
Received 6 January 2022; accepted 1 February 2022. Date of publication 8 February 2022;
date of current version 23 February 2022. The review of this paper was arranged by Associate Editor Zhaolong Ning.

1
2

Digital Object Identifier 10.1109/OJCS.2022.31494113

Time-Critical Data Dissemination Under Flash
Crowd Traffic

4

5

CHI-JEN WU 1 (Member, IEEE), AND JAN-MING HO 2 (Senior Member, IEEE)6
1 Department of Computer Science and Information Engineering, Chang Gung University, Taoyuan City 333, Taiwan7

2 Institute of Information Science, Academia Sinica, Taipei City 115, Taiwan8

CORRESPONDING AUTHOR: CHI-JEN WU.9

This work was supported by the Ministry of Science and Technology of Taiwan under Contract MOST110-2222-E-182-003-.10

ABSTRACT How to rapidly disseminate a large-sized file to many recipients in flash crowd arrival patterns
is a fundamental challenge in many applications, such as distributing multimedia content. To tackle this
challenge, we present the Bee, which is a time-critical peer-to-peer data dissemination system aiming at
minimizing the maximum dissemination time for all peers to obtain the complete file in flash crowd arrival
patterns. Bee is a decentralized system that organizes peers into a randomized mesh-based overlay, and each
peer only works with local knowledge. We introduce the slowest peer first strategy to boost the speed of
dissemination and present a topology adaptation algorithm that adapts the number of connections based
on upload bandwidth capacity of a peer. Bee is designed to support network heterogeneity and deals with
the flash crowd arrival pattern without sacrificing the dissemination speed. We also show the lower bound
analysis of the data dissemination problem, and present the experimental results to demonstrate that the
performance of Bee can roughly approximate the lower bound of the data dissemination problem under flash
crowd traffic.

11

12

13

14

15

16

17

18

19

20

21

22

INDEX TERMS Peer-to-peer, content distribution, flash crowd.

I. INTRODUCTION23

How to rapidly distribute a large file in flash crowd arrival24

patterns [1] has become more and more attractive in the net-25

working research community and mobile cloud computing26

applications, such as the emerging techniques for mobile con-27

tent caching [2] and fast delivery [3] or updating the software28

patches of Massively Multiplayer Online Games (MMOG) [4]29

and operating systems [5]. Suppose that a large file is initially30

held by a single server, we have to disseminate it to other31

n peers, and it is the dissemination problem we defined: how32

to minimize the maximum dissemination time for all peers33

to obtain the complete file, especially in heterogeneous and34

dynamic networks? Furthermore, when a popular content is35

released, the peer arrival rate results in a flash crowd [1] as36

shown in Fig. 1. It should increase the difficulty of system37

design and significantly impact on the system performance.38

Under flash crowd traffic, several characteristics make it39

not easy to design a scalable system that organizes resources,40

such as computing power and network bandwidth, for dis-41

seminating content to a large number of clients, including:42

FIG. 1. An example of a flash crowd arrival pattern.

1) Scalability: the number of participating nodes must be 43

in the thousands or even more. 2) Churn: the behavior of 44

participating users is characterized by the dynamics with 45

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME 03, 2022 11

https://orcid.org/0000-0002-6468-0952
https://orcid.org/0000-0002-2432-8233

WU AND HO: TIME-CRITICAL DATA DISSEMINATION UNDER FLASH CROWD TRAFFIC

which the peers join, leave, and rejoin the system at an arbi-46

trary time, making it difficult to maintain an overlay network47

among a large number of participators. 3) Heterogeneity: the48

resources, such as bandwidth, computing power of participat-49

ing peers are heterogeneous, which make it difficult to make a50

schedule in polynomial time. 4) Network dynamic: routers,51

links in the Internet, and the peers may fail, incurring more52

communication cost and longer transmission time to deliver53

content. Thus, it is not easy to maintain a large-scale data54

dissemination system that minimizes the maximum dissem-55

ination time under flash crowd traffic.56

A famous peer-to-peer (P2P) content delivery protocol is57

the BitTorrent [6], which is one of the pioneers of content58

dissemination. However, BitTorrent is designed to minimize59

the dissemination time of each peer egoistically. On the60

other hand, previous studies, including Slurpie [7], Bullet [8],61

M2M-ALM [9] and ReCREW [10], O-Torrent [11], [12]62

and [13], have proposed to construct and maintain an over-63

lay network of multiple trees, rings, or a random mesh to64

deliver content from a single server. In the design of these65

P2P protocols, content are usually divided into m parts of66

equal size, each being called a block. A peer may download67

any one of these blocks either from the server or from a peer68

who has downloaded that block. Besides, many researchers,69

including [14]–[18], have studied the performance of these70

P2P protocols, and have shown that the P2P protocol is both71

efficient and scalable, even it lacks a centralized coordina-72

tion and scheduling mechanisms. Nevertheless, these previous73

studies related to content dissemination do not force on min-74

imizing the maximum dissemination time for all requesting75

peers under flash crowd traffic.76

In this article, we investigate the data dissemination prob-77

lem that arises as an attractive application in the current In-78

ternet, such as content caching in [19], fast content delivery79

among mobile edge nodes [20], updating software patches or80

distributing multimedia content, especially in a flash crowd81

scenario. More specifically, we investigate and address the82

following two questions:83

i) what is the lower bound of the data dissemination prob-84

lem?85

ii) how to design a distributed system that can achieve86

or approach to the lower bound of the data dissemination87

problem under flash crowd traffic?88

We begin by giving a formal definition of the data dissem-89

ination problem. We then derive the lower bound of the ideal90

dissemination time both in homogeneous and heterogeneous91

networks.92

Then we present Bee, a time-critical P2P data dissemina-93

tion protocol to address the data dissemination problem under94

flash crowd traffic. Bee is designed from a best-effort service95

concept, to increase the system throughput and peer concur-96

rency. Based on the best-effort service concept, a peer allo-97

cates uploading bandwidth for all its neighbors and attempts98

to serve all of them. Peers in Bee begin by self-organizing99

into a random overlay mesh and download blocks from their100

neighbors as soon as possible.101

We present the slowest peer first strategy and the topology 102

adaptation algorithm to maximize the speed of content dis- 103

semination. Based on the slowest peer first strategy, a peer 104

transmits blocks to the higher priority neighbors that have the 105

fewest number of downloaded blocks. The topology adapta- 106

tion algorithm is for a peer to adapt the number of connections 107

to neighbors based on its uploading capacity. Our experimen- 108

tal results demonstrate that the maximum dissemination time 109

of the Bee can approximately approach the lower bound of the 110

data dissemination problem. To the best of our knowledge, 111

this work is the first that studies the effects of P2P proto- 112

cols with respect to minimizing maximum data dissemination 113

time under flash crowd traffic. 114

The rest of the article is organized as follows. In Section II, 115

we first define the data dissemination problem. Section III 116

describes an overview and design details of the Bee system. 117

We give a detailed analysis of Bee in Section IV. Section V 118

explains our simulation methodology and presents the per- 119

formance results of the simulation study. In Section VI, we 120

discuss related work. Section VII concludes this paper with a 121

summary of the main research results of this study. 122

II. DATA DISSEMINATION PROBLEM 123

In this section, we formally define the data dissemination 124

problem and show the lower bound of this problem. 125

Let us consider the problem of disseminating a file F to 126

a set of n peers, N = {1, 2, . . . , n}. We assume that a peer 127

leaves the system once completely receiving the file. Let S 128

be the server (we called it seed in the rest of this paper) 129

that has the file F in the beginning, and let Size(F) denote 130

the size of file F in bytes. Each peer i ∈ N in this system 131

has its upload capacity Ui and download capacity Di. Ui and 132

Di respectively represent the upper bound of the upload and 133

download bandwidth for peer i. We also assume that Ui ≤ Di, 134

to model the Internet technologies. Let ti(F) denote the time 135

it takes for peer i to download the complete file F . Note that 136

ti(F) denotes the time interval starting at the time peer i sends 137

its request to the server and ending at the time it receives the 138

entire file F . Before formally defining the data dissemination 139

problem, we define the following two performance metrics 140

first. 141

Definition 1 (Average Dissemination Time, ADT(F)): 142

ADT (F) = 1

|N |
∑
i∈N

ti(F).

