
Received 16 July 2021; accepted 18 August 2021. Date of publication 24 August 2021;
date of current version 16 September 2021. The review of this article was arranged by Associate Editor Dr. Peng Li.

Digital Object Identifier 10.1109/OJCS.2021.3107228

PERIDOT: Modeling Execution Time of
Spark Applications

SARAH SHAH 1, YASAMAN AMANNEJAD 2, DIWAKAR KRISHNAMURTHY 1, AND MEA WANG3

1 Department of Electrical, and Software Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada
2 Department of Mathematics and Computing, Mount Royal University, Calgary, AB T3E 6K6, Canada

3 Department of Computer Science, University of Calgary, Calgary, AB T2N 1N4, Canada

Corresponding Author: Sarah Shah (e-mail: sarah.shah1@ucalgary.ca)

This work was supported by the Natural Sciences and Engineering Research Council (NSERC) Canada.

ABSTRACT A data analytics application submitted to a Spark cluster often has to finish executing by a
specified time target. To use cluster resources effectively, the key challenge is having the ability to gain quick
insights on how the execution time of any given application is likely to be impacted by the resources allocated
to the application, e.g., the number of Spark executor cores assigned, and the size of the data to be processed.
Such insights can be used to quickly estimate the required resources and configure a Spark application for a
desired execution time using the least amount of resources. Our paper proposes an automated execution time
estimation approach called PERIDOT that involves executing a given application under a fixed resource
setting with two different-sized, small subsets of its input data to offer fast, lightweight execution time
predictions. It analyzes logs from these two executions to estimate the dependencies between internal stages
of the application. Information on these dependencies combined with knowledge of Spark’s data partitioning
mechanisms is used to derive an analytic model that can estimate execution times for other resource settings
and input data sizes. Our results from a wide range of applications and multiple Spark clusters show that
PERIDOT can accurately estimate the execution time of an application from limited historical data, and
suggest the minimum amount of resources required to closely meet an execution time target.

INDEX TERMS Apache spark, Big Data processing, performance prediction, performance engineering.

I. INTRODUCTION
The Apache Spark cluster computing platform [1] is being
increasingly used to develop big data analytics applications.
Execution time of Spark applications is an important concern
for users and operators of a Spark cluster. Cluster users are
typically interested in ensuring that their application meets a
desired execution time target. Cluster operators, on the other
hand, would like to provision just enough resources to appli-
cations such that application execution time targets are sat-
isfied while simultaneously maximizing utilization of cluster
resources and reducing costs.

Apache Spark supports a resource allocation strategy where
users can specify how many cores and memory an application
can have. However, specifying the right amount of resources
is not trivial. On cluster computing environments, there are
typically a large number of choices in terms of the resources
that can be assigned to an application. To leverage Apache

Spark’s resource allocation strategy effectively, the underlying
requirement is to have an execution time prediction tool that
would provide quick insights on how the execution time of
any given application is likely to change as a function of
the resources, i.e., cores, allocated to the application and the
size of data that needs to be processed. While Spark provides
sophisticated tools to monitor application performance [2],
it does not yet support a tool that can estimate application
execution time.

There have been a number of recent efforts at modeling
and optimizing the execution time of Spark applications using
analytical and machine learning techniques [3]–[18]. These
approaches require extensive performance data from previous
executions of an application covering a range of different
resource allocations and data sizes of interest to build models.
Gathering such history is time consuming and resource inten-
sive, thus not feasible in situations where quick predictions

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

346 VOLUME 2, 2021

https://orcid.org/0000-0003-0627-7070
https://orcid.org/0000-0002-5668-6086
https://orcid.org/0000-0002-6098-4801


are desired, e.g., to make resource allocation decisions, and
extensive access to cluster resources for the experimentation
needed to build the models is impractical. Moreover, these
techniques have mostly not been verified on a diverse set of
applications. In this paper, we aim to reduce the time and
resource requirements of the prediction process and offer a
generalizable solution for various applications.

We propose a lightweight, analytic execution time pre-
diction approach called PERIDOT, PERformance predIction
moDel fOr Spark applicaTions. PERIDOT executes an appli-
cation under a fixed resource allocation with two different-
sized, small subsets of its input data. Based on observations
on the internal dependencies in the application as well as
the impact of data partitioning and data size on execution
times in these runs, PERIDOT deduces the execution times
of the application under other resource allocation settings and
input data sizes. By relying on just two runs per application
and using small datasets, PERIDOT significantly reduces the
time and resources required to construct application models
thereby facilitating quick insights into the execution time be-
haviour of applications.

