
Received 5 July 2022; accepted 8 August 2022. Date of publication 11 August 2022;
date of current version 24 August 2022. The review of this paper was arranged by Senior Editor Jiankun Hu.

Digital Object Identifier 10.1109/OJCS.2022.3198073

Leakage-Resilient Certificate-Based
Authenticated Key Exchange Protocol

TUNG-TSO TSAI 1, SEN-SHAN HUANG2, YUH-MIN TSENG 2, YUN-HSIN CHUANG 2,
AND YING-HAO HUNG3

1Department of Computer Science and Engineering, National Ocean University, Keelung 202, Taiwan
2Department of Mathematics, National Changhua University of Education, Changhua 500, Taiwan

3Department of Mathematics, National Experimental High School at Hsinchu Science Park, Hsinchu 300, Taiwan

CORRESPONDING AUTHOR: YUH-MIN TSENG (e-mail: ymtseng@cc.ncue.edu.tw)

The work was supported by the Ministry of Science and Technology, Taiwan under Grants MOST110-2221-E-018-006-MY2, MOST110-2221-E-018-007-MY2,
and MOST110-2222-E-019-001-MY2.

ABSTRACT Certificate-based public key cryptography (CB-PKC) removes the problem of certificate man-
agement in traditional public key systems and avoids the key escrow problem in identity-based public key
systems. In the past, many authenticated key exchange (AKE) protocols based on CB-PKC systems, called
CB-AKE, were proposed to be applied to secure communications between two remote participants. However,
these existing CB-AKE protocols become insecure since attackers could compute and obtain the whole secret
key from some partial leaked information of the secret key by side channel attacks. In this paper, our goal is to
propose the f irst CB-AKE protocol with the property to resist side channel attacks, called leakage-resilient
CB-AKE (LR-CB-AKE). The proposed LR-CB-AKE protocol is formally proven to be secure in the generic
bilinear group (GBG) model under the discrete logarithm (DL) and computational Diffie-Hellman (CDH)
assumptions.

INDEX TERMS Authenticated key exchange, certificate-based cryptography, generic bilinear group,
leakage-resilience.

I. INTRODUCTION
Certificate-based public key cryptography (CB-PKC), pro-
posed by Gentry [1], removes the problem of certificate
management in traditional public key systems and avoids the
key escrow problem in identity-based public key systems.
CB-PKC has two roles: certificate authority (CA) and users.
Each user generates a user secret key and a partial public key,
and transmits the partial public key to the CA. After receiving
the partial public key of the user, the CA creates a certificate
and the other partial public key for the user. Therefore, in the
CB-PKC system, the public keys of each user are respectively
generated by herself/himself and the CA, and her/his full
private keys comprise the user secret key and the certificate.

The first authenticated key exchange (AKE) protocol [2]
based on CB-PKC systems, call CB-AKE protocol, was pro-
posed to be applied to secure communications between two
remote participants. A common session key (CSK) is es-
tablished by two remote participants on an open network
(insecure network). They may employ the CSK to encrypt

data and transmit the encrypted data to the other participant to
ensure the confidentiality of the data. Until now, several CB-
AKE protocols [3], [4], [5], [6] have been proposed. However,
none of these protocols can resist side channel attacks [7], [8].
These protocols are insecure since attackers could compute
and obtain the whole secret key from some partial leaked
information of the secret key under side channel attacks. To
the best of our knowledge, there is no CB-AKE protocol
with the ability to resist side channel attacks. Here, we will
propose the first CB-AKE protocol that can resist such attacks,
called leakage-resilient CB-AKE (LR-CB-AKE) protocol.

A. RELATED WORK
Traditional public key cryptography (PKC) has an inborn
problem, namely, certificate management of a public-key in-
frastructure (PKI). Since a user’s public key in PKC systems
is an arbitrary number that has no meaning, a certificate is
needed to connect the user’s public key with her/his iden-
tity information. Therefore, PKC needs the PKI to manage

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME 3, 2022 137

https://orcid.org/0000-0002-7833-7688
https://orcid.org/0000-0003-0860-7766
https://orcid.org/0000-0003-0432-1533
mailto:ymtseng@cc.ncue.edu.tw

TSAI ET AL.: LEAKAGE-RESILIENT CERTIFICATE-BASED AUTHENTICATED KEY EXCHANGE PROTOCOL

each user’s certificate. An intuitive idea that a user’s identity
(ID) can be regarded as her/his public key was proposed by
Shamir [9]. With this idea, Boneh and Franklin [10] proposed
the first practical ID-based encryption scheme which includes
two roles: private key generator (PKG) and users. Each user’s
public key is her/his own identity while her/his private key is
made by the PKG. Obviously, there is a key escrow problem
in the sense that the PKG knows the private key of each user.
To eliminate the problems of both certificate management
and key escrow at the same time, Gentry [1] proposed the
certificate-based cryptography (PKC) concept, in which the
private key of each user is divided into two parts: one is
selected by the user, and the other is the certificate generated
by the CA.

AKE protocols [11], [12], [13], [14] can be used to estab-
lish a common session key (CSK) of two remote users for
secure communication on open networks. Based on ID-based
PKC (ID-PKC) systems, the first ID-AKE protocol was pro-
posed by Smart [15]. However, the protocol has a drawback,
namely, no forward secrecy property. A new ID-AKE protocol
that possesses forward secrecy and has better efficiency was
proposed by Shim [16]. Subsequently, several ID-AKE proto-
cols [17], [18], [19] were proposed to improve efficiency and
security. To solve the key escrow problem, the first CB-AKE
protocol was proposed by Wang and Cao [2]. However, Lim
et al. [3] proved that Wang and Cao’s protocol was insecure
when ephemeral secret keys were leaked. Moreover, Lim
et al. [3] proposed a new CB-AKE protocol to improve the
security. Latterly, many studies on CB-AKE protocols were
published in the literatures [4], [5], [6].

Indeed, none of those existing CB-AKE protocols can resist
side channel attacks [7], [8]. An attacker can obtain par-
tial leaked information of the private key by such attacks.
Once this attack is repeated, the attacker could calculate the
full private key. To resist such attacks, many cryptographic
researchers have put the leakage-resilient (LR) property on
cryptographic protocols. Two LR-AKE protocols [20], [21]
based on traditional PKC systems were proposed, but these
two protocols become insecure when ephemeral secret keys
are compromised. In order to improve security or efficiency,
various LR-AKE protocols have been published in the lit-
eratures [22], [23]. Although these protocols can meet the
leakage-resilient property, there is a common disadvantage
that the total leaked information (bits) of the secret key are
limited (bounded) during each session of the system life cycle.
In order to achieve unbounded total leaked bits, an unbounded
LR-AKE protocol was proposed by Alawatugoda et al. [24].
However, the efficiency of the unbounded LR-AKE proto-
col is not good enough because the employed key update
technique [25] is time-consuming. The multiplicative blinding
method [26], [27] is employed to construct a new unbounded
LR-AKE protocol [28] to improve the efficiency of the key
update processes.

To remove the use of certificates and retain the leakage-
resilient property, Elashry et al. [29] proposed the first LR-ID-
AKE protocol. Unfortunately, both leakage and impersonation

TABLE 1. Comparisons Between the Existing Protocols and Our LR-CB-AKE
Protocol

attacks, will occur in Elashry et al.’s protocol, which was
pointed out by Hatri et al. [30]. In fact, the limitation of
total leaked bits is also an important issue to be studied. A
secure LR-ID-AKE protocol with bounded total leaked bits
was proposed by Ruan et al. [31]. Afterwards, Wu et al. [32]
proposed an unbounded LR-ID-AKE protocol in the sense
that attackers can obtain some information of the secret key
during each session of the system life cycle while the total
leaked bits are unlimited.

B. MOTIVATION
Up to now, the related cryptography resisting side-channel
attacks [7], [8] is still a recently significant research topic.
One limitation of the existing CB-AKE protocols [3], [4],
[5], [6] is that the private keys cannot be partially disclosed
to adversaries, namely, these private keys must be com-
pletely hidden from adversaries. As a result, these protocols
could suffer from side-channel attacks and become insecure.
Table 1 shows the comparisons between the LR-ID-AKE
protocols [31], [32], the CB-AKE protocols [5], [6] and our
LR-CB-AKE protocol in terms of public key setting, avoiding
key escrow issue, resisting side-channel attacks and the re-
striction of leaked information. Our goal is to propose the first
LR-CB-AKE protocol that can avoid key escrow issue, resist
side-channel attacks and possess the property with unbounded
leaked information.

C. CONTRIBUTIONS AND ORGANIZATIONS
Although unbounded LR-ID-AKE protocols avoid certificate
management and possess the security against leakage attacks,
these protocols inherit the key escrow problem. As mentioned
earlier, the existing CB-AKE protocols can remove the prob-
lems of key escrow and certificate management. However,
none of them can provide the security against leakage attacks
of secret key. Therefore, we will propose the first leakage-
resilient CB-AKE (LR-CB-AKE) protocol. We will achieve
several contributions as mentioned below.

