
Received 15 October 2022; accepted 30 October 2022. Date of publication 4 November 2022;
date of current version 30 November 2022. The review of this paper was arranged by Associate Editor Tuo Shi.

Digital Object Identifier 10.1109/OJCS.2022.3219631

Towards Capacity-Adjustable and Scalable
Quotient Filter Design for Packet Classification

in Software-Defined Networks
MINGHAO XIE 1, QUAN CHEN 1 (Member, IEEE), TAO WANG 1, FENG WANG 2, YONGCHAO TAO3,

AND LIANGLUN CHENG1

1School of Computer Science and Technology, Guangdong University of Technology, Guangzhou 510006, China
2School of Information Engineering, Guangdong University of Technology, Guangzhou 510006, China

3Shenzhen Academy of Aerospace Technology, Shenzhen 518000, China

CORRESPONDING AUTHOR: QUAN CHEN (e-mail: quan.c@gdut.edu.cn)

This work was supported in part by the R&D Projects in Key Areas of Guangdong Province under Grant 2020B010164001, in part by the Key Program of
NSFC-Guangdong Joints Funds under Grants U1801263 and U2001201, in part by the Projects of Science and Technology Plan of Guangdong Province under

Grants 2022A1515011032, 2020A1515011132, and GDNRC[2020]024, in part by the Industry University Research Innovation Fund of Chinese Universities under
Grant 2021FNA02010, and in part by the Guangdong Provincial Key Laboratory of Cyber-Physical System under Grant 2020B1212060069.

ABSTRACT Software defined networking (SDN), which can provide a dynamic and configurable network
architecture for resource allocation, have been widely employed for efficient massive data traffic manage-
ment. To accelerate the packet classification process in SDN, the hash-based filters which can support fast
approximate membership query have been widely employed. However, the existing Quotient Filters are
limited to fixed size and the number of elements has to be provided in advance. Thus, in this paper, we
investigate the first capacity adjustable and scalable quotient filter for dynamic packet classification in SDN.
Firstly, a novel Index Independent Quotient Filter (IIQF) is designed, which can adjust its capacity in a
more precise level to support dynamic set representation. The algorithms for the operations of insertion,
querying, deletion and capacity adjustment of IIQF are also given. Secondly, on the basis of IIQF, a Scalable
Index Independent Quotient Filter (SIIQF) is designed to ensure the consistency of the designed quotient
filter when adjusting its size. The theoretical performance of the proposed SIIQF, including the error rate,
probability of collisions, and the time and space complexity are all analyzed. An instance of employing
SIIQF for packet classification with tuple space searching algorithm is also introduced. Finally, the extensive
simulations demonstrate the performance gains achieved by the proposed SIIQF compared with the baseline
methods.

INDEX TERMS Capacity adjustable and scalable hashing, dynamic set representation, quotient filter, soft-
ware defined network.

I. INTRODUCTION
Currently, the Software Defined Networking (SDN) technol-
ogy, which can provide a dynamic and configurable network
resource allocation scheme for supporting massive data traffic,
has been widely used in data centers, cellular networks, Inter-
net of things, etc [1], [2], [3]. Compared to the conventional
network infrastructure, a set of switches is used in SDN for
packet detection, classification, forwarding, etc., which are
managed by a centralized controller with the OpenFlow proto-
col [4]. For packet classification, the headers of the packets are
usually parsed to extract the relevant fields to compare with a

set of rules in a flow table managed by the switches to find and
apply the corresponding actions (i.e., forwarding rules) for
such a packet. To accelerate the packet classification process,
a smaller filter stored in a faster memory, which can support
fast approximate membership query while the false positive
probability is guaranteed, is widely employed to reduce the
number of accesses to the full tables which are stored in a
slower memory [5], [6].

As for filtering for packet classification, there are three
widely-used filters designed for approximate membership
query, i.e., Bloom Filter [7], Quotient Filter [8] and Cuckoo

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

246 VOLUME 3, 2022

https://orcid.org/0000-0003-2856-8741
https://orcid.org/0000-0003-2034-0371
https://orcid.org/0000-0002-6907-4142
https://orcid.org/0000-0002-3492-3714

Filter [9]. In Bloom Filter, a fixed-length array of bits is main-
tained and are initialized as 0 at the beginning. When coming
an element, k independent hash functions are used to map the
element to k positions in the array. After that, the bits in cor-
responding positions are set to 1 s. To query the membership
of an element, one only needs to check whether all the bits in
computed hash positions are all 1 s. If not, the queried element
is definitely not in the set. Otherwise, the element belongs to
the set with a high probability. Different from Bloom Filter,
Cuckoo Filter maps the element to fingerprints and employs
an array of buckets to store the fingerprint with the partial
cuckoo hashing strategy [10]. There are two candidate buckets
for each element, and it tries to store the fingerprint into one of
the candidate buckets. If the fingerprint of the queried element
is found in any of the two candidate buckets, then the element
is in the set with a high probability.

Compared to Bloom filter and Cuckoo Filter, Quotient Fil-
ter partitions the fingerprint into two parts. The first part is
used to decide the position to store the element, and the
second part is the actual stored content in the position. Ad-
ditionally, three extra bits are designed to assist in correctly
inserting, querying and deleting the elements in the set. Note
that, different from the Bloom filter and Cuckoo Filter, where
several hash functions are required, only one hash function
is used in Quotient Filter. On the other hand, Quotient Filter
is more cache-friendly than Bloom Filter and Cuckoo Fil-
ter [11]. These enable it to have a much higher efficiency
for inserting and querying, especially for the scenario with
stringent latency requirements, such as deep packet inspection
system [12] and node authentication [13]. To improve the
efficiency of Quotient Filter, there have been several designs,
such as Counting Quotient Filter [11], Quotient-based Cuckoo
Filter [14], Dynamic Quotient Filter [15], Streaming Quotient
Filter [16], etc.

However, all these quotient filters are designed with a fixed
length, and the number of elements has to be provided in
advance to determine the filter parameters. In SDN, the flow
tables are usually dynamic changing, and the elements for
packet classification are frequently inserted or removed from
the filter. This requires the Quotient Filter to support member-
ship query while the size of the set is changing. Meanwhile, to
utilize the limited space in the switch efficiently, the capacity
of the Quotient Filter should be adjustable.

To address the above issues, this paper proposes a capacity
adjustable and Scalable Index Independent Quotient Filter for
dynamic packet classification in SDN. Firstly, a novel Index
Independent Quotient Filter (IIQF) is designed, which can
adjust its capacity in a more precise level to support dynamic
set representations. Secondly, a Scalable Index Independent
Quotient Filter (SIIQF) is designed to handle the hard colli-
sion problem of the designed quotient filter and better respond
to the dramatic growth of the size of the set. Our main contri-
butions are listed as follows:

1) We propose the first capacity-adjustable Quotient Fil-
ter for packet classification in SDN, denoted as Index
Independent Quotient Filter (IIQF), which employs a

hash ring to arrange the bucket rows. The algorithms
for insertion, query, deletion and capacity adjustment of
IIQF are also given under such data structure.

2) On the basis of IIQF, a Scalable Index Independent
Quotient Filter (SIIQF) is proposed, which can further
expand the capacity to deal with the growth of the size
of the set. Additionally, the method to handle the hard
collision problem in IIQF is also given.

3) We theoretical analyze the performance of the proposed
IIQF and SIIQF, including the time complexity, space
complexity, error rate, probability of collisions and false
positive rate.

4) Through extensive simulations, we demonstrate the
high performance of the proposed SIIQF.

The rest of this paper is organized as follows. Section II
introduces the related works. Section III presents the prelimi-
naries and the definition of the problem. Section IV introduces
the detailed design of the proposed IIQF and SIIQF. Sec-
tion V discusses the theoretical analysis of the proposed data
structures. Section VI describes the structure of the packet
classification mechanism with the proposed SIIQF. The ex-
perimental results and the conclusion of this paper are shown
in Sections VII and VIII, respectively.

