more than one radio packet every second of the subsequent
20-second interval. Each device had an identification number
that was used to link contact information established by the
individual carrying the device.

The fourth dataset described face-to-face citations from 405
participants at the SFHH conference in Nice, France, which
was held on June 4–5, 2009 [32]. Each participant had a
device, and at regular intervals, wireless packets were sent
with temporary addresses granted to the device. The spatial
distance was about 1 m, and the devices were able to detect
face-to-face approaches.

Table 2 summarizes the characteristics of the four data-
sets.

FIGURE 3. Mean squared error (MSE) results of synthetic datasets.

B. EVALUATION RESULTS
We evaluated the effectiveness of our proposed method
using synthetic and real datasets. We compared the proposed
method with the DCP, PWP, and SW methods proposed
in [13], [14] (see Section II). Because these methods do not
assume the person-to-person interaction scenario, it is neces-
sary to derive a method for setting the privacy budget value.

For DCP, the maximum ratio of Pr(ε, x)/Pr(ε, x′) based
on (4) is eε when x, x′ = 1,−1. In our scenarios, the range of
x depending on xi, j is not 2 but 2/(n− 1). In this case, the
maximum ratio is represented by

γ (ε, n) = Pr(ε,−1+ 2/(n− 1))

Pr(ε,−1)
= eε + n− 2

n− 1
. (16)

Therefore, other than ui, privacy budget log γ (ε, n) is con-
sumed. If the total privacy loss should be ε, the privacy budget
for xi should be set to the value obtained using the following
equation for ε′:

ε′ + (n− 1) log γ (ε′, n) = ε. (17)
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TABLE 2. Real Datasets

FIGURE 4. Mean absolute error (MAE) results of synthetic datasets.

It is difficult to solve (17) algebraically, but it can be easily
solved numerically.

For PWP [13] and SW [14], the consumed privacy budget
of u j is also ε when user ui sends the ε-LDP value of xi to the
server. Therefore, when n users send their LDP values to the
server, the value of the privacy budget should be ε/n to ensure
ε-LDP.

We experimentally evaluated the MSE and MAE. We re-
peated each experiment 1,000 times and obtained the average
value. The range of ε was set to [1, 20] based on [20], [33].
In several existing studies, ε was set to smaller values. In
a practical case, the range [1, 20] is sufficient for ε. In our
setting in the synthetic datasets, each true value existed in
[0, 100]. When ε was 1, the average amount of the Laplace
noise per user was 200. The noise was sufficiently large to

FIGURE 5. MSE results for real datasets. Although the difference between
the proposed method and DCP appeared small, the proposed method
reduced the MSE by 47%, 40%, 66%, and 62%, respectively, when ε = 10.

ensure that the true value was not recognizable at all. When ε

was 20, the average amount of the Laplace noise per user was
10. Although the privacy protection level was relatively low,
this value may be sufficient in some cases. The range of n
(number of users) was set to [100, 10000]. The default values
of ε and n were set to 10 and 1000, respectively.

The MSE results of synthetic datasets are shown in Fig. 3.
The results obtained with varying ε are shown in Figs. 3(a),
(c), and (e) in Fig. 3. The results of Proposal (math) rep-
resent the mathematical analysis results based on (12) and
(14). The results of PWP and SW are worse than those of
the other methods. This is because when a user ui sends xi

value under ε′-LDP, this behavior consumes ε′ of ui’s privacy
budget and ε′ of every u j’s privacy budgets. DCP performed
well when ε was small. However, for larger ε, the proposed
method proved to be more effective. Originally, the DCP did
not perform well when ε was large [20]. Fig. 3(b), (d), and
(f) show the results for different numbers of users. As the
number of users increases, the amount of noise accumulated
increases. However, if the noise added to each value is not too
large, they cancel each other out, and the effect of each noise
is mitigated. Owing to this tradeoff, the MSE increases or
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FIGURE 6. MAE results for real datasets. Although the difference between
the proposed method and DCP appeared small, the proposed method
reduced the MAE by 27%, 23%, 41%, and 39%, respectively, when the
value of ε was 10.

decreases depending on the method. For the proposed method
and DCP, the MSE decreased as the number of users increased
because each noise was relatively small. In contrast, as PWP
had larger noise values, the predicted average MSE increased
with the number of users. For all datasets, the results were
very similar to each other. As can be seen from (12) and (14),
the values of MSE and MAE do not depend on the content of
the dataset but the number of users and value of ε.

Fig. 4 shows the MAE results. The trend of the results
was very similar to that of the MSE results and the MAE
values of the proposed method is smaller than those of existing
methods.

The experimental results of the MSE are shown in Fig. 5.
The performance of DCP and the proposed method were
greater than that of other methods for all datasets. It is difficult
to read the differences between DCP and the proposed method
in Fig. 5, but there are significant differences in the MSE
values. When ε was 10, the proposed method reduced the
MSE by 47%, 40%, 66%, and 62%, respectively, compared
with DCP.

Even if the number of noises added to each value is large,
the accuracy of the estimation can be increased by collecting
a high amount of user data. Therefore, regarding two large
datasets (e-mail and who-trusts-whom network datasets), the
difference between the proposed method and other methods
was relatively small. However, regarding two small datasets
(Village and SFHH datasets), it was difficult for all methods to
estimate the average value with high accuracy. The proposed
method is particularly effective in this difficult task with a
small number of users.

The MAE results of real datasets are shown in Fig. 6. The
trend of the results is very similar to the MSE results. For
all datasets and almost all parameter settings, the proposed
method was the most accurate in deriving the average value.

If the server collects data streams from each person, the
budget will become small. Therefore, the performances of the
proposed method and the DCP are similar in such cases. The
performance of the proposed method for small values of ε will
be improved in the future.

VI. CONCLUSION
In this paper, we defined a novel privacy issue related to
person-to-person interactions in LDP. Although this issue has
persisted for a long time, it has been overlooked by many
organizations. We formalized the problem of LDP in person-
to-person interactions and proposed a method that can ensure
LDP in such scenarios. Our experimental results showed that
the proposed method can reduce the MSE by about 45%
compared with the MSE achieved by existing methods. The
proposed method is relatively simple; however, the results of
this study are only the first step toward solving this important
issue. We anticipate that raising this issue will lead to an active
discussion.
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