– We formulate a new framework and security model for
LR-CB-AKE protocol.

– Based on the new framework, a concrete LR-CB-AKE
protocol is proposed.

– Under the new security model, the proposed LR-CB-
AKE protocol is formally proven to be secure.

– As compared with the previous LR-ID-AKE and CB-
AKE protocols, our LR-CB-AKE protocol not only

138 VOLUME 3, 2022

withstands side channel attacks, but also eliminates the
key escrow problem.

The rest of the article is as follows. Section II gives some
preliminaries. The framework and security notions for LR-
CB-AKE protocol are defined in Section III. A concrete
LR-CB-AKE protocol is presented in Section IV. Section V
demonstrates the security of the LR-CB-AKE protocol. We
compare the performance with several existing LR-ID-AKE
and CB-AKE protocols in Section VI. A conclusion is given
in Section VII.

II. PRELIMINARIES
A. BILINEAR GROUPS
Assume that G1 and G2 are multiplicative cyclic groups of the
same order p for a large prime p. A map ê : G1 × G1 → G2

is a bilinear map that has the following three properties.
– Bilinearity: for all X,Y ∈ G1 and x, y ∈ Z∗p , we have

ê(X x,Y y) = ê(X,Y)xy.
– Non-degeneracy: ê(g, g) �= 1, where g and ê(g, g) are

generators in G1 and G2, respectively.
– Computability: the bilinear map can be efficiently com-

puted by an algorithm.
Here, the equation ê(X x, X y) = ê(X, X)xy = ê(X y, X x)

holds since ê is symmetric. For more details of bilinear
groups, one can refer to [10], [33].

B. GENERIC BILINEAR GROUP (GBG) MODEL
In order to provide security proofs for cryptographic mech-
anisms, Boneh et al. [34] defined the generic bilinear group
(GBG) model based on the generic group (GG) model [35].
Injective mapping functions will be employed to encode group
elements to bit-strings in the GBG model. Since we have two
groups G1 and G2 as defined earlier, two injective mapping
functions IMF1 : Z∗p → �G1 and IMF2 : Z∗p → �G2 will re-
spectively be selected to perform the encoding process, where
�G1 and �G2 are, respectively, the encoded bit-string sets of
G1 and G2. After the encoding process, the elements in the
two groups will be represented in the form of bit-strings. We
denote |�G1 | and |�G2 | as the numbers of two sets �G1 and
�G2 , respectively. Here, the two sets are disjoint and |�G1 | =
|�G2 | = p.

Next, to express the multiplications of G1 and G2 and the
computation of ê in the GBG model, we define three group
operations as follows:

– GOP1(IMF1(r), IMF1(s))→ IMF1(r + s mod p).
– GOP2(IMF2(r), IMF2(s))→ IMF2(r + s mod p).
– GOPp(IMF1(r), IMF1(s))→ IMF2(r · s mod p).
Here, g= IMF1(1) and ê(g, g) = IMF2(1). In addition, the

relevant implementation has been completed. Readers can re-
fer to the literature [36].

C. COMPLEXITY ASSUMPTIONS
Two well-known difficult problems are the discrete logarithm
(DL) and the computational Diffie-Hellman (CDH) problems

which are used to define two associated complexity assump-
tions as follows.

Definition 1 (DL assumption): By the DL problem, g and ga

in G1 are given but a ∈ Z∗p is unknown. Assume that there is a
probabilistic polynomial-time (PPT) adversary A who wants
to calculate a. The advantage of calculating the correct value
can be defined as AdvA = Pr[A(g, ga) = a].

Definition 2 (CDH assumption): By the CDH problem,
g, ga and gb in G1 are given but a and b in Z∗p are un-
known. Assume that there is a probabilistic polynomial-time
(PPT) adversary A who wants to calculate gab. The advantage
of calculating the correct value can be defined as AdvA =
Pr[A(g, ga, gb) = gab].

D. ENTROPY
Since a leakage-resilient scheme/protocol allows some infor-
mation of the secret key to be leaked, the entropy concept
can be hired to measure the security of the system after some
information of the secret key was leaked. We define RV and
CRV as two finite random variables and then state two types
of min-entropies as follows.

1. The min-entropy of RV is

H∞(RV) = − log2

(
max

rv
Pr[RV = rv]

)
2. The average conditional min-entropy of RV is

H̃∞(RV |CRV) = − log2(Ecrv←CRV [maxrv Pr[RV =
rv|CRV = crv]]).

In a computation round, two types of participated secret
keys can occur: one is a single secret key, and the other is
multiple secret keys. For the leakage of a single secret key, we
can use Lemma 1 [37] below to measure the security of the
system. On the other hand, for the leakage of multiple secret
keys, Lemma 2 are employed to measure the security of the
system [26].

Lemma 1: Assume that a random variable (can be viewed
as a single secret key involved in an algorithm) is K and its
maximal leaked information length is λ. Let f : K → {0, 1}λ
be a leakage function, we obtain H̃∞(K| f (K)) � H∞(K)− λ.

Lemma 2: Assume that multiple random variables (can
be viewed as multiple secret keys involved in an algo-
rithm) are K1, K2, . . ., Kn and a highest d-degree polyno-
mial related to these variables is F ∈ Zp[K1, K2, . . . , Kn].
Let PD1, PD2, . . . , PDn be probability distributions on Zp

such that H∞(PDi) � log p− λ and 0 � λ � log p, for i =
1, 2, . . . , n. When ki

PDi← Zp, for i = 1, 2, . . . , n, are indepen-
dent, we have Pr[F (K1 = k1, K2 = k2, . . . , Kn = kn) = 0] �
(d/p)2λ.

According to the inequality Pr[F (K1 = k1, K2 = k2,...,
Kn = kn) = 0] � (d/p)2λ in Lemma 2, we can obtain the
following result.

Corollary 1: If ki
PDi← Zp, for i = 1, 2, . . . , n, are inde-

pendent, then Pr[F (K1 = k1, K2 = k2, . . . , Kn = kn) = 0] is
negligible if λ < (1− ε) log p.

VOLUME 3, 2022 139

TSAI ET AL.: LEAKAGE-RESILIENT CERTIFICATE-BASED AUTHENTICATED KEY EXCHANGE PROTOCOL

FIGURE 1. The framework of LR-CB-AKE protocol.

TABLE 2. Notations

III. FRAMEWORK AND SECURITY NOTIONS
A. FRAMEWORK
The framework of LR-CB-AKE protocol includes two roles
and six algorithms, as shown in the Fig. 1. One role is the
CA who executes System setup and User certificate genera-
tion algorithms, and the other is the user who performs the
remaining four algorithms, namely, User secret key genera-
tion, Key refreshment, Key agreement and Common session
key derivation. For convenience, some notations used in these
algorithms are summarized in Table 2. Next, we define the six
algorithms as follows.

– Initialization:
� System setup: This algorithm is run by the CA who

gains the system secret key SK after inputting a secu-
rity parameter. Then, the CA uses SK to produce the
initial system secret key pair SKpair0 = (SK0,1, SK0,2)
and public parameters PP.

� User secret key generation: This algorithm is run by a
user with identity IDζ who gains her/his user secret
key USKζ , initial user secret key pair USKζpair0

=
(USKζ ,0,1,USKζ ,0,2) and the first public key FPKζ .

� User certificate generation: This algorithm is run
by the CA who gains the user’s two user cer-
tificates UCAζ and UCBζ and the correspond-
ing second public key SPKζ after inputting the
user’s identity IDζ and first public key FPKζ in
the i-th session. Meanwhile, the CA must use
(SKi−1,1, SKi−1,2) to update the current system secret
key pair SKpairi = (SKi,1, SKi,2). In addition, the CA
sends UCAζ , UCBζ and SPKζ to the user so that
the user can compute two initial user certificate pairs
UCAζpair0

= (UCAζ ,0,1,UCAζ ,0,2) and UCBζpair0
=

(UCBζ ,0,1,UCBζ ,0,2), and the complete public key
(FPKζ , SPKζ).

– Construction of a common session key:
� Key refreshment: For the k-th session, this

algorithm is run by the user with identity IDζ

who gains the refreshed user secret key pair
USKζpairk

= (USKζ ,k,1,USKζ ,k,2) and certificate
pairs UCAζpairk

= (UCAζ ,k,1,UCAζ ,k,2) and
UCBζpairk

= (UCBζ ,k,1,UCBζ ,k,2) after inputting
USKζpairk−1

= (USKζ ,k−1,1,USKζ ,k−1,2), UCAζpairk−1= (UCAζ ,k−1,1,UCAζ ,k−1,2) and UCBζpairk−1
=

(UCBζ ,k−1,1,UCBζ ,k−1,2).
� Key agreement: Two users Uζ and Uη with identities

IDζ and IDη select ephemeral secret keys ESKζ = x
and ESKη = y ∈ Z∗p , and compute X = gx and Y =
gy, respectively. Uζ sends X and her/his two public
keys FPKζ and SPKζ to Uη while Uη sends Y and
her/his two public keys FPKη and SPKη to Uζ . Then,
Uζ and Uη respectively compute session keys.