II. RELATED WORKS
The Quotient Filter for set representation has been studied in
the literature [8], [11], [12], [13], [14], [15], [16]. It is firstly
proposed in [8], where each element is mapped to a p-bit
fingerprint and the first few bits of the fingerprint are used
to decide the position to store the rest bits of the fingerprint.
In addition, three additional bits are designed in each bucket
of the Quotient Filter. The bits are used to assist in inserting,
querying and deleting the elements with a low false positive
rate. To improve the efficiency of Quotient Filter, [11] pro-
posed Counting Quotient Filter, which embeds variable-sized
counters into the Quotient Filter, which can count the number
of occurrences of elements in the set. In addition, the Counting
Quotient Filter has a higher space efficiency than [8]. The
authors in [14] proposed Quotient-based Cuckoo Filter (QCF)
by combining Quotient Filter with Cuckoo Filter, which re-
quires the same space with Cuckoo Filter but employs only
two hash functions. It makes QCF faster than the Cuckoo Fil-
ter, and the authors employ QCF as an identification tool in the
deep packet inspection system. In [15], the authors employed
a multilevel structure for Quotient Filter and proposed a Con-
current Quotient Filter to reduce memory usage. The authors
in [16] re-design the structure of Quotient Filter and propose
Streaming Quotient Filter (SQF), which can detect the dupli-
cation in streaming data and avoid the time-consuming bit
judgement process. But the random eviction mechanism of
SQF brings false negative problem, which limits the practi-
cability of SQF. The authors in [12] employ Quotient Filter
for matching check in a deep packet inspection system. The
authors in [13] proposed a privacy-preserving Quotient Filter
to address the node authentication mechanism in vehicular
networks. However, all these filters are designed with a fixed

VOLUME 3, 2022 247

XIE ET AL.: TOWARDS CAPACITY-ADJUSTABLE AND SCALABLE QUOTIENT FILTER DESIGN FOR PACKET CLASSIFICATION

length, which cannot utilize the limited space in the switch
efficiently.

Besides Quotient Filter, Bloom Filter and Cuckoo Filter
are two other probabilistic data structures used to accelerate
the packet classification in SDN. There have been multiple
variants of Bloom Filters [17], [18], [19], [20], [21] consider-
ing the static scenarios where there are no new elements. For
the dynamic scenarios, the authors in [22] proposed Counting
Bloom Filter (CBF), which supports deletion at the expense
of accuracy and consumption of space. The authors in [23]
proposed the Scalable Bloom filter (SBF), which maintains
multiple Bloom Filters to dynamically adapt to the number
of elements while controlling the false positive probability.
Different from SBF, the authors in [24] proposed a Dynamic
Bloom Filter (DBF), which maintains multiple homogeneous
Bloom Filters, where the newly incoming element is inserted
into an available Bloom Filter. And there is a union operation
to merge two sparse Bloom Filters to increase the space effi-
ciency.

Different from Bloom Filter, Cuckoo Filter first uses a
hash function to generate the fingerprint of the element and
then uses another hash function to derive out the two can-
didate buckets to store the fingerprint. If both the buckets
are full, a randomly chosen fingerprint in the buckets will
be kicked out. Then the victim will be moved to its the
other candidate bucket. Cuckoo Filter supports deletion and
constant-time query. Many efforts have been made to im-
prove Cuckoo Filter [25], [26], [27], [28], [29], [30], [31],
[32]. To adapt Cuckoo Filter to dynamic situations, [27]
proposes Dynamic Cuckoo Filter (DCF), which supports elas-
tic capacity and applies it to chunk de-duplication in file
backup system. Likes the DBF, DCF also maintains multiple
Cuckoo Filters. When the cardinality of the set varies, DCF
will add or remove Cuckoo Filter to adapt to the cardinal-
ity. [28] employs a consistent hash ring and decouples the
dependency between the length of the filter and indices of
buckets. In this way, it can add or remove bucket instead
of a whole filter. Additionally, [29] introduces Configurable-
Bucket Cuckoo Filter (CBCF), which can configure the slot
number in the spare bucket to reduce the false positive rate.
However, Cuckoo Filter is not so cache-friendly as Quotient
Filter [11]. And when the number of elements reaches to sat-
uration, the insert time of Cuckoo Filter will heavily increase.

III. PRELIMINARIES AND PROBLEM FORMULATION
A. FILTERING FOR PACKET CLASSIFICATION
In SDN, the switches usually maintain a flow table to store
the corresponding rules/actions for each data flow. Since there
are so many entries in the flow table, the looking up time
will be greatly large, considering the massive data flows. To
accelerate the search time, the probabilistic data structure has
been widely used to filter out unnecessary query. For example,
Fig. 1 shows an example of employing a filter for Tuple Space
Search (TSS) [33], which solves the prefix search problem
of IP addresses and provides high search performance in

FIGURE 1. Speeding up Tuple Space Search with filtering.

packet classification. For simplification, the lengths of both IP
addresses are assumed to be 4-bit. Let Pt denote the flow table
composed of the IP source and destination prefix pairs, which
need to be identified, which is set Pt ={R1(00*, *), R2(1*,
00*), R3(01*, 100*), R4(101*, 100*), R5(101*, 11*), R6(1*,
*)}. Note that, 00∗ means the IP address whose has the prefix
“00,” including “0000,” “0001,” “0011,” etc. Let P1 and P2

be the set of source and destination prefixes, respectively,
i.e., P1 ={00*, 1*, 01*, 101*}, and P2 ={*, 00*, 100*, 11*}.
Note that, P1, P2 and Pt may be much larger and usually
stored in the off-chip memory.

When a packet with a source and destination address pair
(0100, 1001) comes, it will query the source and destination
IP, respectively. As for the source IP address (0100), since the
length of the IP prefixes in table P1 is {1, 2, 3}, then it will
query the 0*, 01* and 010* in P1. And finally get the 01*.
In the same way, it can get the possible destination prefixes,
which are * and 100*. Then, the query results are merged into
query tuples, i.e., (01*, *) and (01*, 100*), and will be queried
in Pt . Finally, it gets the best matching tuple R3. Since the
queries in P1 and P2 need to access the slow off-chip memory,
which heavily degrades the search efficiency. Suppose each
query requires one access to the off-chip memory. There are
3 + 2 + 2 = 7 accesses to the off-chip memory in the above
example.

To accelerate the searching phase, small but fast filters have
been employed to reduce the access times to the off-chip
memory [34]. For example, as in Fig. 1(b), which shows how
filters are used for TSS. Initially, the sets P1, P2 and Pt are
mapped to the filter IP Source filter, IP Destination filter and
Tuple filter, which are stored in the on-chip memory. Note
that, one can just merge the prefix of the source and destina-
tion IP to construct the tuple filter. As for the above example,
the query in P1, P2 and the tuple filter can both be queried in

248 VOLUME 3, 2022

a constant time. Note that, although the filter is much more
efficient, there may exist a query which does not belong to
the set is identified (i.e., false positive). In the above example,
while querying the source address, the IP Source filter may
report the query 01* and 010* are positive, although 010*
is actually not in the table P1. In this case, for tuples, i.e.,
(01*, *), (01*, 100*), (010*, 10*), (010*, 100*), need to be
queried in the Tuple filter and full table. Although the filters
may produce some false positives, they can be excluded by
subsequent queries, and there is only one access to the off-chip
memory.

Since the flow table is usually dynamic, the rules/actions
may be added into or removed from the flow table frequently.
So the filter which is used in packet classification should
support dynamic insertion and deletion of the elements in the
represented set. On the other hand, the switches have limited
on-chip memory resources, so it is also essential for the filter
to be cache-friendly and support capacity adjustment.

In this paper, the Quotient Filter, which can support cor-
rectly inserting, querying and deleting the elements in the
represented set, is employed. Note that, different from Bloom
filter and Cuckoo Filter, where several hash functions are
required, only one hash function is used in Quotient Filter.
Although there have been many Quotient Filter designs, the
existing quotient filters are limited with a fixed length, and
the number of elements has to be provided in advance to
determine the filter parameters, which makes it not suitable
for the dynamic changing scenarios in packet classification for
SDN. Thus, we try to propose a capacity adjustable and Scal-
able Index Independent Quotient Filter for dynamic packet
classification in SDN.