Definition 2 (Maximum Dissemination Time, MDT(F)): 143

MDT (F) = max{ti(F)}, i ∈ N .

Assume that the server S and all n peers exist in the system 144

from time t = 0, then MDT (F) is the time it takes for all peers 145

to finish receiving the complete file F . Now we define the data 146

dissemination problem as follows. 147

Definition 3 (Data Dissemination Problem): Given a 148

server S and n peers in the system, and each peer 149

i has the upload capacity Ui and download capacity 150

12 VOLUME 03, 2022

Di, where i = {1, 2, . . . , n}, the data dissemination prob-151

lem is to find a transmission mechanism M to min-152

imize the MDT (F). According to the Definition 2,153

the data dissemination problem can be treated as a min-max154

problem as follows.155

min{max{ti(F)}}. (1)

Note that the data dissemination problem is somewhat156

different from the broadcast network problem [21] where a157

node is required to broadcast a message to all other nodes158

as fast as possible. In the broadcast network problem, a node159

can either transmit a message to or receive a message from160

other nodes, but not both. Many researchers have studied161

the broadcast network problem in homogeneous networks162

for more than 40 years [21]. The broadcast network prob-163

lem becomes NP-hard [22] in heterogeneous networks, and164

Deshpande et al. [23] proposed two centralized heuristics for165

the broadcast network problem in heterogeneous networks. In166

the data dissemination problem, however, a node can transmit167

and receive messages simultaneously. Goetzmann et al. [24]168

show that the data dissemination problem becomes NP-hard169

for equal upload and download capacities per peer. Thus, it170

also is more difficult to analyze algorithmic complexity of the171

data dissemination problem in heterogeneous networks.172

A. IDEAL DISSEMINATION TIME (LOWER BOUND)173

In this section, we focus on studying the lower bound of the174

data dissemination time, denoted as the ideal dissemination175

time in homogeneous or heterogeneous networks. We assume176

that peers are highly cooperative and altruistic, so that each177

peer is willing to forward data to other peers as fast as possible178

(best-effort service concept) and to benefit other peers than179

itself.180

Let’s denote the actual amount of data uploaded by peer i as181

fi, where fi ≤ Ui × ti(F) and the peer i receives in return as182

ri, where ri ≤ Di × ti(F). Without loss of generality, we may183

assume that the total amount of download data must be equal184

to the total amount of upload data for the seed S and all peers.185

Hence, we have the following equation,186

fs +
n∑

i=1

fi =
n∑

i=1

ri. (2)

Since we are interested in estimating the lower bound of187

the data dissemination time, we assume that upload capacity188

of each peer i is to be fully utilized, i.e., we have fi = Ui ×189

ti(F). Besides, the total amount of download bandwidth must190

be equal to n× Size(F), because all peers have the entire file191

F at the end. Then, we can extend the Eq. 2 as follows to deal192

with the ideal dissemination time for the general case,193

Us × ts(F)+
n∑

i=1

Ui × ti(F) = n× Size(F). (3)

Here, we have a min-max problem with its objective func-194

tion in Eq. 1 subject to the constraints given by Eq. 3. Since195

the constraint is a linear equation, a hyperplane in (n+ 1)- 196

dimension, we show that an optimal solution for the con- 197

strained optimization problem can be obtained if and only if 198

when all ti are the same, i.e., 199

ts(F) = t1(F) = t2(F) = · · · = tn(F). (4)

Lemma 1: Given a file F to a set of n peers, N = 200

{1, 2, . . . , n} and a seed S, the ideal dissemination time can 201

be obtained if and only if when all ti are the same. 202

Proof: We prove Lemma 1 by contradiction. We assumed 203

there is an optimal solution α and tα
j (F) < tα

s (F) = tα
1 (F) = 204

tα
2 (F) = · · · = tα

n (F), where 1 ≤ j ≤ n. So, 205

Us×tα
s (F)+

n∑
i=1

Ui × tα
i (F) < Us × ts(F)+

n∑
i=1

Ui × ti(F).

Eq. 3 implies that the assumption is a contradiction. Thus, 206

we have Lemma 1. � 207

Applying Eq. 4 to Eq. 3, we then have a lower bound of 208

MDT (F), denoted by T (F), for file F , as follows. 209

T (F) = n× Size(F)

Us +
∑n

i=1 Ui
. (5)

Now, we are ready to show the following Lemma 2. 210

Lemma 2: Let T ∗(F) denote the MDT (F), of a feasible 211

schedule of the data dissemination problem for a given file F . 212

Then we have: 213

T ∗(F) ≥ max

{
T (F),

size(F)

Us
,

size(F)

min{Di}
}

, (6)