We evaluate PERIDOT using 13 well-known Spark appli-
cations spanning text analytics, linear algebra, machine learn-
ing, and Spark SQL executing on two different clusters. Our
results indicate that models derived using PERIDOT yield a
very good accuracy with a mean prediction error of 7.7% for
all 13 applications over a range of resource allocations and
input data sizes. In particular, results show that PERIDOT can
accurately capture the performance impact of complex inter-
nal application dependencies such as those observed in many
Spark SQL queries. Generating models and predictions using
PERIDOT is quick. For instance, while exhaustive experi-
mentation of all possible configurations we explore requires
over 3,400 core hours, PERIDOT requires only 0.8% of this
effort.

We have conducted experiments to evaluate the effective-
ness of using PERIDOT for resource allocation exercises.
Specifically, we compare our approach with Spark’s default
resource allocation mechanism, which allocates all available
cores in the cluster to an application. The results show that
our approach selects more cost-effective resource allocation
schemes for any given user defined execution time target.
Specifically, our approach results in 43.1% lesser use of cores
on average over the baseline technique considered.

The preliminary design and evaluation of PERIDOT is
described in our previous conference paper [19]. This paper
represents a significant extension in following areas:

1) We have expanded significantly on the preliminary vali-
dation presented in our earlier paper through 6,515 core
hours of new experiments representing a 260% increase
in experimentation effort. Specifically, our validation
effort considers 5 additional Spark applications, includ-
ing applications with more complex internal dependen-
cies. The new experiments also validate PERIDOT’s
ability to handle multiple task executor resource allo-
cation mechanisms, i.e., executors assigned single and

multiple cores (Section VI-B). We have also established
the generalizability of PERIDOT by validating it on an
additional cluster that has different hardware character-
istics (Section VI-E).

2) We have experimentally evaluated the effectiveness of
using PERIDOT for allocating resources to Spark ap-
plications (Section VI-F).

3) We have fully automated our technique and provided it
as a tool for others to use [20].

The remainder of the paper is organized as follows. In Sec-
tion II, we provide a brief background on Spark. Section III
discusses related work. Section IV describes the PERIDOT
approach in detail. Section V and VI describe our experiment
setup and results, respectively. Conclusions and future work
are offered in Section VII.

II. APACHE SPARK PLATFORM
A Spark application consists of two types of operations,
namely transformations and actions. A transformation ap-
plies a function on each element of a distributed collection
of objects called a Resilient Distributed Dataset (RDD). A
transformation can cause one or more additional RDDs to be
created. Actions trigger the execution of functions associated
with one or more transformations to produce meaningful re-
sults. For each action in an application, a Spark job is created
and executed. A single application can trigger multiple jobs
which can run in sequence or in parallel.

A Spark job can be separated into one or more physical
units of execution called stages. A Spark stage may depend
on the output data generated by previous stages or might be
independent of other stages. The Spark runtime will schedule
a stage for execution only after all stages that stage is depen-
dent on have finished executing. In contrast, stages that have
no dependencies with one another can be scheduled to run
concurrently thereby resulting in parallel stages.

Dependencies among application stages are represented
within Spark as a Directed Acyclic Graph (DAG). A DAG is
a language-independent representation of the execution of a
Spark application. A Spark application DAG contains a set
of vertices and edges, where any given vertex represents an
RDD or an input and the outgoing edges represent operations
to be applied on the vertex. Fig. 1 is a screenshot from the
Spark UI that shows a small part of the Spark DAG for the
linear regression application from the Spark standard exam-
ples. To see all the stages and jobs of this application, we
have provided a simplified visualization of the full DAG in
Fig. 2 where rectangles represent jobs and circles represent
application stages. This is an application with a simple DAG
where all jobs and stages run in sequence.

As mentioned earlier, some applications can produce par-
allel stages. Fig. 3 shows a small part of the Spark DAG for
Query52, a Spark SQL implementation of a query in the TPC-
DS [21] benchmark suite. To aid better visualization of the de-
pendencies, Fig. 4 provides our simplified visualization of the
DAG with parallel stages. Some stages run in parallel while
others run in sequence. Regardless of the size of input data

VOLUME 2, 2021 347



SHAH ET AL.: PERIDOT: MODELING EXECUTION TIME OF SPARK APPLICATIONS

FIGURE 1. Example of a simple DAG.

FIGURE 2. Simplified DAG structure for Linear Regression.