B. PROBLEM FORMULATION AND QUOTIENT FILTER
Define S as a set including a sequence of elements that need
to be filtered, i.e., S = {e1, e2, . . ., eN }, where N is the car-
dinality of the set. For each element ei, it belongs to a finite
universe set U . Thus, the filtering problem is defined as: Given
a set S = {e1, e2, . . ., eN } and a query element eq, designing a
probabilistic data structure (filter) which can check whether
ei is in S in a very short time. Note that, when the query
element eq belongs to S, i.e., eq ∈ S, the filter should return
True. Otherwise, if (equery /∈ S), the filter should return false
with a high probability. Additionally, considering the dynamic
feature of the flow table, the set S is dynamic changing here,
which means S can add new elements or remove existing
elements. And the proposed filter should alter its capacity
according to the N . Table 1 shows the symbols used in this
paper.

Before introducing the proposed method, we first introduce
the basic Quotient Filter [8]. The Quotient Filter employs a
hash function H to map all the elements in the universe U
to a p-bit fingerprint f . The fingerprint is divided into two
parts: remainder and quotient. The r least-significant bits are
the remainder fr , fr = f mod 2r . The rest q = p− r most-
significant bits are the quotient fq, fq = � f /2r�. Both fr and
fq can be acquired by an interception with f . Then Quotient

TABLE 1. Symbols and Descriptions

FIGURE 2. An example of quotient filter.

Filter maintains an array of slots A whose length is 2q. As
shown in Fig. 2, the length of each slot is r + 3 bits, which are
used to store the remainder and three metadata bits.

When inserting an element e in Quotient Filter, it will store
the corresponding fr into slot A[fq]. If the slot is not empty,
which means there is a fingerprint having the same quotient. It
is referred to as soft collision, which can be handled by linear
probing. In this case, the fr will be stored in a subsequent and
empty slot. Meanwhile, Quotient Filter maintains a invariant
that if fq < f ′q, fr is stored before f ′r . So the fingerprints
with the same quotient will be stored in continuous slots,
which are referred to as a run. Continuous runs are referred
to as a cluster.

In the process of querying or deleting e, Quotient Filter
first locates the slot A[fq]. Then it searches forwards to find
the beginning of the cluster and searches backwards to find
the element’s run with the assistance of three metadata bits in
Quotient Filter. If fr exists in the run, Quotient Filter considers
e having been stored in the structure. Otherwise, e is not in the
set S.

VOLUME 3, 2022 249

XIE ET AL.: TOWARDS CAPACITY-ADJUSTABLE AND SCALABLE QUOTIENT FILTER DESIGN FOR PACKET CLASSIFICATION

FIGURE 3. Structure of IIQF. k = 4, q = 4, indexes are 1, 7 and 12, which
are not continuous but in a range from 0 to 24 − 1.

The false positive of Quotient Filter occurs only when two
elements generate the same fingerprint [8]. Considering an el-
ement e ∈ S with a fingerprint f . If we query another element
e′ /∈ S having the same fingerprint f . Suppose n elements have
been inserted in the structure. The probability of false positive
is proved to be [8] :

1−
(

1− 1

2p

)n

≈ 1− e−n/2p ≤ n

2p
≤ 2q

2p
= 2−r (1)

In the following, we will introduce a capacity adjustable
and Scalable Index Independent Quotient Filter for dynamic
packet classification in SDN.

IV. DESIGN OF SCALABLE INDEX INDEPENDENT
QUOTIENT FILTER
Most existing filters have a strong relationship between the el-
ement and the position where the element is stored in the filter.
For example, in Cuckoo Filter, the fingerprint of the element is
stored in the position whose index is related to the calculated
hash values [9]. Quotient Filter requires the fingerprint to be
stored in the slot whose index is near the quotient [8]. This
relationship limits the ability of the capacity adjustment of
these filters. Thus, in this paper, we try to decouple this strong
dependency between the fingerprint and index of unit (bucket
or slot) which store the fingerprint, which is named as the
Index Independent Quotient Filter (IIQF).

In this section, we first introduce the design and the al-
gorithms of IIQF, which is capacity-adjustable and supports
insertion and deletion on the run. Then, based on IIQF, we
introduce Scalable Index Independent Quotient Filter (SIIQF)
to avoid remapping all the elements when the size is changed.

A. INDEX INDEPENDENT QUOTIENT FILTER (IIQF)
Let U denote the universe of all the elements, IIQF employs
a hash function H : U → [0, 2p − 1] to map an element e
into a p-bit fingerprint f , which is a bit array to identify the
element. The r least-significant bits of f are extracted as the
remainder. Let fr denote the remainder, i.e., fr = f mod 2r .
The left q (q = p− r) most-significant bits are extracted as
the quotient, which is denoted as fq, i.e., fq = � f /2r�. The
structure of IIQF is shown in Fig. 3. IIQF consists of multiple
rows, and each row has a unique index. Let ri denote the
row whose index is i. In the whole IIQF, the values of the
indexes do not have to be continuous but must range from 0
to 2q − 1 (∀i, i ∈ [0, 2q − 1]). So the number of rows in an

FIGURE 4. An example of inserting 10100111 to the IIQF. p = 8, q = 4, r =
p − q = 4.

IIQF can vary from 1 to 2q. For a fingerprint f with fq, f is
designated to be stored in the row whose index is closest to fq.
Let I denote the set of all the indexes in IIQF, and Il denote the
set of indexes which are larger than fq. Assuming a fingerprint
f is stored in the row ri, the index i is given by:

i =
⎧⎨
⎩

min
j∈Il

j I l �= ∅
min
j∈I

j I l = ∅ (2)

In this way, fingerprints are stored in the nearest row in a
clockwise order, which behaves like a ring structure. Each row
is further divided into k buckets. The bucket is the basic unit to
store a fingerprint. Each bucket has two fields: remainder field
and offset field. The remainder field is used to store the fr of f .
And the offset field is used to store the difference between fq

and the index of the row. With the assistance of the offset field,
the fingerprint f does not have to be stored in the fq row (i.e.,
r fq). The relationship between fq and the index of the row
is decoupled. In other words, the fingerprint is independent of
the index of the row to store the fingerprint. IIQF can smoothly
add or remove rows without incurring any influence on the
stored fingerprints. An inserted element can still be correctly
queried after the capacity of the filter is adjusted.

In the following, we will show how to conduct the opera-
tions of insert, split, query, and merge in IIQF.

Insert Operation: Let e denote an element which needs to
be inserted in the IIQF. To insert e, IIQF first generates the
fingerprint of e. Let f denote the fingerprint of e. Then IIQF
chooses the row whose index is nearest to fq in a clockwise
order, which is referred to as the successor of fq. Let i denote
the value of the index. If there is an empty bucket, the IIQF
will start the store process. It first calculates the difference
between the index of the row and fq, and then stores the result
in the offset field of the bucket: of f set = (i − fq) mod 2q.
Finally, the IIQF stores fr in the remainder field of the bucket,
and the insert operation terminates. The process can ensure the
fingerprint f is completely stored in the structure. The detail
is shown in Algorithm 1.

Fig. 4 shows an example of element insertion. Let the val-
ues of p and q be 8 and 4, respectively. So the value of r
is p− q = 4. Assume that the fingerprint f of the inserted
element is (10100111). So the remainder fr is (0111), and

250 VOLUME 3, 2022

FIGURE 5. An example of releasing row r12, M = 3. A new row r9 was
added, two fingerprints were transferred.