� Common session key derivation: This algorithm is run
by Uζ and Uη respectively to gain a common session
key CSK after inputting the session keys.

B. SECURITY NOTIONS
In the past, the system secret key SK and users’ CSK of
CB-AKE protocols were not allowed to be leaked since
the systems did not have the leakage-resilient properties.
Instead, a LR-CB-AKE protocol allows adversaries to ob-
tain information of SK and CSK . We employ four leakage
functions fUCG,i, hUCG,i, fCSK,ζ ,k , hCSK,ζ ,k to describe how
adversaries can obtain some information of SK and CSK .
The first two leakage functions fUCG,i and hUCG,i respec-
tively take SKi,1 and SKi,2 as input in the i-th invocation
in User certificate generation algorithm, and output � fUCG,i

and �hUCG,i as the length of the leaked information. The last
two leakage functions fCSK,ζ ,k and hCSK,ζ ,k respectively take
(USKζ ,k,1,UCAζ ,k,1, ESKζ) and (USKζ ,k,2,UCAζ ,k,2) as in-
put in the k-th session of the user with identity IDζ in session
key construction phase, and output � fCSK,ζ ,k and �hCSK,ζ ,k as
the length of the leaked information. Notice that the maximum
length of each output is only λ bits.

As the CB-AKE protocols [5], [6] proposed in the past,
there are also two types of adversaries in our security model.

140 VOLUME 3, 2022

Type 1 adversary is an external attacker (not a system mem-
ber) who has the ability to replace the public key of any user.
Type 2 adversary is the malicious CA in the system who has
the system secret key, but cannot replace the public key of any
user. Next, we adopt the properties of leakage resilient [31],
[32] and the security models of CB-AKEs [5], [6] to define a
new security model for LR-CB-AKE. Indeed, the new secu-
rity model is an extension of the extended Canetti-Krawczyk
(eCK) model proposed by Lamacchia et al. [11]. The eCK
model allows that adversaries can compromise either short-
term secret key (ephemeral secret key) or long-term secret key
(user secret key and certificate) of a participator. The new se-
curity model not only retains the properties of the eCK model,
but also allows adversaries to obtain the leaked information
of these secret keys by adding two leak queries, namely, user
certificate generation leak query and send leak query. Assume
that there exists a probabilistic polynomial time (PPT) adver-
sary A who attempts to break a LR-CB-AKE protocol. A will
play the following security game with a challenger B to obtain
the probability of breaking the LR-CB-AKE protocol.

– Setup: The challenger B performs the System setup al-
gorithm to generate the system secret key and public
parameters. Then, B sends the public parameters to A,
and gives the system secret key to A if A is a Type 2
adversary.

– Query: A can adaptively issue B the following queries.
Here

∏k
ζ denotes an oracle with an identity IDζ in the

k-th session.
� Send (

∏k
ζ , m): Upon inputting the oracle

∏k
ζ and mes-

sage m, the challenger B gives A the corresponding
response of

∏k
ζ and m.

� Reveal (
∏k

ζ): Upon inputting the oracle
∏k

ζ , the chal-
lenger B gives A a common session key which is held
by

∏k
ζ .

� User secret key generation (IDζ): Upon inputting a
user’s identity IDζ , the challenger B gives A the as-
sociated initial user secret key pair USKζpair0

and the
user’s first public key FPKζ .

� User certificate generation (IDζ , FPKζ): Upon in-
putting a user’s identity IDζ and the user’s first public
key FPKζ , the challenger B gives A the associated
user certificates UCAζ and UCBζ and the correspond-
ing second user public key SPKζ . This query is only
issued by Type 1 adversary.

� Replace public key (IDζ , FPKζ ,
′ SPK ′ζ): Upon in-

putting a user’s identity IDζ and the user public keys
(FPKζ ,

′ SPK ′ζ), the challenger B sets the user IDζ ’s
new public keys as (FPKζ ,

′ SPK ′ζ). This query is only
issued by Type 1 adversary.

� Ephemeral secret key reveal (
∏k

ζ): Upon inputting the

oracle
∏k

ζ , the challenger B gives A an ephemeral

secret key ESK which is held by
∏k

ζ .
� User certificate generation leak (IDζ , FPKζ , fUCG,i,

hUCG,i): Upon inputting a user’s IDζ , FPKζ and two
leakage functions (fUCG,i, hUCG,i), the challenger B

gives A leakage information � fUCG,i and �hUCG,i of
the system secret key pair SKi,1 and SKi,2, respec-
tively.

� Send leak (
∏k

ζ , fCSK,ζ ,k , hCSK,ζ ,k): Upon

inputting the oracle
∏k

ζ and two leakage
functions (fCSK,ζ ,k , hCSK,ζ ,k), the challenger B
gives A the leakage information � fCSK,ζ ,k and
�hCSK,ζ ,k of (USKζ ,k,1,UCAζ ,k,1, ESKζ) and
(USKζ ,k,2,UCAζ ,k,2), respectively.

� Test (
∏k

ζ): Upon inputting the oracle
∏k

ζ , the chal-
lenger B gives A a session key according to the result
of a random coin ∈ {0, 1}. If coin = 1, the session key
is held by

∏k
ζ ; otherwise, the common session key is

a random value from session key space.
When the adversary A receives the common session key,

A responds a guess coin′. If coin′ = coin, the adversary A
wins the security game. Finally, two security properties of the
security game are defined as below.

Definition 3 (Partnership): Assume that there exist
∏k

ζ and∏l
η that state the user with identity IDζ ’s k-th session and

the user with identity IDη’s l-th session, respectively. When∏k
ζ and

∏l
η authenticate each other and generate a common

session key, we say that they have the partnership property.
Definition 4 (Freshness): We say that a common session

key established by two oracles
∏k

ζ and
∏l

η has freshness
property, if the following three conditions in the Query phase
are true.

I. The query to Reveal (
∏k

ζ) and Reveal (
∏l

η) cannot
occur.

II. At least one of the queries to User secret key generation
(IDζ), User certificate generation (IDζ , FPKζ) and
Ephemeral secret key reveal (

∏k
ζ) cannot occur.

III. At least one of the queries to User secret key generation
(IDη), User certificate generation (IDη, FPKη) and
Ephemeral secret key reveal (

∏l
η) cannot occur.

IV. LR-CB-AKE PROTOCOL
Our concrete protocol includes two phases, namely, the ini-
tialization and construction of a common session key. In the
initialization phase, there are three algorithms, namely, Sys-
tem setup, User secret key generation and User certificate
generation. In the construction of a common session key,
three algorithms, namely, Key refreshment, Key agreement and
Common session key derivation.

– Initialization:
• System setup: To generate the system public parameters
PP and the initial system secret key pair SKpair0 for LR-
CB-AKE, the CA first takes as input a security parameter
1κ and then performs the following tasks.

(1) Generate two multiplicative cyclic groups G1 and G2 of a
large prime order p. Construct an admissible bilinear map
ê : G1 × G1 → G2. Assume that g is a generator of G1.

VOLUME 3, 2022 141

TSAI ET AL.: LEAKAGE-RESILIENT CERTIFICATE-BASED AUTHENTICATED KEY EXCHANGE PROTOCOL

(2) Pick a value s ∈ Z∗p in random, and compute the system se-
cret key SK = gs and the system public key PK = ê(gs, g).

(3) Randomly choose a value γ ∈ Z∗p and set the initial system
secret key pair SKpair0 = (SK0,1, SK0,2) = (gγ , SK · g−γ).

(4) Choose two random values t, v ∈ Z∗p and compute T = gt

and V = gv .
(5) Pick a hash function H : G2 × G1 × G1 → G1 and set the

system public parameters PP = {p, G1, G2, g, ê, PK, T,

V, H}.
•User secret key generation: In the i-th session, to generate

the initial user secret key pair USKζpair0
and the user’s first

public key FPKζ , the user Uζ with identity IDζ performs the
following tasks.

(1) Pick a random value uζ ∈ Z∗p and compute the user secret
key USKζ = huζ , where h = H (PK||T ||V).

(2) Randomly choose a value ci ∈ Z∗p and set the initial
user secret key pair USKζpair0

= (USKζ ,0,1,USKζ ,0,2) =
(gci ,USKζ · g−ci).

(3) Use the value uζ in (1) to set the user’s first public key
FPKζ = guζ .

By the similar way, for the user IDη, we can generate the
initial user secret key pair USKηpair0

= (USKη,0,1,USKη,0,2)
= (gc j ,USKη · g−c j) in the j-th session and the user’s first
public key FPKη = guη .
• User certificate generation: In the i-th session, when

receiving an identity IDζ of user Uζ and the associated first
public key FPKζ , the CA is responsible for generating the
user’s two user certificates UCAζ and UCBζ , and the user’s
second public key SPKζ as follows.