where the right-hand right of Eq. 6 is the lower bound of the 214

dissemination time in any algorithm for the data dissemination 215

problem. 216

Proof: Note that the lemma merely says that T ∗(F) must 217

be greater than 1) the lower bound (the ideal dissemination 218

time), the Eq. 5 we derived in the above; 2) the time for 219

the seed S to transmit the file F , the bottleneck is in the 220

uplink capacity of the seed S; 3) the time for the slowest 221

peer to download the file F , the bottleneck is in the download 222

capacity of the slowest peer. � 223

This analysis indicates that if someone has to design a 224

time-critical data dissemination system to approach the ideal 225

dissemination time in a general network environment, the 226

two prerequisite concepts should be considered: 1) the sys- 227

tem should enforce the peers to leave the system at almost 228

the same time, and 2) the system should always fully utilize 229

the upload capacity of each peer. Based on the two observa- 230

tions, we present our design of the Bee protocol in the next 231

Section III. 232

III. BEE DESIGN 233

In this section, we present the Bee system to approach the 234

ideal dissemination time that we derived in Section II. In the 235

Bee, like other P2P content delivery systems [6], the file is 236

divided into many fix-sized blocks (256 KB). The proposed 237

Bee consists of 3 parts: slowest peer first strategy, local rarest 238

first strategy, and topology adaptation algorithm. The slowest 239

VOLUME 03, 2022 13

WU AND HO: TIME-CRITICAL DATA DISSEMINATION UNDER FLASH CROWD TRAFFIC

peer first strategy is used to control and balance the dissemi-240

nation process of all nodes. By this strategy, nodes might have241

the same download process and complete the download at242

almost the same time with high probability. The local rarest243

first strategy can prevent the last block problem and increase244

blocks availability. The topology adaptation algorithm is used245

to dynamically adjust different uplink capacities and make246

nodes fully utilize the upload capacity with high probability.247

At a high level overview, Bee organizes a random mesh248

overlay among a set of participating peers. Suppose that a249

large file is announced from a single seed S, then peers require250

to download the content at the same time. Each peer gets into251

contact with well-know register server and retrieves a contact252

list of a uniform random subsets of all peers. The size of253

contact list is a small constant, say 80. The initial mechanism254

is the same as that used in other P2P content delivery systems.255

A. SLOWEST PEER FIRST STRATEGY256

We describe the slowest peer first strategy and the procedure257

that each peer performs. Overall, a good peer selection strat-258

egy would be one which neither requests a peer to maintain259

a global knowledge, nor to communicate with many peers,260

but the one which is able to find peers having blocks the peer261

needs. In order to minimize the MDT of the dissemination262

system, our focus is the development of a distributed system,263

which each peer learns its nearby peers’ statuses (with local264

knowledge) and selects a suitable peer to upload blocks.265

The design principle of the slowest peer first strategy is to266

fully utilize all the upload capacity of peers in the system.267

It implies that a peer can always find some peers to upload268

blocks to utilize its upload capacity. Based on the slowest peer269

first strategy, a peer i always picks the slowest downloading270

peer among its contact list, where the slowest downloading271

peer is the peer that has the least number of blocks. Conse-272

quently, the peer i can always upload blocks to the picked273

peer to utilize its upload capacity, because there is a high274

probability that the peer i has some blocks that the picked275

peer does not have. In this point of view, the slowest peer first276

selection strategy makes our Bee system to be able to maintain277

a high level of throughput of peer’s upload capacity.278

The operation of the slowest peer first strategy is efficient279

and sustainable for fully utilizing the upload capacity of each280

peer. Figure 2 illustrates the idea of the slowest peer first281

strategy. After a peer joins, it periodically sends the requesting282

block messages to the peers in the contact list for downloading283

the blocks it lacks. When a peer starts to upload blocks to other284

peers, it maintains a working set, and the peer tries to utilize285

its upload capacity as much as possible to upload blocks to286

the peers in its working set. The working set is a set of peers287

selected from the contact list over a period of time. The size of288

working set is controlled by the topology adaptation algorithm289

that we will discuss later. We present the pseudocode of the290

slowest peer first algorithm in Algorithm 1 as follows.291

The advantage of the slowest peer first strategy is to enforce292

peers to download blocks at approximately the same progress293

and the design can significantly diminish the MDT of the294

FIG. 2. An illustration of the slowest peer first strategy: The shaded
content within a peer represents the percentage of the file that a peer has
downloaded.

Algorithm 1: Slowest Peer First Strategy.
1: Begin
2: WorkingSet[]← Null
3: for j ← 0 toSizeof (WorkingSet[])do
4: Pick the slowest peer i ∈ Contact List
5: WorkingSet[j]← peer i
6: j ← j + 1
7: end for
8: return WorkingSet[]
9: End