Algorithm 1: The Insert Operation in IIQF.
Input: Element e, Hash function H
1: Generate the fingerprint f ← H (e);
2: fq ← � f /2r�;
3: fr ← f mod 2r ;
4: Find the successor ri of fq;
5: for each bucket b in ri do
6: if b is empty then
7: b.of f set ← (i − fq) mod 2q;
8: b.remainder ← fr ;
9: return True;

10: end if
11: end for
12: Alert soft collision;
13: Split(ri);

the quotient fq is (1010), which is equal to 10. Based on
the (2), the corresponding index is 12, i.e., i = 12. So the
fingerprint will be stored in row r12. Then IIQF calculates the
offset, which is (i − fq) mod 2q = (12− 10) mod 16 = 2.
Finally, the offset 2 and fr are stored in the offset field and
remainder field, respectively. Note that if too many finger-
prints are stored in a row, the buckets of the row can be
used up, which is referred to as Soft Collision. To handle the
soft collision problem, we propose a split operation, which is
shown below.

Split Operation: If the number of elements inserted in a row
ri is larger than k, then IIQF will conduct a split operation to
acquire additional space. First, the IIQF checks all the offsets
in the row to obtain the median M. Then, a new row with index
j (j = (i −M) mod 2q) will be added into the IIQF. All the
elements in row ri whose offset is greater than or equal to M
will be moved to row r j . The offsets of the moving elements
should be recalculated. Let of fi denote the previous offset and
let of f j denote the re-calculated offset, i.e., of f j = (of fi −
M) mod 2q. The procedure is presented in Algorithm 2.

Fig. 5 shows an example of the split operation. Assume
that IIQF is trying to split row r12. The remainders in the r12

are (0111), (0100), (0101) and (1110). The offsets are 2, 4, 1
and 3, respectively. First, getting the median M in the offsets,
which is 3. Then, a new row is added, and the index of the new
row is 12−M = 9. In row r12, the contents whose offset is
larger or equal to M, i.e., (0100) and (1110), are moved to the

Algorithm 2: The Split Operation in IIQF.
Input: Filled row ri

1: Find the median M of the offsets in ri;
2: if M = 0 then
3: Alert hard collision;
4: Add a new IIQF;
5: return False;
6: else
7: j ← (i −M) mod 2q;
8: Add a new row r j to IIQF;
9: for each bucket bi in ri do

10: if bi.of f set ≥ M then
11: Find an empty bucket bj in r j ;
12: bj .remainder ← bi.remainder;
13: bj .of f set ← (bi.of f set −M) mod 2q;
14: end if
15: end for
16: return True;
17: end if

new row r9. The new offsets are (4−M) mod 16 = 1 and
(3−M) mod 16 = 0, respectively. After the split operation,
at least a half of the buckets in r12 will be released, such that
more elements can be inserted in the future.

Query Operation: To query an element e, IIQF first gen-
erates the fingerprint f of e. Then, the IIQF finds the row
whose index is nearest to fq in clockwise order. Let i de-
note the nearest index, and ri denote the row. Then IIQF
goes through all the remainder fields of the buckets in row
ri. If there is a remainder equal to fr , then the IIQF will
calculate the difference between the index i and the corre-
sponding offset to check whether the result is equal to fq. If
so, IIQF considers e has been inserted before and returns true.
In other words, if there is a content in a bucket can satisfy
the following two requirements: (1) remainder = fr and (2)
(i − of f set) mod 2q = fq, then e is an element belong to S.
Otherwise, IIQF considers e is not in S and returns false. The
detail is presented in Algorithm 3.

Delete Operation: If an element e needs to be deleted from
IIQF, e should be queried first to find the fingerprint f of
e. If the f is found, then the content in the corresponding
bucket will be cleared. Otherwise, the IIQF returns false. Note
that, frequent deletions usually incur multiple idle buckets in
IIQF. For a higher space utilization, the IIQF performs the
merge operation to merge two sparse rows and reuses the
space of the released row. The merge operation starts with
scanning through all the rows to acquire the number of oc-
cupied buckets of each row. Let ri and r j denote two adjacent
rows, and r j has the larger index. If the sum of occupation
numbers of ri and r j is less than or equal to k, all the elements
in ri will be moved to r j . Similar to the split operation, the
offsets of the moving elements need to be adjusted. Let of fi

denote the old offset and of f j denote the appropriate offset,
so of f j = (of fi + j − i) mod 2q. After the movements, the

VOLUME 3, 2022 251

XIE ET AL.: TOWARDS CAPACITY-ADJUSTABLE AND SCALABLE QUOTIENT FILTER DESIGN FOR PACKET CLASSIFICATION

FIGURE 6. An example of merge operation, r9 was merged into r12.

Algorithm 3: The Query Operation in IIQF.
Input: Element e, Hash function H

1: Acquire the fingerprint f ← H (e);
2: fq ← � f /2r�;
3: fr ← f mod 2r ;
4: Find the successor ri of fq;
5: for each non-empty bucket b in ri do
6: if fr = b.remainder then
7: if fq = (i − b.of f set) mod 2q then
8: Report e is found;
9: return True;

10: end if
11: end if
12: end for
13: return False;

Algorithm 4: The Merge Operation in IIQF.
Input: Current IIQF

1: for each row ri in IIQF do
2: Find the successor r j of ri;
3: if ri.elements+ r j .elements ≤ k then
4: for each bucket bi in ri do
5: Find an empty bucket bj in r j ;
6: bj .remainder ← bi.remainder;
7: bj .of f set ← (bi.of f set + j − i) mod 2q;
8: end for
9: Recycle ri;

10: end if
11: end for

IIQF recycles ri to remove idle buckets. The pseudo-code is
presented in Algorithm 4.

For example in Fig. 6, assume that r9 is about to being
merged into r12, and in r9, there is a fingerprint whose offset
and fr are 1 and (0100), respectively. First, IIQF calculates
the difference between the indexes of two rows, which is
12− 9 = 3. Then, the new offset can be calculated as (1+ 3)
mod 16 = 4. Finally, the new offset and fr , which are 4 and
(0100), will be stored in an empty bucket in row r12. Note that,
the merge operation adjusts the capacity with only local data
movement and can still keep logically consistent of the whole
structure.

B. SCALABLE INDEX INDEPENDENT QUOTIENT FILTER
In the proposed IIQF, it employs a hash ring structure to
decouple the strong relationship between the quotient of the
fingerprint and the row to store the fingerprint. While the
IIQF is adding or removing a row, only the content in the
adjacent row needs to move. In addition, the length of our
filter does not have to be the powers of two. As the set
size increases/decreases, the capacity of the IIQF can in-
crease/decrease accordingly. This indicates that the proposed
IIQF has a superior dynamic adaptation performance.

However, if there are k fingerprints with the same fq having
been stored in the IIQF, the row r fq can not conduct a split
operation. If IIQF splits r fq , the index of the new row will
be fq, which violates the uniqueness of the row index. In
this situation, if another fingerprint with the same fq needs
to be stored, there is no bucket for this new fingerprint. We
refer to this problem as Hard Collision and propose a SIIQF
to handle it. Its main idea is to maintain multiple IIQFs to
resolve the hard collision problem, which does not need to
remap all the elements when the size of the represented set
is dramatically growing. The main operations of SIIQF are
introduced as follows.

Expand Operation: When a hard collision occurs, the SI-
IQF expands its capacity by adding a new IIQF. Note that,
adding a new IIQF to SIIQF can better address the increase
in the size of the represented set. In SIIQF, the parameters of
IIQFs can be variable. Different IIQFs could have different
values of q, which means the range of row index in different
IIQFs can be varied. This variety is useful since a longer range
can contain more rows. On the other hand, a longer range
incurs more space consumption. Also, different IIQFs could
have different values of k, which is the number of buckets in
a row. IIQF with a larger k can achieve a lower hard collision
probability.

Insert Operation: For load balance, the SIIQF try to insert
the new element in the IIQF, which has stored the smallest
number of fingerprints. In the design, we monitor the number
of elements inserted in each IIQF and select the top t IIQFs
that have stored the smallest number of fingerprints as the
active IIQF set. Let Ia denote the active IIQF set. When a
new element e arrives, the SIIQF tries to insert e into one of
the IIQFs in Ia one by one. If e is successfully inserted in an
IIQF, the insertion of SIIQF will terminate. Otherwise, SIIQF
has to add a new IIQF to insert e. The pseudo-code is shown
in Algorithm 5.