FIGURE 3. Example of a DAG with parallel stages.

FIGURE 4. Simplified DAG structure for Query 52.

or the resource allocation setting, the overall DAG structure
remains the same for any given application. As described in
Section IV, PERIDOT estimates the dependencies related to
jobs and stages from an application execution that uses a small
subset of its input data. It leverages this information while
estimating execution times for other data sizes and resource
allocation settings.

We next focus on behaviour within each stage. To facilitate
parallel processing, Spark splits the input data of each stage

FIGURE 5. Examples of task waves.

into smaller data partitions that are typically of equal size.
By default, the number of partitions of an input data with

size D is � D

block
�, where block is the block size employed

by the underlying file system. However, a stage can override
this default partitioning behaviour by explicitly specifying the
number of partitions. This is observed in many of the TPC-DS
applications in our study.

A stage consists of a set of tasks with each task applying
the operations of the stage on one partition of the data. A task
is executed by one of the task executors allocated by Spark
to that stage. An executor is a process that runs on a worker
node in the cluster, i.e., a node that executes application code.
A worker node can host one or more executors. Each execu-
tor can be allocated a configurable amount of worker node
resources such as processing cores and memory.

Assuming only one stage is scheduled for execution, the
number of concurrent tasks of that stage executing at any
given time depends on the number of executor cores assigned
to the stage, and the number of partitions to be processed in
the stage. We refer to the pattern of execution of tasks within
a stage as a task wave. We define the wave time as the time
taken for one wave of execution. Fig. 5 derived from Spark’s
visualization of actual stage executions shows two examples
of tasks running in waves. In Fig. 5(a), two executors with
one core each are assigned a total of eight tasks. The tasks are
equally divided among the two executors, resulting in four full
waves, i.e., waves that fully utilize the available parallelism.
In Fig. 5(b), the same eight tasks are distributed among six
executors. This increase in the number of executors reduces
the number of waves to two. However, there are four idle
executors during the second wave. We refer to this wave as
a partial wave because it does not fully utilize the parallelism
available.

For applications with parallel stages, each wave may consist
of tasks from different stages. Fig. 5(b) depicts one such
example where tasks from different stages are shown with
different colors. From the figure, the individual task execution
times in a wave are more heterogeneous than in the single
stage scenarios depicted in Fig. 5(a) and Fig. 5(b).

348 VOLUME 2, 2021



For a given number of executors and with Spark’s de-
fault partitioning mechanism, increasing the input data size
of a stage increases the number of partitions, as the size of
partitions generally remains the same. Depending on the exact
number of executors, this can either cause the number of
waves to remain the same or increase. The number of waves
in a stage increases by one or more if the number of additional
partitions exceeds the number of idle cores in the partial wave
of that stage. In contrast, the number of waves remains the
same if the number of additional partitions is less than or
equal to the number of idle cores in the partial wave. In this
case, the increase in data size has the impact of “filling up” the
partial waves, thereby utilizing the available parallelism more
effectively.

From the above discussion, the number of waves in a stage
and hence the stage execution time generally depends simul-
taneously on the number of executors and data size. This
suggests that the impact of both the number of executors and
input size can be modeled by estimating the number of waves
and the mean duration of each wave, i.e., wave time, in a stage.
We exploit this observation in the next section to develop an
analytic approximation that captures the execution time of a
Spark application.

III. RELATED WORK
There have been a number of recent efforts on modeling
and optimizing the performance of Spark applications [3]–
[18]. Singhal and Singh [18] developed a simulation model
that captures in detail Spark’s internal job processing mech-
anisms using application’s history. The authors showed how
the parameterized model can then be used to simulate the
application’s scaling behaviour. Petridis et al. [3] focused on
12 Spark configuration parameters and proposed a trial-and-
error performance tuning methodology for Spark applications.
Wang et al. [4] proposed a machine learning based param-
eter tuning approach using multi-class classification on 500
execution records where each record contains a list of Spark
configuration settings and the execution time achieved with
those settings. Gulino et al. [5] propose a hybrid approach
by modeling individual tasks of a DAG and then offering
performance prediction for unseen DAGs. Javaid et al. [6]
prepare an extensive set of common workload executions and
use several Spark features obtained from them to train and
compare multiple ML models for execution time prediction.
These techniques consider a large parameter space and hence
require a large amount of prior execution data to be really
effective. Unfortunately, obtaining such data might not always
be feasible. For example, Jyothi et al. [22] analyzed workloads
on production clusters and showed that about 40% of applica-
tions were non-recurrent, i.e., did not have historical execution
data. Cheng et al. [7] reduce the training samples and lower
the model overhead in their Adaboost-based performance pre-
diction model by utilizing projective sampling, however their
process still requires a significant amount of training.