system. The disadvantage is that the faster peers will be de- 295

layed by the slower peers. However, if the faster downloading 296

peers leave the system early, the MDT of the system will be 297

prolonged undoubtedly, recalling the Lemma 1 in Section II. 298

B. BLOCK SELECTION STRATEGY 299

Bee employs the local rarest first strategy for choosing new 300

blocks to download from neighboring peers. The local rarest 301

first strategy is proposed in BitTorrent [6], and it can prevent 302

the last block problem and increase the file availability in a 303

BitTorrent system. The main advantage of the local rarest first 304

strategy is to overcome the last block problem [25] by favoring 305

rare blocks. This strategy equalizes the file block distribution 306

to minimize the risk that some rare blocks are lost when peers 307

owning them fail or depart the system. Bharambe et al. [26] 308

study the local rarest first strategy by simulations and show 309

that this strategy can address the last block problem efficiently. 310

Another advantage of the local rarest first strategy is to in- 311

crease the probability that a peer is useful to its neighboring 312

peers because it owns the blocks that others do not have. Thus, 313

the local rarest first strategy helps diversify the range of blocks 314

in the system. 315

C. TOPOLOGY ADAPTATION ALGORITHM 316

The design of Bee explicitly takes into account the capacity 317

heterogeneity associated with each peer in P2P networks. Bee 318

leverages the topology adaptation algorithm to dynamically 319

adjust different uplink capacities. In general, the available 320

14 VOLUME 03, 2022

bandwidth estimation [27] is a non-trivial problem, so it is321

hard to decide how many upload connections a peer should322

have in a Bee system. However, using a fixed number of323

upload connections will not perform well under a wide variety324

of peers’ uplink capacities. Hence, Bee leverages a topology325

adaptation algorithm that attempts to dynamically maintain326

the maximum number of upload connections according to the327

upload capacity of each peer.328

We do not use the network bandwidth estimation tech-329

niques [28] to determine the precise uplink capacity of each330

peer. Instead, we assume that the user can configure a coarse-331

grained bandwidth that provides an initial maximum upload332

capacity Ui. In addition, we assume that peers (including the333

seed S) have limited upload/download bandwidth but the In-334

ternet backbone has infinite bandwidth. This assumption is335

reasonable because the previous study [29] shows that the336

Internet backbone indeed has low utilization and the bottle-337

neck almost happens at the parts near the end hosts. Based338

on the assumptions, we can develop the topology adaptation339

algorithm.340

The topology adaptation algorithm is to set the upload rate341

for each upload connection to the fixed value, a rate r, for342

all peers and the seed S. Hence, if a peer i has maximum343

upload capacity of Ui, it establishes k = �Ui
r � connections,344

where r ≤ Ui, ∀ i ∈ N . Each peer establishes k concurrent345

upload connections among its working set, and intuitively a346

peer can upload the blocks it holds to other peers.347

The basic idea behind this approach is that by serving k348

different peers with an uploading rate r simultaneously, the349

peer can fully utilize its upload capacity and thus maximize350

its contribution to the system throughput. For example, a peer351

with higher capacity might establish ten or more connections352

than a peer with lower capacity. However, a smaller value of r353

might slow down the distribution rate for blocks. The analysis354

of the upload rate r has been demonstrated in our previous355

work [30].356

IV. SYSTEM ANALYSIS357

In this section, we describe the MDT (F) in the Bee can358

approach to the ideal dissemination time with a high proba-359

bility. We also present the analysis for the Bee in terms of360

the scalability and efficiency. Here, we assume that all peers361

join the system at the same time and all the communications362

between peers are reliable. We also assume that peers do not363

leave the system either voluntarily or due to failures, and no364

transmission delay.365

A. SCALABILITY366

The design of Bee is very scalable. A peer only needs to367

maintain a random overlay mesh with a constant number of368

connections, regardless of the size of the system. This implies369

that each peer only connects to a few number of peers, so370

the loading in each peer should be very slight. The possible371

concern is the scalability of the register server in Bee. The372

register server in Bee serves as the same role as the tracker373

in BitTorrent or the rendezvous point in some application374

overlay multicast systems [31], [32]. The design of the register 375

server can be distributed, the service loading is distributed 376

evenly to many servers. Therefore, we believe that the register 377

server should not be a critical problem to limit the scalability 378

of Bee. 379

B. EFFICIENCY 380

We discuss why the MDT (F) in the Bee can approach to the 381

lower bound with a high probability. We do not provide a the- 382

oretical proof on the optimality of the Bee due to the inherent 383

difficulty of any heuristic-driven distributed systems, such as 384

BitTorrent. To the best of our knowledge, we are not aware of 385

any theoretical results to prove that a distributed system can 386

achieve the lower bound. In [33], Wu et al. show a centralized 387

scheduling algorithm to minimize the dissemination time with 388

all knowledge of system capacities. However, the centralized 389

solution only works in a static network environment and it 390

also does not consider the dynamic behaviors of peers in real 391

systems. 392

Before we analyze Bee system, we assume that the goal 393

of Bee is to disseminate a file F from a seed S to a num- 394

ber of receivers under the constraints of size(F)
Us
≤ T (F) and 395

size(F)
min{Di} ≤ T (F), where T (F) is defined in the Eq. 5. When the 396

two constraints hold, neither the seed S nor the slowest peer 397

does not become the bottleneck in the system. In addition, we 398

also assume that the blocks are uniformly distributed among 399

peers, which is caused by the local rarest first strategy. 400

Recall the analysis in Section II, we introduced two design 401

principles for a data dissemination system to achieve the theo- 402

retical lower bound. The first one is that all peers should leave 403

the system at the same time as much as possible, and each 404

peer has to utilize its upload bandwidth as much as possible. 405

For the first principle, the slowest peer strategy could force 406

peers to progress at approximately the same download speed. 407

For the other, all peers may fully contribute to the uploading 408

capacity of whole system based on the topology adaptation 409

algorithm, thus each peer can maintain its upload contribution 410

to the system throughput continuously. 411

At the beginning of the system, only the seed S has the 412

file, so it is impossible to fully utilize the upload bandwidth 413

of each peer. We define the period of time for the system so 414

that each peer has enough blocks to exchange as the start-up 415

time of the system. Assume that the size of block is 256˜KB, 416

the start-up time is at about 256˜KB
r × logn, where r is the 417

upload rate and n is the number of peers in the system. Our 418

previous work [18] shows how to find the optimal rate r in 419

static networks. Moreover, a peer only sends out a block when 420

it already received a request from a peer and it should not 421

receive duplicated blocks. 422

Now, we provide an example to explain the behaviors in 423

Bee. In homogeneous networks, the upload connections k of 424

each peer is equivalent, assume k = 5 (Ui
r = 5). If the number 425

of peers is n, the number of incoming connections per peer 426

should be 5 (5 = n×k
n) in average, due to the overlay mesh is 427

constructed randomly. In heterogeneous networks, each peer 428

VOLUME 03, 2022 15

WU AND HO: TIME-CRITICAL DATA DISSEMINATION UNDER FLASH CROWD TRAFFIC

TABLE 1. The upload/download Bandwidth Distribution

in Bee could have the same number of incoming connections429

in average based the assumption. It should be easy to expound430

that Bee system could enforce most of peers at the same431

download progress approximately and make most of peers432

leaving the system at roughly the same time. Thus, with a high433

probability, the MDT (F) of a Bee system can approximately434

approach to the ideal dissemination time both in homogeneous435

and heterogeneous networks.436

V. PERFORMANCE EVALUATION437

We made a simulation to compare the dissemination time438

in Bee with the lower bound of dissemination time and the439

required time in BitTorrent [6]. We consider two network440

scenarios, each representing a different degree of heterogene-441

ity in their upload/download capacity. Table 1 presents the442

bandwidth distribution of each network condition. The het-443

erogeneous network has two types of peers. A more hetero-444

geneous condition with four types of peers is considered,445

and this setting is the realistic peer bandwidth distribution of446

Gnutella [34]. And the arrival pattern is flash crowd, i.e., all447

peers join at the initial stage and leave the system when they448

finish their downloading.449

For the parameter r in Bee, we configure the uploading450

rate r = 25 in the all experiments based on our previous re-451

sults [30]. All the experiments were run using an Intel Xeon452

E5560 CPU at 2.80 GHz with 512 GB of RAM. These source453

code of the simulations and the experimental results can be454

accessed publicly at https://github.com/cjwu/bee.455

Unless otherwise specified, we use the following settings in456

our experiments. We used a file size of 200 MB with a block457

size 256 KB. The seed’s uplink capacity is 6000 Kbps. The458

number of contact list is 40 in both Bee and BitTorrent, and the459

maximal number of concurrent upload connections per peer460

is 5 in BitTorrent settings. Then the number of initial seeds461

is only one in all of our experiments. Finally, the endgame462

model [35] of BitTorrent is not enabled because it only works463

for a small percentage of the download time.464

A. HETEROGENEOUS ENVIRONMENT465

We evaluate the performance of Bee and BitTorrent in466

a heterogeneous network that consists of two types of467

peers, one of which has a higher upload/download capacity468

(3000/1000 Kbps) than the other (1500/384 Kbps). In this469

scenario, the lower bound is 2333 seconds according to Eq. 6470

in Section II.471

Fig. 3 shows the comparisons of Bee to BitTorrent in het- 472

erogeneous environments. Here, we use a normalized MDT 473

metric which is the MDT dividing the lower bound. Fig. 3(a) 474

shows the normalized MDT metric for Bee and BitTorrent. 475

In Fig. 3(a), we present the scalability of Bee by increasing 476

the network size from 500 to 5000 in experiments. The results 477

demonstrate that Bee is almost twice faster than BitTorrent in 478

the MDT metric, and also show that both Bee and BitTorrent 479

are scalable systems. 480

We also show the cumulative distribution of the number of 481

complete peers in a network with 2000 peers in Fig. 3(b). The 482

result shows that a peer with higher capacity leaves faster than 483

the peer with lower capacity in BitTorrent. After the higher 484

capacity peers leave BitTorrent, the total upload capacity of 485

BitTorrent is decreased significantly, and the lower capacity 486

peers are required to stay in the system longer to download the 487

complete file. Thus, the MDT of BitTorrent is also prolonged, 488

it fits our analysis in the Section II. 489

Compared to BitTorrent, the MDT of Bee approaches to the 490

lower bound approximately due to the two design principles 491

we analyzed in the section IV. More clearly, the normalized 492

MDT of Bee is only 1.1. As we mentioned previously, any 493

data dissemination system requires a start-up time to let peers 494

have enough blocks to exchange and to utilize their uplink 495

capacities. The results examine that the start-up time of an 496

efficient system could be short. 497

In addition, we show the average uploading link utilization 498

of peers, including the seed (6000 Kbps) and two type of peers 499

(1000 Kbps and 400 Kbps) in Fig. 3(c). The result shows that 500

the uplink utilization of each peer is over 90% (96% in Bee) 501

in average, which means that the overall upload utilizations of 502

the two systems are close to fully utilized. However, in Bit- 503

Torrent, a peer with higher upload capacity should exchange 504

blocks with another one with similar upload capacity, because 505

the Tit-For-Tat (TFT) peer selection strategy [5] is likely to 506

reward for the one with similar upload capacity. As a result, 507

the overall uplink utilization of BitTorrent is efficient, but the 508

design philosophy of BitTorrent is exclusively due to egoistic 509

motivation, so the lower capacity peers need more time to 510

download the complete file. 511

B. MORE HETEROGENEOUS ENVIRONMENT 512

In this section, we repeat the above experiments in a more 513

heterogeneous network with four types of peer capacities, 514

the detailed bandwidth distribution is presented in Table I. 515

This results examine the behaviors of Bee and BitTorrent in 516

a complex network environment and in a real P2P network 517

condition. In this simulation setting, the lower bound is 2089 518

seconds, it can be derived from the Eq. 6 (size(F)
min{Di} =

1638400
784). 519

Thus, the bottleneck of the system is at the download link of 520

the slowest peer. 521

First, we study the impacts of various network sizes by scal- 522

ing from 500 to 5000 peers. Fig. 4(a) shows the normalized 523

MDT metric of Bee and BitTorrent. This result also shows 524

that Bee is at least two times faster than the BitTorrent in 525

MDT metric. As a result, the bottleneck of the system (the 526

16 VOLUME 03, 2022

https://github.com/cjwu/bee

FIG. 3. The comparisons of Bee to BitTorrent in the heterogeneous environment.

FIG. 4. The comparisons of Bee to BitTorrent in the more heterogeneous environment.