Shrink Operation: If the set size is relatively small, the
SIIQF can shrink its size by merging some sparse IIQFs to
reduce space consumption. Due to the different parameter set-
tings of the IIQFs, merging sparse IIQFs becomes a complex
process. Let IIQF i denote the i-th IIQF in SIIQF, and qi de-
note the length of the quotient in IIQF i. Suppose a fingerprint
f is stored in the row r j of the IIQF i. The restoration of f is
expressed by:

f = (j − of f set) mod 2qi ||remainder (3)

252 VOLUME 3, 2022

Algorithm 5: The Insert Operation in SIIQF.
Input: Element e, Hash function H
1: Find the top t IIQFs with least element:
{I1, I2, . . ., It };

2: for each IIQF I in {I1, I2, . . ., It } do
3: I .Insert(e, H);
4: if Insertion is True then
5: I.counter + 1;
6: return True;
7: end if
8: end for
9: Report an adding event;

10: Initialize a new IIQF I ′;
11: I ′.Insert(e, H);
12: if Insertion is True then
13: I ′.counter + 1;
14: return True;
15: end if

Algorithm 6: The Shrink Operation in SIIQF.
Input: Current SIIQF SIc, Hash function H

Output:Shrunken SIIQF SIs

1: SIs ← SIc;
2: while True do
3: Find the least IIQF Il in SIs;
4: Create a new SIIQF SI ′s;
5: SI ′s ← SIs remove Il ;
6: for each element e in Il do
7: SI ′s Insert(e, H);
8: if Insertion is False then
9: Report SIs can not shrink anymore;

10: return SIs;
11: end if
12: end for
13: SIs ← SI ′s;
14: end while

The operator || means concatenating two bit-arrays. First, the
SIIQF checks the number of elements of each IIQF to decide
whether to start a merge process. Then, the SIIQF finds the
IIQF that stores the smallest number of fingerprints (which we
denote as Il), restores all the fingerprints in Il and inserts them
into the rest of the IIQFs in SIIQF. If all the elements in Il are
successfully reinserted into the other IIQFs, then the merge
process is successful, and Il is finally deleted from the SIIQF.
Otherwise, the SIIQF keeps Il and withdraws the previous
reinsertion. Algorithm 6 shows the shrink operation of SIIQF.

Query and Delete Operation: The SIIQF goes through all
the IIQFs to query an element e. It first generates the finger-
print f of e. Then SIIQF checks the presence of f in all the
IIQFs. If an IIQF returns true, the SIIQF terminates the query
process and returns true. Otherwise, the SIIQF considers e is

not in the set and returns false. This query process can be im-
plemented in a parallel fashion, which can effectively improve
the query performance. The delete operation is similar to the
query operation. The SIIQF checks the presence of f in all the
IIQFs. If f exists in an IIQF, the content in the corresponding
bucket will be removed. Otherwise, the SIIQF considers e
is not in the set and reports a failed deletion. After several
removal operations, SIIQF will try to merge some sparse
IIQFs to shrink the size and achieve a higher space utilization.

Now, the complete SIIQF design and its corresponding op-
erations are introduced.

V. PERFORMANCE ANALYSIS OF SIIQF
In this section, we present the performance analysis for the
proposed IIQF and SIIQF, including their error rates, collision
probabilities, time and space complexity.

A. ERROR RATE OF SIIQF
For each element stored in a SIIQF, it will never report a
false negative. As for false positive, it means there are two
elements x and y sharing the same fingerprint. Assume x is
inserted earlier. A query of y will return true, although it is not
belonged to the set.

Consider a number of s IIQFs in the SIIQF. And each IIQFi

(i ∈ [1, s]) has ki buckets in a row. Let mi denote the number
of rows of IIQFi. Let the length of the fingerprint be p. If the
hash function is perfectly uniform, then the probability of two
elements generating the same fingerprint is 1/2p. The lower
bound of the probability that no fingerprint collision happen

in all the ki buckets is (1− 1
2p)

ki . So, in an IIQFi, the upper
bound of the false positive probability is:

f pi = 1−
(

1− 1

2p

)ki

≈ ki

2p
(4)

As a result, the upper bound of the SIIQF’s false positive
probability is:

f p = 1−
s∏

i=1

(1− f pi) = 1−
s∏

i=1

(
1− 1

2p

)ki

(5)

If all the IIQFs are homogeneous, then the simplified upper
bound of the false positive probability is given by:

f p = 1−
(

1− 1

2p

)s×k

≈ s× k

2p
(6)

B. PROBABILITY OF COLLISIONS
The soft collision occurs when a row is full of fingerprints,
which leads to a row increment in an IIQF. Let ni denote the
number of elements that have been inserted in IIQFi. Consider
all the fingerprints inserted in IIQF are uniform. Since the size
of IIQFi is mi, the probability of a fingerprint being inserted
into a specific row is given as 1

mi
. Let � ∈ [0, ni] denote

the number of elements inserted to a specific row. Consider
� follows the binomial distribution, i.e., � ∼ B(ni,

1
mi

). The

VOLUME 3, 2022 253

XIE ET AL.: TOWARDS CAPACITY-ADJUSTABLE AND SCALABLE QUOTIENT FILTER DESIGN FOR PACKET CLASSIFICATION

probability that there are ψ elements being inserted in a row
is computed as:

P(� = ψ) = C(ni, ψ)×
(

1

mi

)ψ
×

(
1− 1

mi

)ni−ψ
(7)

Then, the probability of the occurrence of a soft collision, i.e.,
pi

sc, in IIQFi is obtained as:

pi
sc = P(ψ > ki) = 1− P(ψ ≤ ki)

= 1−
ki∑
ψ=0

C(ni, ψ)×
(

1

mi

)ψ
×

(
1− 1

mi

)ni−ψ
(8)

As for hard collision, it means the number of fingerprints
with 0 offset exceeds the row size ki in an IIQF. Assuming all
the elements are uniformly distributed. The probability of two
fingerprints with the same fq is 1/2q. Let � ∈ [0, ni] denote
the number of elements generating the same fq. Then the
probability that φ elements generate the same fq is calculated
as:

P(� = φ) = C(ni, φ)×
(

1

2q

)φ
×

(
1− 1

2q

)ni−φ
(9)

And the probability of the occurrence of a hard collision in
IIQFi, i.e., pi

hc, is computed as:

pi
hc = P(� > ki) = 1− P(� ≤ ki)

= 1−
ki∑
φ=0

C(ni, φ)×
(

1

2q

)φ
×

(
1− 1

2q

)ni−φ
(10)

When adding an IIQF in SIIQF, it means hard collision occur-
ring in all the top t IIQFs, and its probability can be obtained
as:

padd =
t∏

i=1

pi
hc

=
t∏

i=1

⎡
⎣1−

ki∑
φ=0

C(ni, φ)×
(

1

2q

)φ
×

(
1− 1

2q

)ni−φ
⎤
⎦

(11)

C. TIME COMPLEXITY OF SIIQF
Firstly, we will consider the time complexity of querying in
SIIQF. To query an element e, one first must find the successor
row ri. For simplicity, assume the row index in the hash ring is
implemented by a binary search tree, and each row index is the
node of the tree. In this case, the time complexity of finding
row ri in IIQFi is O(log mi). The query operation of IIQF con-
sists of two stages, i.e., finding the row and finding an empty
bucket. So the time complexity of query operation in IIQFi is
O(log mi + ki). In the worst situation, a non-existent element
is queried by SIIQF. The SIIQF has to go through all the IIQFs
and check all the buckets in a row, the time complexity is
O(

∑s
i=1(log mi + ki)). Let m, k respectively denote the largest

mi, ki. The time complexity of the query operation can be
computed as O(s× (log m + k)). As for the time complexity
of the delete operation, one can see it is actually same to the
one of the query operation, i.e., O(s× (log m+ k)).

As for the time complexity of the insert operation, since
one needs to find the corresponding row and an empty bucket
in the row, then the time complexity of the insert operation
in IIQF i can be computed as O(log mi + ki). In the worst
situation, if all the t IIQFs in SIIQF are failed to insert
the element, the time complexity of insert operation will be
O(

∑t
i=1 log mi + ki) = O(t × (log m+ k)).