Similar to this paper, some studies focused exclusively on
the impact of data size and the amount of resources assigned

to a Spark application. Gibilisco et al. [8] executed a given
Spark application with different, smaller subsets of the in-
put data. They trained multiple polynomial regression models
from these executions and selected the model with the least
error. Wang and Khan [9] collected detailed performance logs,
e.g., execution time, memory consumption, I/O overheads,
for the stages in a Spark application. They exploit these logs
to simulate how the application’s execution time will change
with input data size. Gounaris et al. [10] proposed regression
models that capture how execution time changes with the
number of nodes allocated to the application. In contrast to
these approaches, PERIDOT can simultaneously capture the
impact of both data size and number of executor cores.

Venkataraman et al. [11] proposed an approach called
Ernest that is designed to simultaneously predict the impact of
input data size and the number of worker nodes. Ernest uses
an optimal experiment design method [16] to select executions
with different data sizes and numbers of nodes. These execu-
tions are used to train a regression model for the application
that has data size and number of nodes as independent vari-
ables. Islam et al. [17] proposed an approach called dSpark
for modeling execution time with respect to the number of
executors and input data size. They also used dSpark as a con-
servative resource allocation scheme that allocates resources
to applications based on the time needed for their execution
as opposed to Spark’s default resource scheduling [23] that
may allocate all system resources to a job. Similar to Ernest,
dSpark uses a set of controlled executions to train a regression
model for estimating the execution time of applications. Both
these techniques report very good accuracies when there is
extensive experiment data available to train the regression
models.

Sidhanta et al. [24] designed a model called OptEx for
estimating Spark application execution times and used it for
optimal allocation of cluster resources to applications. Op-
tEx uses a curve fitting technique in combination with ana-
lytical expressions. An OptEx model is derived by profiling
different categories of applications and extracting parameters
for each of these categories that influence performance. Lee
et al. [25] extended OptEx by including additional parameters
to incorporate the probability of failure for an application and
used this model to drive resource allocation. Baresi et al. [26]
proposed a containerized modification of Spark that exploits
a black box control theoretic model to realize per-stage dead-
lines at runtime. Unlike our approach, their approach relies
on modifying the default Spark system, which many not be
feasible in production environments. In summary, PERIDOT
requires lesser experimentation effort than the machine learn-
ing approaches discussed in this section.

IV. EXECUTION TIME MODELING WITH PERIDOT
When users submit their applications to a Spark cluster, they
expect to process a certain amount of data within an ex-
ecution time target, i.e., deadline. Some applications may
have tight deadlines, while others may have more flexible
deadlines. As described previously, Spark’s default resource

VOLUME 2, 2021 349



SHAH ET AL.: PERIDOT: MODELING EXECUTION TIME OF SPARK APPLICATIONS

allocation method executes all submitted applications in a
FIFO order, and each application uses all available cluster
resources [23]. This approach prevents resource sharing and
can negatively affect applications with tight deadlines. There-
fore, Spark users and job schedulers prefer to use a different
resource allocation mechanism, e.g., YARN [27], that allows
resource sharing. In this mode, Spark users or job schedulers
can specify how many executors, cores, and memory an appli-
cation can have. A fast and accurate execution time prediction
model is needed to ensure that users and schedulers request
just the right amount of resources so as to meet deadlines in a
cost-effective manner. PERIDOT addresses this need.

PERIDOT is a lightweight, analytic execution time estima-
tion approach that does not require exhaustive prior executions
of an application to derive a model. Appendix I gives an
overview of PERIDOT’s modeling process. Given an appli-
cation, its input data, and the execution time target, PERIDOT
launches just two different executions of the application using
smaller subsets of the input data so as to not consume a
significant amount of cluster resources. The two executions
measure the behaviour of the application under two different
input data sizes and the same number of executor cores. Using
these two executions, we follow a four step process to pre-
dict the execution time of the application with different input
sizes and executor cores. We first estimate the dependencies
among stages in the application. Using the execution logs,
we also characterize the number of partitions that each stage
processes and whether the number of partitions changes with
size (Section IV-A). Second, we estimate the number of waves
that each stage or a group of parallel stages processes and use
that to calculate its wave time (Section IV-B). Third, wave
times and other parameters extracted from these execution
logs are used for estimating the execution time of the appli-
cation with different input sizes and executor core numbers
(Section IV-C).