slowest peer) makes a significant impact on the MDT metric.527

Without a doubt, the result shows that both Bee and BitTorrent528

are scalable systems again, even in a more heterogeneous529

network.530

Next, we examine the uplink utilization of peers in Bee 531

and BitTorrent in the more heterogeneous network. Fig. 4(b) 532

shows the uplink utilization of peers in Bee and BitTorrent. 533

The results indicate that the uplink utilization of the seed 534

in Bee is over 90%, but only 50% in BitTorrent. From our 535

VOLUME 03, 2022 17

WU AND HO: TIME-CRITICAL DATA DISSEMINATION UNDER FLASH CROWD TRAFFIC

viewpoints, in BitTorrent, when the variance of upload ca-536

pacity increases, more peers with higher capacity will leave537

the system early. So that the seed’s uplink utilization may be538

limited, because the download capacity of the lower capacity539

peers is too small to fully utilize the uplink capacity of the540

seed. That might be the main reason that the uplink utilization541

of the seed in BitTorrent is only 50% in average, especially542

the upload connections of the seed is fixed to 5 in original Bit-543

Torrent setting. As a result, the uplink utilization of the seed544

decreases when the variance of download capacity increases545

in BitTorrent. However, the uplink utilization of seed in Bee546

can be fully utilized regardless of the heterogeneity degree547

of uplink capacity, it benefits from the topology adaptation548

algorithm of Bee. In Fig. 4(b), BitTorrent performs better than549

Bee when the upload bandwidth is less than 1000 kbps. The550

main reason is that the lower capacity nodes (< 1000 kbps)551

in Bee need more time to find the nodes to contribute their552

upload bandwidth to the system, especially in this simulation553

settings.554

We now investigate the MDT metric of Bee and BitTorrent555

in the complex network environment. In Fig. 4(c), we show556

the cumulative distribution of the number of complete peers557

in the complex network with 2000 peers. Fig. 4(c) illustrates558

that 80% peers leave Bee system at the T time (Recall that559

the Eq. 6) and the remained 20% peers prolong the MDT560

of Bee system. More clearly, these 80% peers are higher561

capacity peer (download capacity), and the dissemination time562

of remained peers (poor download capacity) is limited by563

their download capacities. Note that in this simulation, the564

bottleneck of the system is at the download link of the slowest565

peer. Again, the result shows that when the higher capacity566

peers leave system early, the upload capacity of overall system567

decreases dramatically, and that results in a longer maximum568

dissemination time in both Bee and BitTorrent. However, Bit-569

Torrent needs more than eight times to finish downloading570

compared to the lower bound.571

Next, we configure the download capacities of all peers to572

make sure that the lower bound is not at the download capacity573

of peers (size(F)
min{Di}) and repeat the simulation again to examine574

the MDT metric of Bee and BitTorrent. We only increase the575

download capacity of the slowest peers from 784 Kbps to576

1200 Kbps in this network. So that the lower bound in this577

network is T after the configurations are applied, here the578

(size(F)
min{Di} = 1365.3) is smaller than (T = 1374.9).579

Fig. 4(d) shows the cumulative distribution of the number580

of complete peers with the configurations. In Fig. 4(d), the581

top figure is the CDF with 784 Kbps (minimum download582

capacity) and the bottom one is the CDF with 1200 Kbps.583

As shown as the results, we can observe that the MDT in584

Bee can approximately approach the lower bound T . The585

result implies that the performance of Bee is efficient and586

BitTorrent might be the network heterogeneity independent.587

The result also shows that the dissemination time in Bee can588

approach the lower bound approximately when the bottle-589

neck is not at the download capacity of all peers. However,590

FIG. 5. The comparison of Bee to BitTorrent in various uplink capacities of
the seed.

increasing the download capacity of all peers does not im- 591

prove the MDT metric of BitTorrent. The result also shows 592

that it still is a long-tail curve in the results of BitTorrent 593

regardless of the bottleneck is at the download capacities 594

or not. 595

C. THE IMPACT ON SEED CAPACITY 596

We consider the effects of various seed capacities on the 597

performance of Bee and BitTorrent. The number of peers at 598

the initial stage is set to 2000. In Fig. 5, Bee obviously outper- 599

forms BitTorrent in the performance index MDT . However, 600

when the uplink capacity of the seed drops to 1000 Kbps, the 601

bottleneck of this system is at the uplink capacity of the seed 602

(size(F)
Us

), so the MDT of Bee and BitTorrent both result in poor 603

performance. This result implies that the efficiency of Bee is 604

limited by the seed’s capacity, but BitTorrent has little effect 605

on the seed’s capacity. All peers in BitTorrent have to stay in 606

the system until all blocks have been spread to the system, it 607

improves the MDT performance of BitTorrent. These results 608

also meet our system analysis in Section IV, a poor capacity 609

seed may make a dissemination system require more start-up 610

time to let peers have enough blocks to stabilize exchanging 611

process and inhibits development of spreading blocks. 612

D. THE IMPACT ON ARRIVAL PATTERN 613

We evaluate the effects of various arrival rates for Bee and Bit- 614

Torrent in the more heterogeneous network conditions (with 615

four types of peer capacities). Fig. 6 shows the normalized 616

MDT performance comparisons of Bee and BitTorrent in 617

various arrival rates. In Fig. 6, we can observe that when the 618

arrival rate is low (0.1), a few peers join the system and con- 619

tribute upload capacity, so that the overall upload capacity of 620

the system is poor. And another reason is that more peers may 621

need to wait at a longer start-up time to receive blocks and 622

to exchange blocks. So the peers in Bee or BitTorrent would 623

require more time to complete the download file. However, 624

as peer arrival rate is increased, the upload capacity of the 625

system also is increased promptly, that result corresponds to 626

18 VOLUME 03, 2022

FIG. 6. The comparison of Bee to BitTorrent in various arrival rate.