Then, we analyse the time complexity of the split operation
in IIQF. Finding the median of the offsets in a full row is the
first step of splitting. The divide and conquer algorithm is a
fast way to acquire the median in an unordered list. The time
complexity is O(ki), where ki is the number of the offsets in
a row of IIQF i. Then all the ki offsets are compared with the
median, so the time complexity of split operation in IIQFi is
O(ki + ki) = O(ki).

D. SPACE COMPLEXITY OF SIIQF
In IIQFi, the length of a bucket depends on the lengths of the
remainder and offset, which are r and q, respectively. In addi-
tion, the cost of binary search tree in IIQFi is mi × qi, where
mi is the number of the nodes and qi is the length of the node.
Therefore, the space consumption of IIQFi is mi × ki × (qi +
ri)+ mi × qi = mi × (ki × p+ qi). As for the whole SIIQF,
its whole consumed space is computed as:

s∑
i=1

mi × (ki × p+ qi) (12)

Next, we will investigate the expected space complexity in
SIIQF. Let mi, j be the number of rows in IIQFi, where mi,0

is the initial size of IIQFi, and j ∈ [0, 2qi − mi,0] means the
increased number of rows. Apparently, mi, j is computed as:

mi, j = mi,0 + j (13)

Let pi, j
sc be the probability of soft collision happen in IIQFi

when increasing j rows. Based on (8), the value of pi, j
sc is

calculated as:

pi, j
sc = 1−

ki∑
ψ=0

C(ni, ψ)×
(

1

mi, j

)ψ
×

(
1− 1

mi, j

)ni−ψ

(14)
This indicates that when the size of IIQFi is mi, j , the proba-
bility of soft collision is pi, j

sc . If the final size of the IIQFi is
mi,0, there is no soft collision, and the probability is 1− pi,0

sc .
If the final size grows to mi, j (j > 0), the probability is given
by:

j−1∏
k=0

pi,k
sc × (1− pi, j

sc) (15)

254 VOLUME 3, 2022

FIGURE 7. The example of employing SIIQF for TSS in packet classification.

Let E (IIQFi) be the expected space complexity of IIQFi.
Then, it can be computed as:

E (IIQFi) = mi,0 × (ki × p+ qi)× (1− pi,0
sc)

+
2qi−mi,0∑

j=1

mi, j × (ki × p+ qi)

×
j−1∏
k=0

pi,k
sc × (1− pi, j

sc) (16)

With the expected length of IIQFi, we can further compute
the space complexity of the whole SIIQF. Assume that SIIQF
checks all the IIQFs while insertion. We make some adjust-
ments to (11) as follows:

ps
add =

s∏
i=1

⎡
⎣1−

ki∑
φ=0

C(ni, φ)×
(

1

2q

)φ
×

(
1− 1

2q

)ni−φ
⎤
⎦

(17)
where ps

add means the probability of adding IIQF while
the SIIQF has s IIQFs. With the expected length of each
IIQFi, the expected space complexity of the whole SIIQF, i.e.,
E (SIIQF), is given by:

E (SIIQF) = E (IIQF1)× (1− p1
add)

+
∑
i>1

⎡
⎣ i∑

j=1

E (IIQFj)×
i−1∏
s=1

ps
add × (1− pi

add)

⎤
⎦ (18)

VI. SIIQF BASED TUPLE SPACE SEARCH
In this section, we show how to employ SIIQF for the TSS
algorithm. As the example shown in Fig. 7, all the prefixes of
the IP source and destination address which need to be identi-
fied, are mapped to two IIQFs, i.e., src-SIIQF and dst-SIIQF,
respectively. And the source-destination pairs (by combing
the prefixes of the IP source and destination addresses) are
mapped into a tuple-SIIQF. All the SIIQFs are deployed in
the on-chip memory. Table 2 gives an example of the ele-
ments and their corresponding fingerprints. Before querying
in SIIQF, there is a length check to build the queried element.
For example, assuming the possible lengths of the IP source
address are 1, 2 and 3, so the first 1-bit, 2-bit and 3-bit of

TABLE 2. Mapping Relationship Between Elements and Fingerprints

the IP source address are respectively extracted to be queried
in the src-SIIQF. The rules in off-chip memory are organized
in a hash table with chaining. Let the last three bits of the
fingerprint be the hash value to store the rule. For example, in
Table 2, the fingerprint of R1 is (10011100). The hash value
is (100), which is equal to 4. So R1 is stored in the position
whose index is 4.

As for the query example in Section III-A, we will show
how to handle it with SIIQF. Assume the packet with the pair
(0100, 1001) is the input, which is the source and destination
IP address, respectively. Firstly, the source address (0100)
and destination address (1001) will be queried by src-SIIQF
and dst-SIIQF, respectively. In the query of source address,
since the lengths of the source address prefix are 1, 2 and
3 (Table 2), then the first 1-bit, 2-bit and 3-bit of (0100),
which are 0*, 01* and 010*, will be extracted to query in
src-SIIQF. One can find that 01* is the positive element, and
the possible length of the source address prefix is 2. In the
same way, 100* is the positive element in dst-SIIQF, and the
possible length is 3. Then, the corresponding tuple (01*, 100*)
is built to be queried in tuple-SIIQF. Since the fingerprint of

VOLUME 3, 2022 255

XIE ET AL.: TOWARDS CAPACITY-ADJUSTABLE AND SCALABLE QUOTIENT FILTER DESIGN FOR PACKET CLASSIFICATION

FIGURE 8. Comparison between SIIQF, DCF and SQF.

the queried tuple exists in the tuple-SIIQF, (01*, 100*) is a
positive element. Then the last three bits of the fingerprint are
extracted as the hash value to indicate the position of the rule.
Since the hash value is (111), which is equal to 7, the pair
(01*, 100*) is directly queried in the 7-th position of the hash
table and get the matching rule R3.

VII. EVALUATION
In this section, we evaluate the effectiveness of the pro-
posed SIIQF through extensive simulations. For comparison,
the following two baseline algorithms are implemented and
evaluated.

Firstly, the existing Streaming Quotient Filter (SQF) [16] is
implemented and compared. Note that, SQF employs a hash
table and a signature technique to store the element. Note that,
in SQF, when a row is full, it will randomly empty a bucket
in the row for capacity constraint, which means there exists a
false negative rate in SQF.

Secondly, the recently proposed Dynamic Cuckoo Fil-
ter (DCF) [27] is also implemented and compared. DCF
maintains multiple Cuckoo Filters and utilizes a monopolistic
fingerprint for representing an item. So DCF supports dy-
namic set representation and reliable delete operation.

In the experiments, all the algorithms are run on a PC with
a 1.8 Ghz Intel Core 8250 U CPU and an 8 GB DDR4-2133
RAM. The dataset used for comparison is from the WIDE
MAWI [35], which records the trace in WIDE from 14:00
to 14:15 on March 31, 2022. There are a total of 80,221,555
packets in the dataset, and we extract the first 15,000 TCP
packets for our experiments. The IP source address, IP desti-
nation address, source port number, destination port number
and the protocol name of the packet are extracted to construct
the element. In the experiments, the value of q in SIIQF is 4,
and the lengths of one single filter in DCF and SQF are also
set 16. For fairness, the k of SIIQF and SQF is set 4, and the
number of slots in a bucket in DCF is also set 4. The lengths
of the fingerprint of each method are all set 8.

A. PERFORMANCE UNDER THE WIDE MAWI DATASET
First, we compare the occupied memory size of three methods.
Fig. 8(a) shows the cumulative distribution function (CDF)
of three different structures. Note that, the optimal required

memory size is also compared, which is denoted optimal in
Fig. 8(a). One can first observe that the occupied memory size
of the proposed SIIQF is closest to the optimal one. This is
mainly due to the proposed SIIQF having more precise size
modification than DCF and SQF. The maximum occupied
memory size of the optimal methods is 199, while the ones
of SIIQF, DCF and SQF are 236, 256 and 400, respectively.
As one can see, SIIQF requires less space than DCF and SQF
to store the same set, which demonstrates its higher space
efficiency.