(1) Randomly choose a value αi ∈ Z∗p and update the sys-
tem secret key pair SKpairi = (SKi,1, SKi,2) = (SKi−1,1 ·
gαi , SKi−1,2 · g−αi), where (SKi−1,1, SKi−1,2) is the current
system secret key pair.

(2) Set bζ = IDζ ||FPKζ and randomly pick a value βζ ∈ Z∗p .
Two user certificates are produced as follows.

� UCAζ = SKi,2 ·UCATζ , where UCATζ = SKi,1 · (T ·
V bζ)βζ ,

� UCBζ = hβζ , where h = H (PK||T ||V).
(3) Use the value βζ in (2) to compute the user’s second public

key SPKζ = gβζ .

The CA sends the two user certificates UCAζ and
UCBζ , and the second public key SPKζ to the user. Notice that
the user certificate UCAζ contains the system secret key SK
due to UCAζ = SKi,2 ·UCATζ = SKi,2 · SKi,1 · (T ·V bζ)βζ =
SK · (T ·V bζ)βζ . Afterwards, two initial user certificate pairs
UCAζpair0

and UCBζpair0
are computed by the user as below.

� UCAζpair0
= (UCAζ ,0,1,UCAζ ,0,2) = (gdi ,UCAζ · g−di),

� UCBζpair0
= (UCBζ ,0,1,UCBζ ,0,2) = (hdi ,UCBζ · h−di),

where di ∈ Z∗p and h = H (PK||T ||V).
By a similar way, for the user Uη, we can generate the two

initial user certificate pairs UCAηpair0
= (gd j ,UCAη · g−d j)

and UCBηpair0
= (hd j ,UCBη · h−d j) and the second public

key SPKη = gβη in the j-th session.

- Construction of a common session key:

• Key refreshment: To refresh the user certificate pairs, two
users Uζ and Uη respectively perform the following two
tasks.

(1) The user Uζ computes h = H (PK||T ||V), picks two ran-
dom values mk , nk ∈ Z∗p in the k-th session, and computes
� USKζpairk

= (USKζ ,k,1,USKζ ,k,2) = (USKζ ,k−1,1 · gmk ,
USKζ ,k−1,2 · g−mk),
�UCAζpairk

= (UCAζ ,k,1,UCAζ ,k,2) = (UCAζ ,k−1,1 · gnk ,
UCAζ ,k−1,2 · g−nk),
�UCBζpairk

= (UCBζ ,k,1,UCBζ ,k,2) = (UCBζ ,k−1,1 · hnk ,
UCBζ ,k−1,2 · h−nk).

(2) The user Uη computes h = H (PK||T ||V), picks two ran-
dom values ml , nl ∈ Z∗p in the l-th session, and computes
� USKηpairl

= (USKη,l,1,USKη,l,2) = (USKη,l−1,1 ·
gml ,USKη,l−1,2 · g−ml),
� UCAηpairl

= (UCAη,l,1,UCAη,l,2) = (UCAη,l−1,1 · gnl ,
UCAη,l−1,2 · g−nl),
� UCBηpairl

= (UCBη,l,1,UCBη,l,2) = (UCBη,l−1,1 · hnl ,
UCBη,l−1,2 · h−nl).

•Key agreement: Let Uζ and Uη be two participants. Uζ and
Uη select ephemeral secret keys ESKζ = x and ESKη = y ∈
Z∗p , and compute X = gx and Y = gy, respectively. Uζ sends
X and her/his two public keys FPKζ and SPKζ to Uη while
Uη sends Y and her/his two public keys FPKη and SPKη to
Uζ . Then, Uζ and Uη respectively perform the following two
tasks.

(1) Uζ computes the follows:
�Kζ ,k,1 = Y x .
� Kζ ,k,2 = ê(hx, FPKη), where h = H (PK||T ||V).
� Kζ ,k,3 = PKx · ê(SPKη, T ·V bη)x, where bη = IDη||FPKη.
� Kζ ,k,4 = KTζ ,k,4 · ê(Y,USKζ ,k,2), where KTζ ,k,4 =

ê(Y,USKζ ,k,1).
� Kζ ,k,5 = KTζ ,k,5 · ê(FPKη,USKζ ,k,2), where KTζ ,k,5 =

ê(FPKη,USKζ ,k,1).
� Kζ ,k,6 = KTζ ,k,6 · ê(SPKη,USKζ ,k,2), where KTζ ,k,6 =

ê(SPKη,USKζ ,k,1).
� Kζ ,k,7 = KTζ ,k,7 · ê(Y,UCAζ ,k,2), where KTζ ,k,7 =

ê(Y,UCAζ ,k,1).
� Kζ ,k,8 = KTζ ,k,8 · ê(FPKη,UCBζ ,k,2), where KTζ ,k,8 =

ê(FPKη,UCBζ ,k,1).
� Kζ ,k,9 = KTζ ,k,9 · ê(SPKη,UCBζ ,k,2), where KTζ ,k,9 =

ê(SPKη,UCBζ ,k,1).
(2) Uη computes the follows:
� Kη,l,1 = X y.
� Kη,l,2 = KTη,l,2 · ê(X,USKη,l,2), where KTη,l,2 =

ê(X,USKη,l,1).
� Kη,l,3 = KTη,l,3 · ê(X,UCAη,l,2), where KTη,l,3 =

ê(X,UCAη,l,1).
� Kη,l,4 = ê(hy, FPKζ), where h = H (PK||T ||V).

142 VOLUME 3, 2022

FIGURE 2. Nine equalities.

� Kη,l,5 = KTη,l,5 · ê(FPKζ ,USKη,l,2), where KTη,l,5 =
ê(FPKζ ,USKη,l,1).

� Kη,l,6 = KTη,l,6 · ê(FPKζ ,UCBη,l,2), where KTη,l,6 =
ê(FPKζ ,UCBη,l,1).

� Kη,l,7 = PKy · ê(SPKζ , T ·V bζ)y, where bζ = IDζ ||FPKζ .
� Kη,l,8 = KTη,l,8 · ê(SPKζ ,USKη,l,2), where KTη,l,8 =

ê(SPKζ ,USKη,l,1).
� Kη,l,9 = KTη,l,9 · ê(SPKζ ,UCBη,l,2), where KTη,l,9 =

ê(SPKζ ,UCBη,l,1).

• Common session key derivation: The common session
key can be established by Uζ and Uη as presented below. Also,
Fig. 2 shows that the common session key CSKζ ,k is equal to
the common session key CSKη,l .
� (1) Uζ compute CSKζ ,k = Kζ ,k,1 ⊕ Kζ ,k,2 ⊕ Kζ ,k,3 ⊕

Kζ ,k,4 ⊕ Kζ ,k,5 ⊕ Kζ ,k,6 ⊕ Ki,k,7 ⊕ Kζ ,k,8 ⊕ Kζ ,k,9.
� (2) Uη compute CSKη,l = Kη,l,1 ⊕ Kη,l,2 ⊕ Kη,l,3 ⊕

Kη,l,4 ⊕ Kη,l,5 ⊕ Kη,l,6 ⊕ Ki,l,7 ⊕ Kη,l,8 ⊕ Kη,l,9.

V. SECURITY ANALYSIS
One theorem and two lemmas are given in this section. The
proof of the theorem employs the the lemmas to prove that the
proposed LR-CB-AKE protocol is secure in the GBG model
under the DL and CDH assumptions.

Theorem 1: In the GBG model, the proposed LR-CB-AKE
protocol is secure in the security game if the DL and CDH
assumptions hold.

Proof: Assume that Uζ and Uη are two participants in the
proposed LR-CB-AKE protocol, and they possess a part-
nership. We denote

∏k
ζ as an oracle with the participant

Uζ in the k-th session, and
∏l

η as another oracle with the

participant Uη in the l-th session. Note that
∏k

ζ and
∏l

η

are two oracles in the partnership session. With these two
oracles, a session key can be established. The session key,
which can be respectively calculated by

∏k
ζ and

∏l
η, is

composed of user secret key, user certificates and ephemeral
secret keys. As mentioned in Section III-B, there exists an
adversary A who wants to guess the correct session key to
win the security game. During the security games, the ad-
versary A can issue the User secret key generation query,
User certificate generation query and Ephemeral key reveal
query to obtain the user secret key, user certificates and
ephemeral secret keys, respectively. According to the defini-
tion of freshness, there are nine circumstances as discussed
below.
�Circumstance 1: Neither the ESK of

∏k
ζ nor

∏l
η can be

obtained by A, but A is able to gain USK and (UCA,UCB)
of

∏k
ζ or

∏l
η.

�Circumstance 2: Neither the USK of
∏k

ζ nor
∏l

η can be
obtained by A, but A is able to gain ESK and (UCA,UCB)
of

∏k
ζ or

∏l
η.

�Circumstance 3: Neither the (UCA,UCB) of
∏k

ζ nor
∏l

η

can be obtained by A, but A is able to gain ESK and USK of∏k
ζ or

∏l
η.