the analysis in Section IV. Based on the results, Bee outper-627

forms better performance than BitTorrent in MDT metrics628

regardless of the arrival rate.629

E. THE IMPACT ON FLASH CROWD TRAFFIC630

We now evaluate Bee and BitTorrent in a realistic flash crowd631

traffic. In this experiment, each peer joins the system accord-632

ing to the tracker log of a Redhat 9 distribution torrent [36].633

The capacity of each peer is randomly assigned with one of634

four types of peer capacities, and the upload bandwidth of the635

seed is set to 6000 Kbps. Note that the lower bound in this636

case is size(F)
min{Di} = 2089 seconds.637

All the results are shown in Fig. 7. Fig. 7(a) illustrates the638

distribution of peers arrival time, the tracker log consists of639

over 12,000 peers arrival time, almost 80% of which arrived640

before 2000 minute. When a new version of Redhat IOS is641

released, the flash crowd phenomenon occurs at the file release642

time, numerous users suddenly request to download the file.643

The flash crowd traffic model captures the most prominent644

flash crowd characteristics observed in these traces.645

First, we show the download completion time of each peer646

for Bee and BitTorrent in Fig. 7(b). The result shows that647

83% peers in Bee finish their download before 2000 seconds.648

On the other hand, only 50% BitTorrent peers can complete649

their download at 2000 seconds. Note that the lower bound650

is at the poor download capacity peers (the lower bound is651

inherently limited size(F)
min{Di}). So these poor peers need more652

download time to complete the file, and the higher capacity653

peers (the lower bound is T) can receive the complete file654

and leave the system without waiting these slow download655

peers. So at the 10,000 time point, most of peers remained656

in the system (17%) are poor download capacity peers, this657

is the same behavior we found in Fig. 4(c). The result also658

shows that the distribution of the MDT of BitTorrent still is659

a long-tail curve by the same process in Fig. 4(c). Moreover,660

compared to BitTorrent, Bee only needs 1/3 time to finish the661

file dissemination in the more heterogeneous network.662

Here, we demonstrate the uplink utilization of all peers in663

Bee and BitTorrent in Fig. 7(c) and Fig. 7(d), respectively. We664

can see that the uplink utilization of each peer in Bee is fully665

utilized (94% in most of peers). And we see that BitTorrent666

results most of the time in a very poor uplink utilization. One 667

reason for this should be the TFT peer selection strategy of 668

BitTorrent, it might pair a higher uplink capacity peer with 669

a lower download capacity peer, and TFT strategy keeps to 670

search the peer with better upload contributions. During the 671

peer searching process, the uplink capacity of the peer is at 672

low utilization. Thus the higher uplink capacity peers can not 673

contribute their full uplink bandwidth to the system continu- 674

ously. The main reason is that BitTorrent is inherently limited 675

by its design principles, which encourages fairness [37] in 676

peers, the TFT strategy makes all peers achieve fairness in 677

BitTorrent, considers to give and take equitably. 678

In summary, based on the simulation results, we show that 679

Bee has the ability to roughly approximate the lower bound 680

of a data dissemination system even in complex network sce- 681

narios if and only if the lower bound of the system is not at 682

uplink capacity of the seed (size(F)
Us

) and the download capacity 683

of the peers (size(F)
min{Di}). Bee is suitable as a building block in 684

a time-critical data dissemination applications, which can be 685

the virtual machine (VM) deployment in cloud computing 686

platforms [38] or distributing the urgent content in network 687

security events [39]. 688

VI. RELATED WORK 689

In recent years, there are tremendous interests in building 690

content delivery systems [40] to distribute content, which 691

aims to deliver large-sized data to a large group of nodes 692

spread across a wide-area network. However, how to design 693

an efficient data dissemination system to achieve the lower 694

bound of data dissemination time has not been discussed in 695

the previous literatures, especially under flash crowd traffic. In 696

this section, we describe the recent research works about flash 697

crowd traffic and present the related work on the peer-assisted 698

content delivery systems. In addition, there are some advanced 699

coding techniques [41], [42] for content delivery, the detailed 700

survey can be reached in the article [43]. 701

A. FLASH CROWD TRAFFIC 702

A flash crowd is a large traffic surge to a particular system. It is 703

not an usual event but causes poor performance at the system 704

and results in a significant number of unsatisfied users. When 705

a flash crowd occurs, the sudden arrival of numerous peers 706

may starve the capacity of a system, and degrade the quality 707

of service. Thus, it is important to understand the challenges 708

for a data dissemination system, and how flash crowds affect 709

the efficiency of data dissemination. 710

There is a large body of work on the modeling of P2P 711

data dissemination systems [44] but a few work focusing 712

on flash crowd [1], [45], [46]. In reality, flash crowds may 713

result the worst case performance of P2P data dissemination 714

systems [1]. Zhang et al. [1] propose a model for analyz- 715

ing BitTorrent flashcrowds by studying millions of swarms 716

from BitTorrent trackers. They show BitTorrent flashcrowds 717

occur in very small fractions, but affect over million users. 718

Carbunaru et al. [45] formulate an analytical model for flash 719

VOLUME 03, 2022 19

WU AND HO: TIME-CRITICAL DATA DISSEMINATION UNDER FLASH CROWD TRAFFIC

FIG. 7. Performance of Bee and BitTorrent with arrival rate from Redhat 9 tracker log.

crowds in homogeneous and heterogeneous capacity networks720

and focused on performance scalability of content distribution721

and server provisioning during flash crowds. Chen et al. [46]722

provide a fluid model study on the performance of P2P live723

streaming systems under flash crowds, and denote that the724

worst-case peer startup latency and system recovery time in-725

crease logarithmically with the flash crowd size. A key differ-726

ence is that we analyze the impact of multiple classes of peers727

on heterogeneous networks to achieve the lower bound of the728

maximum dissemination time during flash crowd.729

B. PEER-ASSISTED CONTENT DELIVERY SYSTEMS730

The peer-assisted content delivery systems have received731

a lot of attention from Internet users and networking re-732

searchers [47]–[50]. Interested reader can refer to Nasreen733

et al., [51] who present a detailed survey on this topic.734

The main concept of the peer-assisted content delivery is735

inspired from the parallel-downloading mechanism [52]. Bit-736

Torrent [6] is a popular content distribution system which is737

successful for its efficiency in delivering a large file. There738

are two mechanisms used in BitTorrent, namely, the TFT peer739

selection policy and the local rarest first piece selection strat-740

egy. Slurpie [7] focuses on reducing loading on servers and741

peer download times. Slurpie uses an adaptive downloading742

mechanism to improve peer’s performance according to its743

capacity, and adopts a random back-off algorithm to control744

loading on the server. Crew [53] is a gossip-based system745

for data dissemination and it performs better dissemination 746

performance than BitTorrent in experiments, but how close 747

it approaches to the lower bound is still unknown. Kumar 748

et al. [54] demonstrate a set of expressions for the minimum 749

distribution time of a general heterogeneous peer-assisted file 750

distribution system. Ezovski et al. [55] provide an analytical 751

result of minimizing average finish time by using the water- 752

filling technique, in an upload-constrained P2P network. The 753

research results focused on analyzing and minimizing the 754

download time of a single peer is presented in [56] and min- 755

imizing the average download time of a system is presented 756

in [57]. Zheng et al. [58] formulate an optimization problem 757

of content distribution as an optimal set of distribution trees 758

for determining the rate of distribution on each tree under 759

bandwidth limitation networks. 760

VII. CONCLUSION 761

We define the data dissemination problem and examine an 762

analysis of the lower bound of the maximum dissemination 763

time for this problem under flash crowd traffic. We present 764

the design principles of Bee to capture the two following 765

notions: 1) all peers stay the system to contribute their upload 766

capacities (the slowest peer selection strategy), and 2) all peers 767

fully utilize their upload capacities (the topology adaptation 768

algorithm). Bee does not require any scheduling knowledge, 769

each peer makes its own decision to download blocks based 770

20 VOLUME 03, 2022

on the local knowledge. We have conducted extensive sim-771

ulations to evaluate the MT D performance of Bee, and the772

results offer evidence that the maximum dissemination time773

in Bee can roughly approximate the lower bound when there774

are no bottleneck at the seed or at the download capacity of775

the slowest peer, even under flash crowd traffic. In the current776

Internet or the cloud computing platforms, Bee can play a777

major role for addressing the time-critical data dissemination778

applications in future development. It would be interesting to779

examine the performance of Bee in the current live streaming780

applications [59], especially in the mobile internet [60]. We781

will implement and deploy the Bee system in cloud comput-782

ing platforms for investigating the performance on the VM783

deployment in our future work.784

ACKNOWLEDGMENTS785

The authors would like to thank Dr. Kuan-Ta Chen for com-786

ments on an earlier draft of this paper, and this paper is787

dedicated to the memory of our dear Dr. Kuan-Ta Chen and788

the anonymous reviewers for their valuable comments and789

suggestions to improve the manuscript.790

REFERENCES791

[1] B. Zhang, A. Iosup, J. Pouwelse, and D. Epema, “Identifying, analyz-792
ing, and modeling flashcrowds in bittorrent,” in Proc. IEEE Int. Conf.793
Peer-to-Peer Comput., 2011, pp. 240–249.794

[2] M. Chen, Y. Qian, Y. Hao, Y. Li, and J. Song, “Data-driven computing795
and caching in 5G networks: Architecture and delay analysis,” IEEE796
Wireless Commun., vol. 25, no. 1, pp. 70–75, Feb. 2018.797

[3] X. Li, X. Wang, C. Zhu, W. Cai, and V. C. M. Leung, “Caching-798
as-a-service: Virtual caching framework in the cloud-based mobile799
networks,” in Proc. IEEE Conf. Comput. Commun. Workshops, 2015,800
pp. 372–377.801

[4] A. Yahyavi and B. Kemme, “Peer-to-peer architectures for massively802
multiplayer online games: A survey,” ACM Comput. Surv., vol. 46,803
no. 1, 1–51, 2013.804

[5] Y. Nishi, M. Sasabe, and S. Kasahara, “Optimality analysis of locality-805
aware tit-for-tat-based P2P file distribution,” Peer-to-Peer Netw. Appl.,806
vol. 13, no. 5, pp. 1688–1703, Sep. 2020.807

[6] B. Cohen, “Incentives build robustness in bittorrent,” in Proc. Workshop808
Econ. Peer-to-Peer Syst., 2003, pp. 68–72.809

[7] R. Sherwood, R. Braud, and B. Bhattacharjee, “Slurpie: A cooperative810
bulk data transfer protocol,” in Proc. IEEE 23rd Annu. Joint Conf. IEEE811
Comp. Commun. Societies, vol. 2, 2004, pp. 941–951.812

[8] D. Kostić et al., “High-bandwidth data dissemination for large-scale dis-813
tributed systems,” ACM Trans. Comput. Syst., vol. 26, no. 1, pp. 1–61,814
2008.815