A. APPLICATION DEPENDENCY IDENTIFICATION
In this step, we run the Spark application twice with two small
input data sizes and the same number of executor cores. We
call these two runs as reference executions. We collect the
execution logs of both reference executions. The execution
log records detailed information such as stage id, tasks in the
stage, the time at which a stage starts, the time at which a task
obtains resources and starts executing, and the time at which a
task finishes. From the two reference logs, we estimate the
dependencies between the stages and characterize how the
application’s partitioning behaviour changes with data size.
As mentioned earlier, the dependency structure depends on
the operations defined in the application and remains the same
even when the input data or the executor cores assigned to the
application are changed.

We next identify groups of stages and represent the appli-
cation’s dependency as a sequence of these groups. We define
a stage group as all stages scheduled at the same time. A stage
group may contain only one stage, e.g., a sequential stage, or
multiple stages, e.g. parallel stages. In Fig. 4, as an example,

no other stage is scheduled to run in parallel with stage 1 and
therefore we create a stage group with only one stage. Stages
24, 25, and 27 are parallel stages since they are scheduled at
the same time and hence we create one stage group for them.

Since parallel stages are scheduled at the same time, they
compete for the processing resources assigned to the appli-
cation. Consequently, the waves contain tasks from different
stages and hence are more complex than stage groups that
contain only a single stage. Regardless of whether a stage
group is sequential or parallel, we define the execution time
Si of the stage group i as the difference between the finish
time of the last task in the group and the time when the
first task in the group is scheduled. Apart from capturing the
computation time of tasks, this metric also includes delays due
to tasks waiting for executor cores. The process of identifying
stage groups based on stage scheduling time yields a sequence
of stage groups estimating the dependency structure of the
application. We note that this method of extracting application
dependency based on stage scheduling times is a simplifica-
tion. We evaluate the effectiveness of our simplification in
Section VI.

After extracting the sequence of stage groups from each ref-
erence execution log, we compare the corresponding groups in
the references to characterize partitioning behaviour. Specif-
ically, we label each stage group as either a fixed partition
or a variable partition stage group. The number of partitions
processed by a fixed partition stage group does not change
when the input data to the application changes. From our em-
pirical observations, the execution time of such stage groups
typically does not vary significantly when the input data size
changes. Consequently, the execution time of such a stage
group can be modeled as a constant. In contrast, the number
of partitions processed by a variable partition stage group
changes with respect to the input data size. Its execution time
hence changes with data size. It is essential to use different
input data sizes for the two reference executions so that it is
possible to identify the fixed and variable stage groups. The
identification can be done based on whether there is a change
in the number of partitions processed by them, since fixed
and variable stage groups contribute to the execution time
differently.

To summarize, the inputs of this step are the execution
logs of the two reference executions and the outputs are the
sequence of stage groups labeled as fixed or variable partition
groups. Moreover, we extract the number of partitions in each
stage group under each of the two reference executions. We
also extract the stage group execution times and the end to
end execution times from both references.

B. MODEL PARAMETER EXTRACTION
Based on the outputs from the previous step, we first calculate
the mean wave time parameter for each variable stage group.
As we show in Section VI, the wave time of any given stage in
an application remains almost the same regardless of the size
of the input data and the number of cores allocated to the stage
provided the structural properties of the data, e.g., number

350 VOLUME 2, 2021



TABLE 1. Notations Used in Peridot

of features in a machine learning dataset, remain unchanged.
Consequently, knowledge of the mean wave time would allow
us to offer predictions for any executor cores and data size as
we outline later in Section IV-C.

Table 1 enlists the variables we need to extract using the
reference logs obtained in Section IV-A and the variables we
need to calculate in order to obtain the execution time for a
desired input data size and executor setting. The number of
waves Ni in stage group i can be estimated using (1) where
Pi is the number of partitions in the stage group and E is the
number of executor cores assigned to the application.Equation
(1) gives us the number of individual sequential execution
units, i.e., waves, of execution in each stage group, as de-
scribed in Section II. The wave time Wi can then be calculated
by dividing the total execution time of the stage group Si by
the number of waves Ni, as shown in (2). We calculate Wi in
this manner using each of the two references. We then use the
mean of these two values Ŵi as the mean wave time parameter
for stage group i.

We note that parallel stage groups can exhibit variability in
task execution times since tasks can be from different stages.
In this way, our method of calculating wave times for such
stage groups in essence averages the execution times of these
heterogeneous tasks, thus minimizing the heterogeneity be-
cause of the different stages.