Next, we evaluate the space utilization ratio of SIIQF, DCF
and SQF in Fig. 8(b), which is a ratio of the number of
elements to the number of buckets/slots in the structure. The
space utilization ratio of the proposed SIIQF in the whole pro-
cess is ranged from 0.825 to 0.850. And the space utilization
ratio of DCF and SQF range from 0.775 to 0.800, and from
0.675 to 0.700, respectively. The average space utilization
ratio of SIIQF is 0.82913, which is larger than the one of
DCF and SQF (The average space utilization ratio of DCF and
SQF are 0.77327 and 0.65427, respectively). Additionally, at
the early stage, the space utilization ratio of SIIQF can even
reach 1, while the highest utilization ratio of DCF and SQF
are 0.82813 and 0.86094, which demonstrates the efficiency
of the proposed method.

Third, we evaluated the number of idle buckets of these
three structures in Fig. 8(c). During the whole process, the
number of idle buckets of SIIQF is always lower than 183,
while the number of idle buckets in DCF reaches 236,
and the one of SQF even exceeds 300. The average num-
ber of idle buckets in SIIQF, DCF and SQF are 98, 141
and 257, respectively. Note that, in the experiments, the
number of idle buckets in SIIQF is lower than 180 in al-
most 99.92% time, which demonstrates that SIIQF generates
fewer redundant buckets than DCF and SQF in the same
situation.

B. PERFORMANCE UNDER DIFFERENT PARAMETERS
AND PERFORMANCE
In this group of experiments, we evaluate the performance of
the proposed SIIQF under the different values of q and k. The
performance of the space utilization ratio, false positive rate,
insertion time and query time are evaluated.

256 VOLUME 3, 2022

FIGURE 9. Space utilization ratio of different q and k.

FIGURE 10. False positive rate of different q and k.

Fig. 9 shows the performance of the space utilization ratio
of SIIQF under different q and k. As one can see in Fig. 9(a),
when q increases from 4 to 6, the average space utilization
ratio also increases from 0.83361 to 0.87478. This is because a
larger q in SIIQF will result in a lower probability of collision.
Fig. 9(b) shows the space utilization ratio of SIIQF under
different k. When k increases from 3 to 6, we can see that the
space utilization ratio decreases. Because SIIQF with a larger
k will produce more empty space in the splitting and adding
process, which leads to a lower space utilization ratio.

Fig. 10(a) displays the performance of the false positive rate
of each method when q is increased from 4 to 6. One can
first observe that the false positive rate of the proposed SIIQF
decreases as q increases. This is mainly due to a larger q may
result in SIIQF implying a longer length of fingerprint, which
can significantly decrease the false positive rate of SIIQF.
Fig. 10(b) shows the false positive rate of SIIQF under differ-
ent k. With the increase of k, the false positive rate of SIIQF
does not change much. This is because the occurrence of false
positive is due to the elements sharing the same fingerprint,
which is not relevant to the parameter k.

Fig. 11 shows the performance of the insert time of SIIQF
under different q and k. As one can see in Fig. 11(a), when q
goes up, the average insert time increases from 2.96× 10−5s
to 7.69× 10−5s. This is because it takes more time to find the
corresponding row in the SIIQF under a larger q. Fig. 11(b)
shows the insert time of SIIQF when k varies from 3 to 6.
When k is increased, SIIQF achieves a shorter insert time.
This is due to SIIQF maintaining fewer IIQFs under a larger
k. As a result, it can find the positions for the inserted element
fast, which helps decrease the insert time.

FIGURE 11. Insert time of different q and k.

FIGURE 12. Query time of different q and k.

Fig. 12 shows the query time of SIIQF under different q and
k. As one can see in Fig. 12(a), the query time increases as q
increases. This is because a larger q leads to more rows in an
IIQF. In the query process, it will take more time to find the
target row. As shown in Fig. 12(b), as k is increased from 3
to 6, we can see the query time decreases. This is because a
larger k in SIIQF will result in fewer IIQFs to query.

VIII. CONCLUSION
To accelerate dynamic packet classification in SDN, we in-
vestigate the first capacity adjustable and scalable quotient
filter in this paper. Firstly, by combining the consistent hash
with the Quotient Filter, an Index Independent Quotient Fil-
ter (IIQF), which can support precise capacity adjustment
for dynamic set representation, is designed. Then, a Scalable
IIQF is further proposed to ensure the consistency when re-
sizing. The theoretical performance of the proposed SIIQF
is also analyzed. To demonstrate the feasibility of SIIQF, an
instance of employing SIIQF for packet classification with the
TSS algorithm is also given. Finally, the extensive evaluations
demonstrate the effectiveness of the proposed SIIQF.

REFERENCES
[1] G. Yu, R. Liu, Q. Chen, and Z. Tang, “A hierarchical SDN architec-

ture for ultra-dense millimeter-wave cellular networks,” IEEE Commun.
Mag., vol. 56, no. 6, pp. 79–85, Jun. 2018.

[2] O. Salman, I. Elhajj, A. Chehab, and A. Kayssi, “IoT survey: An SDN
and fog computing perspective,” Comput. Netw., vol. 143, pp. 221–246,
2018.

[3] S. Rawas, “Energy, network, and application-aware virtual machine
placement model in SDN-enabled large scale cloud data centers,” Mul-
timedia Tools Appl., vol. 80, no. 10, pp. 15541–15562, 2021.

[4] N. McKeown et al., “OpenFlow: Enabling innovation in campus
networks,” SIGCOMM Comput. Commun. Rev., vol. 38, pp. 69–74,
Mar. 2008.

VOLUME 3, 2022 257

XIE ET AL.: TOWARDS CAPACITY-ADJUSTABLE AND SCALABLE QUOTIENT FILTER DESIGN FOR PACKET CLASSIFICATION

[5] C. Li, T. Li, J. Li, Z. Shi, and B. Wang, “Enabling packet classification
with low update latency for SDN switch on FPGA,” Sustainability,
vol. 12, no. 8, 2020, Art. no. 3068.

[6] M. Yang, D. Gao, C. H. Foh, Y. Qin, and V. C. M. Leung, “A learned
bloom filter-assisted scheme for packet classification in software-
defined networking,” IEEE Trans. Netw. Serv. Manag., early access,
2022, doi: 10.1109/TNSM.2022.3181063.

[7] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Commun. ACM, vol. 13, pp. 422–426, Jul. 1970.

[8] M. A. Bender et al., “Don’t thrash: How to cache your hash on flash,”
in Proc. VLDB Endow., Jul. 2012, vol. 5, pp. 1627–1637.

[9] B. Fan, D. G. Andersen, M. Kaminsky, and M. D. Mitzenmacher,
“Cuckoo filter: Practically better than bloom,” in Proc. 10th ACM Int.
Conf. Emerg. Netw. Experiments Technol., 2014, pp. 75–88.

[10] B. Fan, D. G. Andersen, and M. Kaminsky, “MemC3: Compact and
concurrent MemCache with dumber caching and smarter hashing,”
in Proc. 10th USENIX Conf. Netw. Syst. Des. Implementation, 2013,
pp. 371–384.

[11] P. Pandey, M. A. Bender, R. Johnson, and R. Patro, “A general-purpose
counting filter: Making every bit count,” in Proc. ACM Int. Conf. Man-
age. Data, 2017, pp. 775–787.

[12] M. Al-Hisnawi and M. Ahmadi, “Deep packet inspection using quotient
filter,” IEEE Commun. Lett., vol. 20, no. 11, pp. 2217–2220, Nov. 2016.

[13] S. Goudarzi et al., “A privacy-preserving authentication scheme based
on elliptic curve cryptography and using quotient filter in fog-enabled
VANET,” Ad Hoc Netw., vol. 128, 2022, Art. no. 102782.

[14] M. Al-Hisnawi and M. Ahmadi, “QCF for deep packet inspection,” IET
Netw., vol. 7, no. 5, pp. 346–352, 2018.