[9] K. Kim, S. Mehrotra, and N. Venkatasubramanian, “Efficient and reli-816
able application layer multicast for flash dissemination,” IEEE Trans.817
Parallel Distrib. Syst., vol. 25, no. 10, pp. 2571–2582, Oct. 2014.818

[10] M. Deshpande, K. Kim, B. Hore, S. Mehrotra, and N. Venkatasubrama-819
nian, “ReCREW: A reliable flash-dissemination system,” IEEE Trans.820
Comput., vol. 62, no. 7, pp. 1432–1446, Jul. 2013.821

[11] M. Zghaibeh, “O-torrent: A fair, robust, and free riding resistant P2P822
content distribution mechanism,” Peer-to-Peer Netw. Appl., vol. 11,823
no. 3, pp. 579–591, May 2018.824

[12] C.-J. Wu, C.-Y. Li, and J.-M. Ho, “Improving the download time825
of bittorrent-like systems,” in Proc. IEEE Int. Conf. Commun., 2007,826
pp. 1125–1129.827

[13] B. Barekatain et al., “Matin: A random network coding based frame-828
work for high quality peer-to-peer live video streaming,” PLoS One,829
vol. 8, no. 8, pp. 1–17, 2013, Art. no. ee69844.830

[14] X. Yang and G. de Veciana, “Service capacity of peer to peer networks,”831
in Proc. IEEE Annu. Joint Conf. IEEE Comput. Commun. Soc., vol. 4,832
2004, pp. 2242–2252.833

[15] N. Khan, M. Moharrami, and V. Subramanian, “Stable and effi- 834
cient piece-selection in multiple swarm bittorrent-like peer-to-peer net- 835
works,” in Proc. IEEE Conf. Comput. Commun., 2020, pp. 1153–1162. 836

[16] B. Fan, J. C. S. Lui, and D. Chiu, “The design trade-offs of bittorrent- 837
like file sharing protocols,” IEEE/ACM Trans. Netw., vol. 17, no. 2, 838
pp. 365–376, Apr. 2009. 839

[17] L. Guo, S. Chen, Z. Xiao, E. Tan, X. Ding, and X. Zhang, “A perfor- 840
mance study of bittorrent-like peer-to-peer systems,” IEEE J. Sel. Areas 841
Commun., vol. 25, no. 1, pp. 155–169, Jan. 2007. 842

[18] C.-J. Wu, C.-F. Ku, J.-M. Ho, and M.-S. Chen, “A novel pipeline 843
approach for efficient Big Data broadcasting,” IEEE Trans. Knowl. Data 844
Eng., vol. 28, no. 1, pp. 17–28, Jan. 2016. 845

[19] Z. Xu et al., “Energy-aware collaborative service caching in a 5G- 846
enabled MEC with uncertain payoffs,” IEEE Trans. Commun., vol. 70, 847
no. 2, pp. 1058–1071, 2022, doi: 10.1109/TCOMM.2021.3125034. 848

[20] Q. Cheng, H. Shan, W. Zhuang, L. Yu, Z. Zhang, and T. Q. S. Quek, 849
“Design and analysis of MEC- and proactive caching-based 360 mobile 850
VR video streaming,” IEEE Trans. Multimedia, pp. 1–1, Mar. 19, 2021, 851
doi: 10.1109/TMM.2021.3067205. 852

[21] A. M. Farley, “Broadcast time in communication networks,” SIAM J. 853
Appl. Math., vol. 39, no. 2, pp. 385–390, 1980. 854

[22] S. Khuller and Y.-A. Kim, “Broadcasting in heterogeneous networks,” 855
Algorithmica, vol. 48, no. 1, pp. 1–21, May 2007. 856

[23] M. Deshpande, N. Venkatasubramanian, and S. Mehrotra, “Heuristics 857
for flash-dissemination in heterogenous networks,” in Proc. 13th Int. 858
Conf. High Perform. Comput., 2006, pp. 607–618. 859

[24] K.-S. Goetzmann, T. M. Harks Klimm, and K. Miller, “Optimal file 860
distribution in peer-to-peer networks,” in Algorithms and Computation, 861
T. Asano, S.-i. Nakano, Y. Okamoto, and O. Watanabe, Eds. Berlin, 862
Heidelberg:Springer Berlin Heidelberg, 2011, pp. 210–219. 863

[25] W.-C. Liao, F. Papadopoulos, K. Psounis, and C. Psomas, “Modeling 864
bittorrent-like systems with many classes of users,” ACM Trans. Model. 865
Comput. Simul., vol. 23, no. 2, pp. 1–25, May 2013. 866

[26] A. R. Bharambe, C. Herley, and V. N. Padmanabhan, “Analyzing 867
and improving a bittorrent networks performance mechanisms,” in 868
Proc. IEEE INFOCOM 25th IEEE Int. Conf. Comput Commun., 2006, 869
pp. 1–12. 870

[27] A. Botta, G. E. Mocerino, S. Cilio, and G. Ventre, “A machine learning 871
approach for dynamic selection of available bandwidth measurement 872
tools,” in Proc. IEEE Int. Conf. Commun., 2021, pp. 1–6. 873

[28] J. Strauss, D. Katabi, and F. Kaashoek, “A measurement study of avail- 874
able bandwidth estimation tools,” in Proc. 3rd ACM SIGCOMM Conf. 875
Internet Meas., 2003, pp. 39–44. 876

[29] A. Akella, S. Seshan, and A. Shaikh, “An empirical evaluation of wide- 877
area internet bottlenecks,” in Proc. 3rd ACM SIGCOMM Conf. Internet 878
Meas., 2003, pp. 101–114. 879

[30] C. Wu, C. Li, K. Yang, J. Ho, and M. Chen, “Time-critical data dis- 880
semination in cooperative peer-to-peer systems,” in Proc. IEEE Glob. 881
Telecommun. Conf., 2009, pp. 1–6. 882

[31] Y.-h. Chu, S. G. Rao, S. Seshan, and H. Zhang, “A case for end system 883
multicast,” IEEE J. Sel. Areas Commun., vol. 20, no. 8, pp. 1456–1471, 884
Oct. 2002. 885

[32] C.-J. Wu, D.-K. Liu, and R.-H. Hwang, “A location-aware peer-to-peer 886
overlay network,” Int. J. Commun. Syst., vol. 20, no. 1, pp. 83–102, 887
2007. 888

[33] G. Wu and T. C. Chiueh, “How efficient is BitTorrent?,” in Int. Soc. 889
Opt. Photonics. SPIE, S. Chandra and C. Griwodz, Eds., in Multimedia 890
Computing and Networking 2006, vol. 6071, 2006, pp. 266–278. 891

[34] S. Saroiu, P. K. Gummadi, and S. D. Gribble, “Measurement study of 892
peer-to-peer file sharing systems,” in Multimedia Computing Network- 893
ing 2002, M. G. Kienzle and P. J. Shenoy, Eds., vol. 4673, International 894
Society for Optics and Photonics. SPIE, 2001, pp. 156–170. 895

[35] A. Legout, G. Urvoy-Keller, and P. Michiardi, “Rarest first and choke 896
algorithms are enough,” in Proc. 6th ACM SIGCOMM Conf. Internet 897
Meas.. New York, NY, USA: Association for Computing Machinery, 898
2006, pp. 203–216. 899

[36] M. Izal, G. Urvoy-Keller, E. W. Biersack, P. A. Felber, A. Al Hamra, 900
and L. Garcés-Erice, “Dissecting bittorrent: Five months in a torrent’s 901
lifetime,” in Passive and Active Network Measurement, C. Barakat and 902
I. Pratt, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, 903
pp. 1–11. 904

[37] A. Sherman, J. Nieh, and C. Stein, “Fairtorrent: A deficit- 905
based distributed algorithm to ensure fairness in peer-to-peer sys- 906
tems,” IEEE/ACM Trans. Netw., vol. 20, no. 5, pp. 1361–1374, 907
Oct. 2012. 908