Ni =
⌈

Pi

E

⌉
(1)

Wi = Si

Ni
(2)

We also record as parameters the mean number of partitions
P̂r

i in each stage group of the two references. This is calculated
as the sum of the corresponding Pr

i values in both references
divided by the mean of the input data sizes of the two refer-
ences D̂r . As shown later in (3), we use D̂r to scale the number
of partitions in each stage group while predicting for other
input data sizes.

Finally, we estimate the parameter F representing the ag-
gregate execution time contribution of the fixed partition stage

groups. Consider an application execution with end to end
execution time T . We sum the variable stage group execution
times, i.e., the Si values, and subtract this sum from T to obtain
F . This process is carried out on both reference executions to
obtain a mean fixed execution time F̂ .

C. PREDICTING EXECUTION TIME
Assume that an execution time prediction is desired for an
input size of Dnew under an executor core setting of Enew.
Using the parameters obtained from the reference executions,
for each variable stage group i, we estimate the new number
of partitions that result under these settings using (3). This
equation assumes that the number of partitions scales linearly
with data size, which is the behaviour of Spark’s default par-
titioning algorithm. We next estimate the number of waves
Nnew

i using (4). We use (5) to estimate the execution time
Snew

i of the variable stage group using the mean wave time
parameter Ŵi estimated previously. This process is repeated
for all variable stage groups and the sum of the Snew

i values
is added to the fixed partition execution time parameter F̂
estimated previously using the reference executions to obtain
the execution time prediction T new.

Pnew
i = Dnew

D̂r
× P̂r

i (3)

Nnew
i =

⌈
Pnew

i

Enew

⌉
(4)

Snew
i = Ŵi × Nnew

i (5)

T new =
∑

i∈var

Snew
i + F̂ (6)

PERIDOT is compact since it captures both executor and
data scaling using the number of waves as shown by (3)
and (4). Modeling in terms of the number of waves and mean
time per wave allows PERIDOT to rely on just two refer-
ence executions since these references give us the mean wave
time as well as the scaling behavior of the variable stages.
Moreover, the two reference executions are enough to identify
the dependency structure of an application and incorporate its
impact on stage group wave times and hence the overall exe-
cution time. To facilitate quick predictions, PERIDOT makes
simplifications with regards to the dependency structure,
the characterization of fixed and variable partition stages, and
the wave behaviour of stage groups. We experimentally study
the impact of such simplifications on accuracy in Section VI.

PERIDOT’s prediction process can help to make decisions
on the right amount of resources to allocate to an application.
Given an application, its input data, and the execution time
target, T max , PERIDOT uses its prediction process to calculate
T new for different executor settings and outputs the minimum
number of executors that will meet the execution time target
of the application, i.e., T new < T max . The results are shown in
Section VI-F.

VOLUME 2, 2021 351



SHAH ET AL.: PERIDOT: MODELING EXECUTION TIME OF SPARK APPLICATIONS

V. EXPERIMENT SETUP
A. EXPERIMENT TESTBED
We use PERIDOT to predict the execution time of applica-
tions in two different cluster settings and to estimate the num-
ber of execution cores required to meet execution time targets.
Specifically, we use a multi-node test-bed consisting of nodes
from the ARC cluster of the University of Calgary [28]. Our
test environment is equipped with Spark 2.2.0 and operates on
a common network file system.

B. EXPERIMENT FACTORS
Cluster Compute Nodes - We have evaluated our approach
on two clusters consisting of nodes from the ARC system. Our
default setting uses nodes from ARC’s Breezy cluster. In this
cluster, each node has a four socket AMD Istanbul processor.
A socket contains 6 cores each clocked at 2.4 GHz. The 24
cores associated with one compute node share 250 GB of
RAM. To show that our model can be generalized to other
platforms, we also evaluate it on ARC’s Bigmem cluster,
which uses compute nodes with different characteristics than
those of Breezy. Each node in this cluster has a four socket
Intel Xeon Gold 6148 processor. A socket contains 20 cores
each clocked at 2.4 GHz. All cores of one compute node share
3 TB of RAM.