VOLUME 3, 2022 143

TSAI ET AL.: LEAKAGE-RESILIENT CERTIFICATE-BASED AUTHENTICATED KEY EXCHANGE PROTOCOL

�Circumstance 4: Neither the ESK of
∏k

ζ nor the USK of∏l
η can be obtained by A, but A is able to gain other keys of∏k
ζ or

∏l
η.

�Circumstance 5: Neither the ESK of
∏k

ζ nor the

(UCA,UCB) of
∏l

η can be obtained by A, but A is able to

gain other keys of
∏k

ζ or
∏l

η.

�Circumstance 6: Neither the USK of
∏k

ζ nor the ESK of∏l
η can be obtained by A, but A is able to gain other keys of∏k
ζ or

∏l
η.

�Circumstance 7: Neither the USK of
∏k

ζ nor the

(UCA,UCB) of
∏l

η can be obtained by A, but A is able to

gain other keys of
∏k

ζ or
∏l

η.

�Circumstance 8: Neither the (UCA,UCB) of
∏k

ζ nor the

ESK of
∏l

η can be obtained by A, but A is able to gain other

keys of
∏k

ζ or
∏l

η.

�Circumstance 9: Neither the (UCA,UCB) of
∏k

ζ nor the

USK of
∏l

η can be obtained by A, but A is able to gain other

keys of
∏k

ζ or
∏l

η.
For the above circumstances, we use two Lemmas 3 and

4 to provide the security analysis. Based on the two lemmas,
the proposed LR-CB-AKE protocol is secure in the security
game.

Lemma 3: Under Circumstance 1, the proposed LR-CB-
AKE protocol is secure in the GBG model if the CDH
assumption holds.

Proof: We know that Circumstance 1 allows A to gain
USK and (UCA,UCB) of

∏k
ζ or

∏l
η. Therefore, by these

obtained keys, Kζ ,k,i (= Kη,l,i), for i = 2, 3, . . . , 9, can be
computed. However, neither the ephemeral secret key x of

∏k
ζ

nor he ephemeral secret key y of
∏l

η can be obtained by A
in Circumstance 1. A cannot obtain gxy (= Kζ ,k,1 = Kη,l,1)
by the two given values X = gx and Y = gy due to the CDH
assumption. Since the composition of the session key requires
all the nine keys Kζ ,k,i (i= 1, 2, . . . , 9), A cannot calculate the
session key due to the lack of Kζ ,k,1. Although A is restricted
from gaining Kζ ,k,1, some leaked information of ESK = x or y
from the Send leak query can be obtained by A. However, the
leaked information obtained in each session is independent
since x and y are randomly reselected in each new session.
Therefore, the leaked information doesn’t help A to calculate
Kζ ,k,1 or Kη,l,1. Under the CDH assumption, A’s probability
of winning the security game can be ignored.

Lemma 4: Under Circumstances 2 to 9, the proposed LR-
CB-AKE protocol is secure in the GBG model if the DL
assumption holds.

Proof: The GBG model provides security analysis of secret
key leakage, and it converts each element in the group into a
different bit-string. As mentioned in Section II-B, to express
the multiplications of G1 and G2 and the computation of ê
in the GBG model, we have three group operations GOP1,
GOP2 and GOPp via an algorithm B. In the security game,

an adversary A can query about these three group operations.
The algorithm B, who attempts to solve the DL problem (as-
sumption), plays the role of the challenger and interacts with
the adversary A in the following security game.

– Setup phase: The challenger B performs the System
setup algorithm to obtain the system secret key SK and
public parameters PP of the LR-CB-AKE protocol. The
public parameters PP are set as {p, G1, G2, g, ê, PK, T,

V, H}, where p, G1 and G2 are defined as in Section II,
and g, PK , T , V and H are encoded as the associated
bit-strings. Then, B sends the public parameters to A,
and gives the system secret key to A if A is a Type 2
adversary. In order to record A’s queries, including in-
puts and outputs, B prepares five lists L1, L2, LUSK , LUC

and LS as follows. Notice that all the five lists contain the
polynomial representations, since we employ the Lemma
2 to complete the security analysis.

� L1 and L2 are used to record the polynomial represen-
tation of elements of G1 and G2, and the corresponding
bit-strings of elements of G1 and G2 after transforma-
tion, respectively.

�L1 records pairs in the form of (PG1,m,n,r , BG1,m,n,r),
where PG1,m,n,r is the polynomial representation of an
element of G1 and BG1,m,n,r is the corresponding bit-
string with m type of query, n-th query and r-th element.
Meanwhile six pairs (PSK,BG1,S,0,1), (Pg,BG1,S,0,2),
(PT, BG1,S,0,3), (PV , BG1,S,0,4), (PH, BG1,S,0,5) and
(Ph,BG1,S,0,6) are added in L1 by B.

�L2 records pairs in the form of (PG2,m,n,r , BG2,m,n,r),
where PG2,m,n,r is the polynomial representation of an
element of G2 and BG2,m,n,r is the corresponding bit-string
with m type of query, n-th query and r-th element. One
pair (PPK , BG2,S,0,1) is added in L2 by B, where PPK
= Pg · PSK .

The following two transformations TF-1 and TF-2 are em-
ployed to assist B in answering A’s queries about L1/L2.

I. TF-1: When A’s query is PG1,m,n,r/PG2,m,n,r , B uses
TF-1 to search L1/L2. If it is found, the corre-
sponding BG1,m,n,r/BG2,m,n,r will be returned;
otherwise, a bit-string will be randomly selected
as BG1,m,n,r/BG2,m,n,r to be returned. In addi-
tion, B adds (PG1,m,n,r , BG1,m,n,r)/(PG2,m,n,r ,
BG2,m,n,r) into L1/L2.

I. TF-2: When A’s query is BG1,m,n,r/BG2,m,n,r , B uses
TF-2 to search L1/L2. If it is found, the corre-
sponding PG1,m,n,r/PG2,m,n,r will be returned;
otherwise, B returns ⊥.

•LUSK records (IDζ , PUSKζ , PFPKζ). Here, IDζ is the user
Uζ ’s identity. PUSKζ and PFPKζ are, respectively, the
multivariate polynomials of the user secret key USKζ and
the user’s first public key FPKζ .
•LUC records (IDζ , PFPKζ , PUCAζ , PUCBζ , PSPKζ).

Here, IDζ is a user Uζ ’s identity. PFPKζ , PUCAζ , PUCBζ

and PSPKζ are multivariate polynomials of the user’s first

144 VOLUME 3, 2022

public key FPKζ , two user certificates UCAζ , UCBζ , and
the user’s second public key SPKζ , respectively.
•LS records (

∏k
ζ , BPNζ ,k , BPNFPKζ ,k , BPNSPKζ ,k ,

ESKζ ,k , CSKζ ,k , BT Mζ ,k , PT Mζ ,k , BPNT Mζ ,k ,
PPNT Mζ ,k). Here,

∏k
ζ is an oracle with the participant

Uζ in the k-th session. The remaining items are the
communication details of

∏k
ζ and defined as follows.

�BPNζ ,k : the identity of Uζ ’s partner in the k-th session.
�BPNFPKζ ,k : the first public key of Uζ ’s partner in the k-th

session.
�BPNSPKζ ,k : the second public key of Uζ ’s partner in the

k-th session.
�ESKζ ,k : ESK of Uζ in the k-th session.
�CSKζ ,k : CSK of Uζ in the k-th session.
�BT Mζ ,k : the transmitted message of

∏k
ζ with the represen-

tation of a bit-string.
�PT Mζ ,k : the transmitted message of

∏k
ζ with the represen-

tation of a multivariate polynomial.
�BPNT Mζ ,k : the transmitted message of Uζ ’s partner in the

k-th session with the representation of a bit-string.
�PPNT Mζ ,k : the transmitted message of Uζ ’s partner in

the k-th session with the representation of the multivariate
polynomial.

– Query phase: This phase allows A to make different queries
as follows.

• GOP1 query (BG1,Q,r,1, BG1,Q,r,2, calc): When receiving
this query in the r-th query, B returns BG1,Q,r,3 by per-
forming the follows.

� Transform (BG1,Q,r,1, BG1,Q,r,2) into (PG1,Q,r,1,
PG1,Q,r,2) by using TF-2.

� Compute PG1,Q,r,3 according to PG1,Q,r,1, PG1,Q,r,2 and
calc. If calc = “multiplication,” set PG1,Q,r,3 = PG1,Q,r,1

+ PG1,Q,r,2. If calc = “division,” set PG1,Q,r,3 = PG1,Q,r,1

- PG1,Q,r,2.
� Transform PG1,Q,r,3 into BG1,Q,r,3 by using TF-1.

• GOP2 query (BG2,Q,r,1, BG2,Q,r,2, calc): When receiving
this query in the r-th query, B returns BG2,Q,r,3 by per-
forming the follows.

� Transform (BG2,Q,r,1, BG2,Q,r,2) into (PG2,Q,r,1,
PG2,Q,r,2) by using TF-2.