[15] R. Williger and T. Maier, “Concurrent dynamic quotient filters: Packing
fingerprints into atomics,” Dissertation, Dept. Inform., Karlsruher Inst.
fúr Technol., Karlsruhe, Germany, 2019.

[16] S. Dutta, A. Narang, and S. K. Bera, “Streaming quotient filter: A near
optimal approximate duplicate detection approach for data streams,”
Proc. VLDB Endowment, vol. 6, pp. 589–600, Jun. 2013.

[17] D. Guo, Y. He, and P. Yang, “Receiver-oriented design of bloom fil-
ters for data-centric routing,” Comput. Netw., vol. 54, pp. 165–174,
Jan. 2010.

[18] D. Li, H. Cui, Y. Hu, Y. Xia, and X. Wang, “Scalable data center
multicast using multi-class bloom filter,” in Proc. 19th IEEE Int. Conf.
Netw. Protoc., 2011, pp. 266–275.

[19] F. Angius, M. Gerla, and G. Pau, “BLOOGO: BLOOm filter based GOs-
sip algorithm for wireless NDN,” in Proc. 1st ACM Workshop Emerg.
Name-Oriented Mobile Netw. Des. Architecture Algorithms Appl., 2012,
pp. 25–30.

[20] T. M. Graf and D. Lemire, “Xor filters: Faster and smaller than bloom
and cuckoo filters,” ACM J. Exp. Algorithmics, vol. 25, Mar. 2020,
Art. no. 1.5.

[21] S. Luo, S. Chatterjee, R. Ketsetsidis, N. Dayan, W. Qin, and S.
Idreos, “Rosetta: A robust space-time optimized range filter for key-
value stores,” in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2020,
pp. 2071–2086.

[22] L. Fan, P. Cao, J. Almeida, and A. Z. Broder, “Summary cache: A scal-
able wide-area web cache sharing protocol,” IEEE/ACM Trans. Netw.,
vol. 8, no. 3, pp. 281–293, Jun. 2000.

[23] P. S. Almeida, C. Baquero, N. Preguiça, and D. Hutchison, “Scalable
bloom filters,” Inf. Process. Lett., vol. 101, no. 6, pp. 255–261, 2007.

[24] D. Guo, J. Wu, H. Chen, Y. Yuan, and X. Luo, “The dynamic bloom
filters,” IEEE Trans. Knowl. Data Eng., vol. 22, no. 1, pp. 120–133,
Jan. 2010.

[25] A. A. Abdulhassan and M. Ahmadi, “Cuckoo filter-based many-field
packet classification using X-tree,” J. Supercomputing, vol. 75, no. 9,
pp. 5667–5687, 2019.

[26] M. Mitzenmacher, S. Pontarelli, and P. Reviriego, “Adaptive cuckoo
filters,” ACM J. Exp. Algorithmics, vol. 25, Mar. 2020, Art. no. 1.1.

[27] H. Chen, L. Liao, H. Jin, and J. Wu, “The dynamic cuckoo filter,” in
Proc. IEEE 25th Int. Conf. Netw. Protoc., 2017, pp. 1–10.

[28] L. Luo, D. Guo, O. Rottenstreich, R. T. Ma, X. Luo, and B. Ren, “The
consistent cuckoo filter,” in Proc. IEEE Conf. Comput. Commun., 2019,
pp. 712–720.

[29] P. Reviriego, J. Martínez, D. Larrabeiti, and S. Pontarelli, “Cuckoo
filters and bloom filters: Comparison and application to packet classifi-
cation,” IEEE Trans. Netw. Serv. Manag., vol. 17, no. 4, pp. 2690–2701,
Dec. 2020.

[30] M. Wang and M. Zhou, “Vacuum filters: More space-efficient and faster
replacement for bloom and cuckoo filters,” Proc. VLDB Endowment,
vol. 13, pp. 197–210, 2019.

[31] A. D. Breslow and N. S. Jayasena, “Morton filters: Fast, compressed
sparse cuckoo filters,” VLDB J., vol. 29, no. 2, pp. 731–754, 2020.

[32] P. Fu, L. Luo, S. Li, D. Guo, G. Cheng, and Y. Zhou, “The vertical
cuckoo filters: A family of insertion-friendly sketches for online appli-
cations,” in Proc. IEEE 41st Int. Conf. Distrib. Comput. Syst., 2021,
pp. 57–67.

[33] H. J. Chao, “Next generation routers,” Proc. IEEE, vol. 90, no. 9,
pp. 1518–1558, Sep. 2002.

[34] H. Lim and S. Y. Kim, “Tuple pruning using bloom filters for packet
classification,” IEEE Micro, vol. 30, no. 3, pp. 48–59, May/Jun. 2010.

[35] R. Fontugne, P. Borgnat, P. Abry, and K. Fukuda, “MAWILab: Com-
bining diverse anomaly detectors for automated anomaly labeling and
performance benchmarking,” in Proc. 6th Int. Conf., 2010, Art. no. 8.

MINGHAO XIE received the B.S. degree from
the School of Computer Science and Technology,
Guangdong University of Technology, Guangzhou,
China, where he is currently working toward the
master’s degree. His research interests include
software-defined network and edge computing.

QUAN CHEN (Member, IEEE) received the B.S.,
master’s, and Ph.D. degrees form the School of
Computer Science and Technology, Harbin Insti-
tute of Technology, Harbin, China. He is cur-
rently an Associate Professor with the School
of Computers, Guangdong University of Technol-
ogy, Guangzhou, China. Previously, he was with
Georgia State University, Atlanta, GA, USA, as a
Postdoctoral Research Fellow. His research inter-
ests include IoT networks, wireless communication
and edge AI. He was the recipient of the Hong

Kong Scholar Award, ACM SIGCOM CHINA Excellent Doctoral Disser-
tation and the CCF Excellent Doctoral Dissertation Nomination Award. He
was also the Technical Program Committe member for several referred con-
ferences, and the Technical Reviewer for several IEEE transactions.

TAO WANG received the Ph.D. degree from the
School of Information Science and Technology,
Sun-Yat-Sen University, Guangzhou, China, in
2010. He is currently an Associate Professor with
the School of Automation, Guangdong University
of Technology, Guangzhou, China. His research
interests include smart manufacturing, software-
defined network, time-sensitive network, industrial
intelligence, and high-performance computing.

FENG WANG received the Ph.D. degree from Fu-
dan University, Shanghai, China, in 2016. In 2017,
he was a Postdoctoral Research Fellow with the
Singapore University of Technology and Design,
Singapore. He is currently a Hong Kong Scholar
Fellow with the Hong Kong University of Science
and Technology, Hong Kong. He is also an As-
sociate Professor with the Guangdong University
of Technology, Guangzhou, China. His research
interests include signal processing for wireless
communications, mobile-edge computing and in-

telligence, and applications of optimization algorithms. Dr. Wang was the
recipient of the Examplary Reviewer for IEEE WIRELESS COMMUNICATIONS

LETTERS in 2020. He was a member of the Technical Program Committees
for several IEEE conferences and a reviewer for several IEEE journals.

258 VOLUME 3, 2022

https://dx.doi.org/10.1109/TNSM.2022.3181063

YONGCHAO TAO received the B.S. and mas-
ter’s degrees from the School of Computer Science
and Technology, Harbin Institute of Technology,
Harbin, China. He is currently an Senior Engineer
with the Shenzhen Academy of Aerospace Tech-
nology, Shenzhen, China. His research interests
include wearable and ubiquitous computing, and
IoT networks.

LIANGLUN CHENG received the M.S. degree
from the Huazhong University of Technology,
Wuhan, China, and the Ph.D. degree in control sci-
ence and engineering from the Chinese Academy
of Sciences, Beijing, China. He is currently a Pro-
fessor with the School of Computers, Guangdong
University of Technology, Guangzhou, China. He
is also the Executive Director of Chinese Robot
Automation Association. His research interests in-
clude wireless sensor network and Internet of
Things, cyber-physical system, industrial Big Data,

modeling, and optimal control of complex systems.

VOLUME 3, 2022 259

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