Applications - We evaluate our technique with 13 standard
benchmarks encompassing text analytics, linear algebra, ma-
chine learning, and Spark SQL. Word Count (W c) counts the
number of occurrences of each word in a text file. The input
consists of random words generated from words in the Linux
dictionary. W c is a representative of a compute-intensive ap-
plication. Sort (So) ranks records by their keys. The input is a
set of samples, each represented as a numerical vector. Sort is
both compute and memory intensive. Linear Regression (Lr)
models the relationship between a dependent variable and a
set of independent variables. Naive Bayes (Nb) classifies the
input data based on feature values. Lr and Nb are representa-
tive machine learning applications that trigger multiple jobs.
Correlation analysis (Co) calculates the statistical dependency
of input variables. While the aforementioned applications are
part of the standard Spark distribution, to expand our evalu-
ation, we have also used a Matrix Multiplication (Mm) ap-
plication [29]. Mm receives an m × n (m >> n) matrix, and
multiplies the transpose of this matrix with itself to output an
n × n matrix.

To further diversify our applications, we also use Spark
SQL queries from the industry-standard TPC-DS benchmark
suite [21]. We include these queries because of their more
complex DAG structures compared to the rest of the ap-
plications. Specifically, we use Query9, Query15, Query26,
Query52, Query64, Query70 and Query78. We refer to these
queries as QX , where X represents the number assigned to
each query. Q9 is an example of a Spark application that
generates parallel jobs. This offers the exploration of a unique
scenario in Spark because all other applications under study
have serial jobs, which may have parallel stages inside them.

To the best of our knowledge, no previous works have ex-
plored applications with parallel jobs. Q15 is a reporting query
that accesses only one table in the TPC-DS data set. Q26
and Q52 are interactive queries that have been used by other
researchers developing performance models [30]. Q64 per-
forms complex joins on four different tables to trace patterns
in data with respect to selected features. Q70 is the most
compute-intensive interactive query in TPC-DS suite. Q78 is
a hybrid query that involves large joins. These queries capture
most of the categories discussed in the TPC-DS workload
analysis [31], hence providing a well-rounded test-bed for
PERIDOT. These applications vary in terms of the number
of jobs, number of stages, DAG structures and the operations
used.

Input and resource configurations - We vary the input
size from 1 GB to 100 GB. To process this data, we employ
up to 40 executor cores distributed over 1 to 8 machines.
Each executor in our experiments is configured with 50 GB of
RAM, and 5 cores. Each node is configured with 1 executor, so
our experiments range from 1 to 8 executors. We have studied
other core assignments in Section VI-B where we vary the
number of cores assigned to each executor from 1 to 10. The
choice of input sizes and executor core numbers allows us to
fully exploit the in-memory data processing offered by Spark
with no disk spills while ensuring sufficient spare memory
is available for the Spark driver, i.e., the JVM process that
coordinates the executors, and the operating system.

Other approaches - We first compare PERIDOT with an
Ideal Scaling (IS) baseline. The IS baseline assumes that the
performance ideally scales with executor cores. For example,
for any given input size doubling the executor cores assigned
to an application results in half the execution time. Similarly,
IS assumes that for a given number of executor cores the
execution time increases linearly (with a unit slope) with input
size.

We also compare PERIDOT with an existing machine
learning based prediction approach from literature namely,
Ernest [11]. Ernest uses a regression model where an applica-
tion’s execution time is expressed as a linear combination of
four components namely, a constant term, a linear dependence
on the ratio of input size to the number of nodes allocated
to the application, a non-linear dependence on nodes that
captures inter-node communication overheads, and a linear
dependence on nodes.

C. EXPERIMENT PROCESS
For each experiment in the prediction process, we have an
initial phase where two reference executions are carried out
as described in Section IV to extract the application depen-
dencies and the model parameters. Our reference executions
use 5 cores. We use 1 GB and 2 GB data sizes in the reference
experiments. Due to the small size of these references, they
take a very small time to execute. To evaluate the prediction
accuracy, we run each Spark application with all executor
core settings and input sizes to collect the application exe-
cution times. We repeat each measurement three times and

352 VOLUME 2, 2021



use the mean of the measured execution times. We compare
the measured mean execution times with those predicted by
PERIDOT and the other techniques and report the relative
error.

To evaluate the effectiveness of PERIDOT’s predictions in
resource allocation exercises, for each application, we start
with an initial execution time target that will help meet a user
specified a deadline. We then gradually relax that execution
time target up to 200% of the initial target. For each execu-
tion time target explored in this manner, we first search the
minimum amount of required cores for each application based
on PERIDOT’s predictions. Then, we run the application with
the selected amount of resources and compare the measured
execution time of the application with its predetermined ex-
ecution time target. We compare the resources allocated by
PERIDOT with Spark’s default resource allocation mecha-
nism which allocates all available resources to the submitted
application and observe the resource conservation achieved by
PERIDOT.