� Compute PG2,Q,r,3 according to PG2,Q,r,1, PG2,Q,r,2 and
calc. If calc = “multiplication,” set PG2,Q,r,3 = PG2,Q,r,1

+ PG2,Q,r,2. If calc= “division,” set PG2,Q,r,3 = PG2,Q,r,1

– PG2,Q,r,2.
� Transform PG2,Q,r,3 into BG2,Q,r,3 by using TF-1.

• GOPp query (BG1,P,r,1, BG1,P,r,2): When receiving this
query in the r-th query, B returns BG1,P,r,3 by performing
the follows..

� Transform (BG1,P,r,1, BG1,P,r,2) into (PG1,P,r,1, PG1,P,r,2)
by using TF-2.

� Compute PG1,P,r,3 = PG1,P,r,1 · BG1,P,r,2 according to
PG1,P,r,1 and BG1,P,r,2.

� Transform PG1,P,r,3 into BG1,P,r,3 by using TF-1.

• User secret key generation query (IDζ): B looks for IDζ

in LUSK , and transforms (PUSKζ ,PFPKζ) into (BUSKζ ,
BFPKζ) by using TF-1 if IDζ exists in LUSK . Then, B
sends (BUSKζ , BFPKζ) to A. If IDζ does not exist in
LUSK , B proceeds the following steps.

� Set the polynomial PUSKζ = PRGUSK,i,1, where
PRGUSK,i,1 is a new variate in G1.

� Set the polynomial PFPKζ = PSGUSK,i,1, where
PSGUSK,i,1 is a new variate in G1.

� Add (PUSKζ , PFPKζ) in LUSK .
� Transform (PUSKζ , PFPKζ) into (BUSKζ , BFPKζ) by

using TF-1.
� Return (BUSKζ , BFPKζ) to A.

• User certificate generation (IDζ , FPKζ): B looks for IDζ

and FPKζ in LUC , and transforms (PUCAζ , PUCBζ ,
PSPKζ) into (BUCAζ , BUCBζ , BSPKζ) by using TF-1
if IDζ exists in LUC . Then, B sends (BUCAζ , BUCBζ ,
BSPKζ) to A. If IDζ does not exist in LUC , B proceeds
the following steps.

� Set the polynomial PUCAζ = PSK + PRGUC,i,1 · (PT +
PRID · PV), where PRGUC,i,1 is a new variate in G1 and
PRID = IDζ ||FPKζ .

� Set the polynomial PUCBζ =PSGUC,i,1, where PSGUC,i,1

is a new variate in G1.
� Set the polynomial PSPKζ = PT GUC,i,1, where
PT GUC,i,1 is a new variate in G1.

� Add (PUCAζ , PUCBζ , PSPKζ) in LUC .
� Transform (PUCAζ , PUCBζ , PSPKζ) into (BUCAζ ,

BUCBζ , BSPKζ) by using TF-1.
� Return (BUCAζ , BUCBζ , BSPKζ) to A.

• User certificate generation leak query (IDζ , FPKζ , fUCG,i,
hUCG,i): B takes IDζ , FPKζ , fUCG,i and hUCG,i as in-
put, and returns � fUCG,i = fUCG,i(SKi,1) and �hUCG,i =
hUCG,i(SKi,2).
• Replace public key (IDζ , BFPK ′ζ , BSPK ′ζ): B first respec-

tively transforms BFPK ′ζ and BSPK ′ζ into PFPK ′ζ and
PSPK ′ζ by using TF-2, and then uses PFPK ′ζ and PSPK ′ζ
to update the lists LUSK and LUC .
• Ephemeral-secret-corrupt (

∏k
ζ): B looks for

∏k
ζ in LS , and

returns ESKζ ,k if
∏k

ζ exists in LS . Otherwise, B returns
“false”.
• Send (

∏k
ζ , BPNT Mζ ,k , BPNζ ,k , BPNFPKζ ,k ,

BPNSPKζ ,k): B looks for (
∏k

ζ , BT RMζ ,k , BPNζ ,k ,
BPNFPKζ ,k , BPNSPKζ ,k) in LS , and returns BT Mζ ,k

if (
∏k

ζ , BT RMζ ,k , BPNζ ,k , BPNFPKζ ,k , BPNSPKζ ,k)
exists in LS . If this record does not exist in LS , B does the
following steps.

� Transform BPNT Mζ ,k into PPNT Mζ ,k by using TF-2.

VOLUME 3, 2022 145

TSAI ET AL.: LEAKAGE-RESILIENT CERTIFICATE-BASED AUTHENTICATED KEY EXCHANGE PROTOCOL

TABLE 3. Time Required for Bilinear Pairing and Exponentiation
Operations

� Set PT Mζ ,k = ESKζ ,k · Pg, where ESKζ ,k ∈ Z∗p is an
ephemeral secret key chosen in random.

� Transform PT Mζ ,k into BT Mζ ,k by using TF-1, and send
it to A.

� Add (
∏k

ζ , BPNζ ,k , BPNFPKζ ,k , BPNSPKζ ,k , ESKζ ,k , -,
BT Mζ ,k , PT Mζ ,k , BPNT Mζ ,k , PPNT Mζ ,k) in LS .
• Send leak query (

∏k
ζ , fCSK,ζ ,k , hCSK,ζ ,k): B takes

∏k
ζ ,

fCSK,ζ ,k and hCSK,ζ ,k as input, and returns � fCSK,ζ ,k

= fCSK,ζ ,k (USKζ ,k,1, UCAζ ,k,1, UCBζ ,k,1, ESKζ ,k) and
�hCSK,ζ ,k = hCSK,ζ ,k (USKζ ,k,2, UCAζ ,k,2, UCBζ ,k,2, Kζ ,k,1,
Kζ ,k,2, . . . , Kζ ,k,9).
• Reveal query (

∏k
ζ): B takes

∏k
ζ as input, and returns the

session key by performing the follows.
� Use

∏k
ζ to find BPNζ ,k in LS .

� Transform BPNζ ,k into PPNζ ,k by using TF-2.
� Use BPNζ ,k to find partner’s public keys PPNFPKζ in

LUSK and PPNSPKζ in LUC .
� Obtain the corresponding user secret key PUSKζ in LUSK

and user certificates (PUCAζ ,PUCBζ) in LUC by using the
identity IDζ of

∏k
ζ .

� Set ESKζ ,k = RESKζ ,k , where RESKζ ,k a new variable.
� Compute Kζ ,k,1, Kζ ,k,2, . . ., Kζ ,k,9 as follows.
� Kζ ,k,1 = ESKζ ,k · PT RMζ ,k .
� Kζ ,k,2 = ESKζ ,k · Ph · PPNFPKζ .
� Kζ ,k,3 = ESKζ ,k · (PPK + PPNSPKζ · (PT + PPNζ ,k ·

PV)).
� Kζ ,k,4 = PT RMζ ,k · PUSKζ .
� Kζ ,k,5 = PPNFPKζ · PUSKζ .
� Kζ ,k,6 = PPNSPKζ · PUSKζ .
� Kζ ,k,7 = PT RMζ ,k · PUCAζ .
� Kζ ,k,8 = PPNFPKζ · PUCBζ .
� Kζ ,k,9 = PPNSPKζ · PUCBζ .
� Add Kζ ,k,1 in L1 and Kζ ,k,2, Kζ ,k,3, . . ., Kζ ,k,9

in L2. Transform (Kζ ,k,1, Kζ ,k,2, . . . , Kζ ,k,9) to
(BKζ ,k,1,BKζ ,k,2, . . . ,BKζ ,k,9) by using TF-1.

� Set the session key CSKζ ,k = BKζ ,k,1 ⊕BKζ ,k,2 ⊕ . . .⊕
BKζ ,k,9 as the session key.
• Test query (

∏k
ζ): B takes

∏k
ζ as input, and returns “false”

if
∏k

ζ does not exist in LS . Otherwise, B can obtain CSKζ ,k

from the Reveal query (
∏k

ζ). Then, B gives A a session key
according to the result of a random coin ∈ {0, 1}. If coin =
1, the session key is CSKζ ,k ; otherwise, the session key is a
random value from session key space.

To analyze A’s advantage of winning the security game, the
number of elements and each polynomial’s degree in L1 and
L2 must be calculated.

– Calculate the number of elements in L1 and L2.
• The Setup phase adds 6 and 1 elements in L1 and L2,

respectively.

• At most 3 elements accede to L1 or L2 in each GOP1, GOP2

or GOPp query.
• At most 2 elements accede to L1 or L2 in each Send query.
• At most 10 elements accede to L1 or L2 in each Reveal

query, User secret key generation query and User certifi-
cate generation query.

Assume that |L1| and |L2| denote respectively as the
numbers of elements in L1 and L2. Then, we ob-
tain |L1| + |L2| ≤ 6+ 3qGOP + 2qS + 10qR + 10qUSK +
10qUC ≤ 10q, where qGOP is the total requested number of
GOP1, GOP2 and GOPp queries, and qS , qR, qUSK , and qUC ,
respectively, are the number of Send , Reveal , User secret
key generation, and User certificate generation queries.