VOLUME 03, 2022 21

https://dx.doi.org/10.1109/TCOMM.2021.3125034
https://dx.doi.org/10.1109/TMM.2021.3067205

WU AND HO: TIME-CRITICAL DATA DISSEMINATION UNDER FLASH CROWD TRAFFIC

[38] M. Schmidt, N. Fallenbeck, M. Smith, and B. Freisleben, “Effi-909
cient distribution of virtual machines for cloud computing,” in Proc.910
18th Euromicro Conf. Parallel, Distrib. Network-based Process., 2010,911
pp. 567–574.912

[39] L. Bilge and T. Dumitraş, “Before we knew it: An empirical study913
of zero-day attacks in the real world,” in Proc. ACM Conf. Comput.914
Commun. Secur., New York, NY, USA: Association for Computing915
Machinery, 2012, p. 833–844.916

[40] B. Zolfaghari et al., “Content delivery networks: State of the art, trends,917
and future roadmap,” ACM Comput. Surv., vol. 53, no. 2, pp. 1–34,918
Apr. 2020.919

[41] C. Gkantsidis and P. R. Rodriguez, “Network coding for large scale con-920
tent distribution,” in Proc. IEEE 24th Annu. Joint Conf. IEEE Comput.921
Commun. Soc., vol. 4, 2005, pp. 2235–2245.922

[42] J. Su, Q. Deng, and D. Long, “Pclnc: A low-cost intra-generation net-923
work coding strategy for P2P content distribution,” Peer-to-Peer Netw.924
Appl., vol. 12, no. 1, pp. 177–188, Jan. 2019.925

[43] B. Li and D. Niu, “Random network coding in peer-to-peer networks:926
From theory to practice,” Proc. IEEE Proc. IRE, vol. 99, no. 3,927
pp. 513–523, Mar. 2011.928

[44] D. Qiu and R. Srikant, “Modeling and performance analysis of929
bittorrent-like peer-to-peer networks,” in Proc. Conf. Appl., Technol.,930
Architectures, Protoc. Comput. Commun.. New York, NY, USA: Asso-931
ciation for Computing Machinery, 2004, pp. 367–378.932

[45] C. Carbunaru, Y. M. Teo, B. Leong, and T. Ho, “Modeling flash crowd933
performance in peer-to-peer file distribution,” IEEE Trans. Parallel Dis-934
trib. Syst., vol. 25, no. 10, pp. 2617–2626, Oct. 2014.935

[46] Y. Chen, B. Zhang, C. Chen, and D. M. Chiu, “Performance mod-936
eling and evaluation of peer-to-peer live streaming systems under937
flash crowds,” IEEE/ACM Trans. Netw., vol. 22, no. 4, pp. 1106–1120,938
Aug. 2014.939

[47] N. Anjum, D. Karamshuk, M. Shikh-Bahaei, and N. Sastry, “Survey940
on peer-assisted content delivery networks,” Comput. Netw., vol. 116,941
pp. 79–95, 2017.942

[48] P. Michiardi, D. Carra, F. Albanese, and A. Bestavros, “Peer-assisted943
content distribution on a budget,” Comput. Netw., vol. 56, no. 7,944
pp. 2038–2048, 2012.945

[49] T. Karagiannis, P. Rodriguez, and K. Papagiannaki, “Should internet946
service providers fear peer-assisted content distribution?,” in Proc. 5th947
ACM SIGCOMM Conf. Internet Meas., USA: USENIX Association,948
2005, pp. 6–6.949

[50] J. Lin, Z. Li, G. Xie, Y. Sun, K. Salamatian, and W. Wang, “Mo-950
bile video popularity distributions and the potential of peer-assisted951
video delivery,” IEEE Commun. Mag., vol. 51, no. 11, pp. 120–126,952
Nov. 2013.953

[51] N. Anjum, D. Karamshuk, M. Shikh-Bahaei, and N. Sastry, “Survey954
on peer-assisted content delivery networks,” Comput. Netw., vol. 116,955
pp. 79–95, 2017.956

[52] P. Rodriguez and E. W. Biersack, “Dynamic parallel access to replicated957
content in the internet,” IEEE/ACM Trans. Netw., vol. 10, no. 4, p. 455–958
465, Aug. 2002.959

[53] M. Deshpande, B. Xing, I. Lazardis, B. Hore, N. Venkatasubramanian,960
and S. Mehrotra, “Crew: A gossip-based flash-dissemination system,”961
in Proc. 26th IEEE Int. Conf. Distrib. Comput. Syst., 2006, pp. 45–45.962

[54] R. Kumar and K. W. Ross, “Peer-assisted file distribution: The mini-963
mum distribution time,” in Proc. 1st IEEE Workshop Hot Topics Web964
Syst. Technol., 2006, pp. 1–11.965

[55] G. M. Ezovski, A. Tang, and L. L. H. Andrew, “Minimizing average966
finish time in P2P networks,” in Proc. IEEE INFOCOM, 2009, pp. 594–967
602.968

[56] Y.-M. Chiu and D. Y. Eun, “Minimizing file download time in stochas- 969
tic peer-to-peer networks,” IEEE/ACM Trans. Netw., vol. 16, no. 2, 970
pp. 253–266, Apr. 2008. 971

[57] M. Sasabe, “Analysis of minimum distribution time of tit-for-tat-based 972
P2P file distribution: Linear programming based approach,” Peer-to- 973
Peer Netw. Appl., vol. 14, no. 4, pp. 2127–2138, 2021. 974

[58] X. Zheng, C. Cho, and Y. Xia, “Content distribution by multiple multi- 975
cast trees and intersession cooperation: Optimal algorithms and approx- 976
imations,” Comput. Netw., vol. 83, pp. 100–117, 2015. 977

[59] X. Wei, P. Ding, L. Zhou, and Y. Qian, “QoE oriented chunk scheduling 978
in P2P-VoD streaming system,” IEEE Trans. Veh. Technol., vol. 68, 979
no. 8, pp. 8012–8025, Aug. 2019. 980

[60] M. Qin, L. Chen, N. Zhao, Y. Chen, F. R. Yu, and G. Wei, “Comput- 981
ing and relaying: Utilizing mobile edge computing for P2P commu- 982
nications,” IEEE Trans. Veh. Technol., vol. 69, no. 2, pp. 1582–1594, 983
Feb. 2020. 984

CHI-JEN WU (Member, IEEE) received the Ph.D. 985
degree in electrical engineering from National Tai- 986
wan University, Taipei, Taiwan, in July 2012. From 987
2012 to 2013, he was a Distinguished Postdoc- 988
toral Scholar with the Institute of Information 989
Science, Academia Sinica, Taipei, Taiwan. Since 990
February 2021, he has been an Assistant Profes- 991
sor with the Department of Computer Science and 992
Information Engineering, Chang Gung University, 993
Taoyuan City, Taiwan. His research interests in- 994
clude content distribution, mobile cloud comput- 995

ing, and artificial intelligence with a specific focus on computational adver- 996
tising, marketing automation, and financial computing. 997

998

JAN-MING HO (Senior Member, IEEE) received 999
the Ph.D. degree in electrical engineering and 1000
computer science from Northwestern University, 1001
Evanston, IL, USA, in 1989. In 1989, he joined 1002
the Institute of Information Science, Academia 1003
Sinica, Taipei, Taiwan, as an Associate Research 1004
Fellow and was promoted to a Research Fellow in 1005
1994. His research interests include the integration 1006
of theory and applications, including information 1007
retrieval and extraction, knowledge management, 1008
combinatorial optimization, multimedia network 1009

protocols and their applications, web services, bioinformatics, and digital 1010
library and archive technologies. Dr. Ho also published results in VLSI/CAD 1011
physical design. 1012

1013

22 VOLUME 03, 2022

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