– Calculate the degree of each polynomial in L1 and L2.
• In L1, according to the following description, each polyno-

mial has degree at most 3.
� PSK , Pg, PT , PV , PH and Ph with degree 1 accede to L1

in the Setup phase.
� PUSKζ and PFPKζ with degree 1 appear in the User

secret key generation query.
� PUCAζ , PUCBζ and PSPKζ with degrees 3, 1 and 1, re-

spectively, appear in the User certificate generation query.
� Kζ ,k,1 with degree 2 appears in the Reveal query.
� PGQ,r,3 with degree 3 appears in the GOP1 query.
• In L2, according to the following description, each polyno-

mial has degree at most 6.
� PPK with degree 2 accede to L2 in the Setup phase.
� PG2,Q,r,3 has the maximal degree of PG2,Q,r,1 and

PG2,Q,r,2 in the GOP2 query.
� PG2,P,r,1 with degree 6 appears in the GOPp query.
� Kζ ,k,4, Kζ ,k,5, . . ., Kζ ,k,9 have degree 2 while Kζ ,k,2 and

Kζ ,k,3 have degrees 3 and 4 in the Reveal query.
Next, we split into two cases to analyze A’s advantage of

winning the security game.
–Case 1: Assume that A wins the security game without

issuing the User certificate generation leak query or Send
leak query. Then, at least one of the following two events
will happen.
• Event1 states that A finds a collision of two distinct polyno-

mials in L1 or L2. Let PG1,i and PG1, j be any two distinct
polynomials in L1, and n be the number of all variates in
L1. A computes PG1,C (x1, x2, . . . , xn) = PG1,i − PG1, j ,
where xi ∈ Z∗p for i = 1, 2, . . . , n. If PG1,i = PG1, j , the
collision occurs, i.e. PG1,C (x1, x2, . . . , xn) = 0. According
to Lemma 2, the probability of PG1,C (x1, x2, . . . , xn) = 0
is at most 3/p since the polynomial in L1 has degree at most
3. Hence, the collision probability is (3/p)

(|L1|
2

)
since there

are
(|L1|

2

)
ways to select two distinct polynomials PG1,i

and PG1, j in L1, By similar analysis, the probability of the
collision in L2 is (6/p)

(|L2|
2

)
. The probability of Event1 is

Pr[Event1] � (3/p)

(|L1|
2

)
+ (6/p)

(|L2|
2

)

� (6/p)(|L1| + |L2|)2

� 600q2/p, since |L1| + |L2| � 10q.

146 VOLUME 3, 2022

TABLE 4. Comparison of Our LR-CB-AKE With Existing LR-ID-AKE and CB-AKE

• Event2 states that A cannot find a collision of two distinct
polynomials in L1 and L2. The probability of Event2 is
defined as Pr[Event2] � 1/2, since the probability in the
Test query is 1/2.

We respectively denote PrA−C1 and AdvA−C1 as the probabil-
ity and the advantage of winning the security game in the
Case 1. Then, we have

PrA−C1�Pr[Event1]+Pr[Event2]�600q2/p+ 1/2,

AdvA−C1� |600q2/p+1/2− 1/2|=600q2/p = O(q2/p).

Hence, under the situation of q = poly(logp), AdvA−C1 is
negligible.

– Case 2: Assume that A wins the security game with issuing
User certificate generation leak query and Send leak query.
• (UCAζ ,k,1, UCAζ ,k,2): Although the leaked information of

UCAζ ,k,1 and UCAζ ,k,2 can be obtained in each session,
the leaked information is mutually independent due to the
property UCAζ = UCAζ ,0,1 · UCAζ ,0,2 = UCAζ ,1,1 ·
UCAζ ,1,2 = · · · = UCAζ ,k,1, UCAζ ,k,2 and the refresh-
ing technique. The leaked information of UCAζ ,k,1 and
UCAζ ,k,2 is bounded with λ bits.
• (UCBζ ,k,1, UCBζ ,k,2): By similar analysis, the leaked infor-

mation of UCBζ ,k,1 and UCBζ ,k,2 is at most λ bits.
• (Kζ ,k,1, Kζ ,k,2, Kζ ,k,3, Kζ ,k,4, Kζ ,k,5, Kζ ,k,6, Kζ ,k,7, Kζ ,k,8,

Kζ ,k,9): Undoubtedly, a session key CSKζ ,k can be calcu-
lated by using Kζ ,k,1, Kζ ,k,2, . . ., Kζ ,k,9, while the leaked
information of the session key CSKζ ,k is at most λ bits. It
is worth noting that the leaked information in each session
is different due to the freshness property mentioned in Def-
inition 2.

Next, we split into three events to analyze A’s advantage of
winning the security game in Case 2.

(1) EventSK denotes the event that A can gain SK by using
� fUCG,i and �hUCG,i . Assume that EventSK is the comple-
ment event of EventSK .

(2) EventUC denotes the event that A can gain UCAζ

and UCBζ by using � fCSK,ζ ,k and �hCSK,ζ ,k . Assume that

EventUC is the complement event of EventUC .
(3) Eventcoin denotes the event that A’s guess coin′ is correct

in the Test phase.

We denote Pr[A] as the probability of winning the security
game in the Case 2. Then, we have

Pr[A] = Pr[Eventcoin]

= Pr[Eventcoin ∧ (EventSK ∨ EventUC)]

+Pr[Eventcoin ∧ (EventSK ∧ EventUC)]

� Pr[EventSK ∨ EventUC]

+Pr[Eventcoin ∧ (EventSK ∧ EventUC)].

Here, we can obtain Pr[Eventcoin ∧ (EventSK ∧ EventUC)]
= 1/2 since A’s average probability of guessing under the
condition EventSK ∧ EventUC is only 1/2. Thus, we have

Pr[A] ≤ Pr[EventSK ∨ EventUC]+ 1/2.

We denote AdvA as the advantage of winning the security
game in the Case 2. Then, we have

AdvA ≤ |Pr[A]− 1/2| = Pr[EventSK ∨ EventUC].

In Case 1, the advantage of winning the security game is
AdvA−C1 ≤ 600q2/p = O(q2/p). Since the leaked informa-
tion of USK or ESK is at most 2λ bits, we have

AdvA ≤ AdvA−C1 · 22λ ≤ O
(
(q2/p) · 22λ

)
.

Hence, under the situation of λ < logp− ω(loglogp) and
Corollary 1, AdvA is negligible.

VI. PERFORMANCE ANALYSIS AND COMPARISONS
We compare the performance and properties between our
LR-CB-AKE protocol, the LR-ID-AKE protocol [32] and the
CB-AKE protocol [6]. For the performance analysis, two no-
tations are defined to benchmark the computational cost of
system setup, user secret key extract or session key construc-
tion.
� • Tpair : the time required for a bilinear pairing operation

ê : G1 × G1 → G2.
� • Texp: the time required for an exponentiation operation

in G1 or G2.
According to the simulation results performed in [38], we

have Tpair = 7.8351 ms and Texp = 0.4746 ms, as shown in
Table 3. This result is obtained by the Intel Core i7-8550 U
CPU 1.80 Ghz processor and using a finite field Fp, G1 and
G2 as the input parameters for simulation. Here, p is a prime
number with 256 bits, and G1 and G2 are groups that has 224
bits prime order over the finite field Fp.

Table 4 shows the comparisons of our LR-CB-AKE with
the existing LR-ID-AKE [32] and CB-AKE [6] in terms of
computational cost and security properties. For the compu-
tation cost, it is obvious that the CB-AKE [6] is the best.
However, the CB-AKE cannot withstand side-channel attacks.
When the system secret key is leaked, the adversary could
break the system and obtain the full system secret key. On

VOLUME 3, 2022 147

TSAI ET AL.: LEAKAGE-RESILIENT CERTIFICATE-BASED AUTHENTICATED KEY EXCHANGE PROTOCOL

the other hand, although the LR-ID-AKE [32] can withstand
side-channel attacks, there is inborn problem, namely, key
escrow problem. So, the PKG holds each user’s private key
and can perform signature or decryption procedures all by
itself. Our LR-CB-AKE can not only withstand side-channel
attacks, but also eliminate the key escrow problem.

VII. CONCLUSION
In this article, we proposed the f irst LR-CB-AKE protocol,
which resists side channel attacks. We defined the frame-
work of LR-CB-AKE protocols, and considered the leakage
resilient properties and the security models of the existing
CB-AKEs protocols to give a new security model for LR-CB-
AKE protocols. The proposed protocol was formally proven
to be secure in the GBG model under the CDH and DL
assumptions. As compared with the previous LR-ID-AKE
and CB-AKE protocols, our LR-CB-AKE protocol not only
withstands side-channel attacks, but also eliminates the key
escrow problem.

REFERENCES
[1] C. Gentry, “Certificate-based encryption and the certificate revocation

problem,” in Proc. Int. Conf. Theory Appl. Cryptographic Techn., 2003,
vol. 2656, pp. 272–293.

[2] S. Wang and Z. Cao, “Escrow-free certificate-based authenticated key
agreement protocol from pairings,” Wuhan Univ. J. Natural Sci., vol. 12,
no. 1, pp. 63–66, Jan. 2007.

[3] M. Lim, S. Lee, and H. Lee, “An improved variant of Wang-Cao’s
certificated-based authenticated key agreement protocol,” in Proc. 4th
Int. Conf. Netw. Comput. Adv. Inf. Manage., 2008, pp. 198–201.

[4] G. Lippold, C. Boyd, and J. Nieto, “Strongly secure certificateless
key agreement,” in Proc. Int. Conf. Pairing-Based Cryptography, 2009,
vol. 5671, pp. 206–230.

[5] Y. Lu, Q. Zhang, J. Li, and J. Shen, “An efficient certificate-based
authenticated key agreement protocol without bilinear pairing,” Inf.
Technol. Control, vol. 46, no. 3, pp. 345–359, Sep. 2017.

[6] Y. Lu, Q. Zhang, and J. Li, “A certificate-based AKA protocol secure
against public key replacement attacks,” Int. Arab J. Inf. Technol.,
vol. 16, no. 4, pp. 754–765, Jul. 2019.

[7] T. Kubota, K. Yoshida, M. Shiozaki, and T. Fujino, “Deep learning
side-channel attack against hardware implementations of AES,” Micro-
processors Microsyst., vol. 87, Nov. 2021, Art. no. 103383.

[8] K. Ngo, E. Dubrova, Q. Guo, and T. Johansson, “A side-channel
attack on a masked ind-CCA secure saber kem implementation,”
IACR Trans. Cryptograph. Hardw. Embedded Syst., vol. 2021, no. 4,
pp. 676–707, 2021.

[9] A. Shamir, “Identity-based cryptosystems and signature schemes,” in
Proc. Workshop Theory Appl. Cryptographic Techn., 1984, vol. 196,
pp. 47–53.

[10] D. Boneh and M. Franklin, “Identity-based encryption from the Weil
pairing,” in Proc. Annu. Int. Cryptology Conf., 2001, vol. 2139, pp. 213–
229.

[11] B. LaMacchia, K. Lauter, and A. Mityagin, “Stronger security of au-
thenticated key exchange,” in Proc. Int. Conf. Provable Secur., 2007,
vol. 4784, pp. 1–16.

[12] T.-Y. Wu, Z. Lee, M. S. Obaidat, S. Kumari, and C.-M. Chen, “An
authenticated key exchange protocol for multi-server architecture in 5G
networks,” IEEE Access, vol. 8, pp. 28096–28018, 2020.

[13] T.-Y. Wu, T. Wang, Y.-Q. Lee, W. Zheng, S. Kumari, and S. Ku-
mar, “Improved authenticated key agreement scheme for fog-driven
IoT healthcare system,” Secur. Commun. Netw., vol. 2021, Jan. 2021,
Art. no. 6658041.

[14] P. Gope and B. Sikdar, “A privacy-aware reconfigurable authenticated
key exchange scheme for secure communication in smart grids,” IEEE
Trans. Smart Grid, vol. 12, no. 6, pp. 5335–5348, Nov. 2021.

[15] N. P. Smart, “Identity-based authenticated key agreement protocol
based on Weil pairing,” Electron. Lett., vol. 38, no. 13, pp. 630–632,
2002.

[16] K. Shim, “Efficient ID-based authenticated key agreement protocol
based on weil pairing,” Electron. Lett., vol. 39, no. 8, pp. 653–654,
2003.

[17] L. Chen, Z. Cheng, and N. P. Smart, “Identity-based key agreement
protocols from pairings,” Int. J. Inf. Secur., vol. 6, no. 4, pp. 213–241,
Jan. 2007.

[18] D. S. Gupta, S. H. Islam, M. S. Obaidat, P. Vijayakumar, N. Kumar, and
Y. Park, “A provably secure and lightweight identity-based two-party
authenticated key agreement protocol for IIoT environments,” IEEE
Syst. J., vol. 15, no. 2, pp. 1732–1741, Jun. 2021.

[19] Y. Li, Q. Cheng, and W. Shi, “Security analysis of a lightweight
identity-based two-party authenticated key agreement protocol for
IIoT environments,” Secur. Commun. Netw., vol. 2021, Feb. 2021,
Art. no. 5573886.

[20] J. Alwen, Y. Dodis, and D. Wichs, “Leakage-resilient public-key
cryptography in the bounded-retrieval model,” in Proc. Annu. Int. Cryp-
tology Conf., 2009, vol. 5677, pp. 36–54.

[21] Y. Dodis, K. Haralambiev, A. Lopez-Alt, and D. Wichs, “Efficient pub-
lic key cryptography in the presence of key leakage,” in Proc. Int. Conf.
Theory Appl. Cryptology Inf. Secur., 2010, vol. 6477, pp. 613–631.

[22] J. Alawatugoda, D. Stebila, and C. Boyd, “Modelling after-the-fact
leakage for key exchange,” in Proc. 9th ACM Symp. Inf., Comput.,
Commun. Secur., 2014, pp. 207–216.

[23] R. Chen, Y. Mu, G. Yang, W. Susilo, and F. Guo, “Strong authenticated
key exchange with auxiliary inputs,” in Proc. Des., Codes Cryptogra-
phy, 2017, vol. 85, pp. 145–173.

[24] J. Alawatugoda, D. Stebila, and C. Boyd, “Continuous after-the-fact
leakage-resilient eCK-secure key exchange,” in Proc. IMA Int. Conf.
Cryptography Coding, 2015, vol. 9496, pp. 277–294.

[25] S. Dziembowski and S. Faust, “Leakage-resilient cryptography from the
inner-product extractor,” in Proc. Int. Conf. Theory Appl. Cryptology
Inf. Secur., 2011, vol. 7073, pp. 702–721.

[26] D. Galindo and S. Virek, “A practical leakage-resilient signature
scheme in the generic group model,” in Proc. Int. Conf. Sel. Areas
Cryptography, 2012, vol. 7707, pp. 50–65.

[27] J.-D. Wu, Y.-M. Tseng, and S.-S. Huang, “Leakage-resilient ID-based
signature scheme in the generic bilinear group model,” Secur. Commun.
Netw., vol. 9, no. 17, pp. 3987–4001, Nov. 2016.

[28] J.-D. Wu, Y.-M. Tseng, and S.-S. Huang, “Efficient leakage-resilient au-
thenticated key agreement protocol in the continual leakage eck model,”
IEEE Access, vol. 6, pp. 17130–17142, 2018.

[29] I. Elashry, Y. Mu, and W. Susilo, “A resilient identity-based authenti-
cated key exchange protocol,” Secur. Commun. Netw., vol. 8, no. 13,
pp. 2279–2290, Sep. 2015.

[30] Y. Hatri, A. Otmani, and K. Guenda, “Cryptanalysis of an identity-based
authenticated key exchange protocol,” Int. J. Commun. Syst., vol. 31,
no. 3, Feb. 2018, Art. no. e3477.

[31] O. Ruan, Y. Zhang, M. Zhang, J. Zhou, and L. Harn, “After-the-
fact leakage-resilient identity-based authenticated key exchange,” IEEE
Syst. J., vol. 12, no. 2, pp. 2017–2026, Jun. 2018.

[32] J.-D. Wu, Y.-M. Tseng, and S.-S. Huang, “An identity-based authenti-
cated key exchange protocol resilient to continuous key leakage,” IEEE
Syst. J., vol. 13, no. 4, pp. 3968–3979, Dec. 2019.

[33] M. Scott, “On the efficient implementation of pairing-based proto-
cols,” in Proc. IMA Int. Conf. Cryptography Coding, 2011, vol. 7089,
pp. 296–308.

[34] D. Boneh, X. Boyen, and E. J. Goh, “Hierarchical identity-based en-
cryption with constant size ciphertext,” in Proc. Annu. Int. Conf. Theory
Appl. Cryptographic Techn., 2005, vol. 3494, pp. 440–456.

[35] V. Shoup, “Lower bounds for discrete logarithms and related problems,”
in Proc. Int. Conf. Theory Appl. Cryptographic Techn., 1997, vol. 1233,
pp. 256–266.

[36] D. Galindo, J. Großschädl, Z. Liu, P. K. Vadnala, and S. Vivek,
“Implementation of a leakage-resilient ElGamal key encapsulation
mechanism,” J. Cryptographic Eng., vol. 6, no. 3, pp. 229–238, 2016.

[37] Y. Dodis, R. Ostrovsky, L. Reyzin, and A. Smith, “Fuzzy extractors:
How to generate strong keys from biometrics and other noisy data,”
SIAM J. Comput., vol. 38, no. 1, pp. 97–139, Jan. 2008.

[38] Y. Li, Q. Cheng, X. Liu, and X. Li, “A secure anonymous identity-based
scheme in new authentication architecture for mobile edge computing,”
IEEE Syst. J., vol. 15, no. 1, pp. 935–946, Mar. 2021.

148 VOLUME 3, 2022

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