D. EXPERIMENT METRICS
To evaluate the accuracy of PERIDOT’s predictions, we use
the relative error of the predicted execution time values as
shown in 7.

Error =
∣∣∣∣Tpredicted − Tmeasured

Tmeasured

∣∣∣∣ × 100 (7)

Since we ran each application multiple times in any core-
data setting, we are also interested in comparing the 90% Con-
fidence Intervals (CIs) of actual execution time measurements
with the predictions. We refer to the lower bound and upper
bound of the measured CI as LBmeasured and UBmeasured , re-
spectively. We define a distance metric dist to quantify the
gap between the measured CIs and the predicted values. If the
predicted value lies within the CI, then dist is defined to be
0.0. Otherwise, dist is given by (8).

dist = Min(|Tpredicted − UBmeasured |,
|LBmeasured − Tpredicted |) (8)

Eq. (8) assigns low values to CI and prediction points that
almost overlap, i.e., cases where the upper or lower bounds of
the measurement are close to the predicted value.

We then define the confidence interval gap CIG using (9).
CIG is obtained by normalizing distP by the measured appli-
cation time Tmeasured .

CIG =
∣∣∣∣ dist

Tmeasured

∣∣∣∣ × 100 (9)

Finally, to compare the effectiveness of PERIDOT’s predic-
tions for selecting resources for an application, we compare
the number of cores suggested by our technique to the number
of cores assigned by Spark default scheduler and show the
resource saving that PERIDOT’s predictions offer by selecting
the right amount of resources. Using the resources suggested
by PERIDOT, applications meet their target deadlines in most
experiments. If PERIDOT’s measured execution time with the

FIGURE 6. Examples of task waves in parallel stages.

FIGURE 7. Execution time of applications.

predicted number cores Tmeasured exceeds the execution time
target Tmax , we calculate and report an overshoot metric os as
shown in (10).

os = Tmeasured − Tmax

Tmax
× 100 (10)

VI. RESULTS
This section is organized as follows. We first provide an
overview of the performance of the 13 applications we con-
sider in Section VI-A. Then, we evaluate the validity of our
prediction approach in Section VI-B by running applications
on different number of cores and observing the mean wave
times. Section VI-C evaluates PERIDOT and compares its
performance with the other two prediction techniques. We
have made the execution scripts and the logs of all experi-
ments available online [20].

A. APPLICATION PERFORMANCE CHARACTERISTICS
We first show how the execution times of our 13 applications
change with the number of executor cores. On our setup, the
execution times vary by factors of 3 to 25 while using the
executor cores and size settings presented in Section V-B. As

VOLUME 2, 2021 353



SHAH ET AL.: PERIDOT: MODELING EXECUTION TIME OF SPARK APPLICATIONS

FIGURE 8. Wave time of the different stages of the applications.

FIGURE 9. Wave time of the applications with different settings.

shown in Fig. 7, for all applications1 execution time speedups
become progressively less dramatic as the number of cores
increases. This motivates the need for models that capture
such trends so that the appropriate number of executors can
be selected for any given application.

Fig. 8 shows the mean wave times of different stages in W c,
Mm, and So as measured from the reference executions. From
the figure, the mean wave times can vary significantly across
stages. Other applications show similar behaviour but we omit
the figures since they have a larger number of stages. This
trend validates PERIDOT’s choice of modeling each stage
group separately and aggregating the results of the individual
stage group models.

Next, we focus on the wave behaviour of a given variable
stage group across different executions. PERIDOT assumes
that the prediction for a target execution can be obtained from
the wave times of stage groups in the reference execution. The
wave times of the reference and target are similar due to the
following two reasons:

First, the block size remains almost the same in any given
system. Hence, the system processes same sized blocks across
different settings with only the number of blocks, i.e., parti-
tions, processed changing depending on the size of the appli-
cation’s input data. Since a wave is made of equal-sized, con-
current blocks, the wave times are likely to be similar across
executions (provided the structure of the data is preserved, as
discussed later). Fig. 9 plots the wave times of the largest stage

1Due to large differences in application execution times, we have shown
the results in two different figures for better visibility.

FIGURE 10. Effect of number of columns on wave time.

TABLE 2. Stage Types Characterization

of Mm, So and W c under different executor core and data size
settings. This figure confirms that the wave time of any given
variable stage group is fairly similar across different settings
thereby justifying our modeling choice. We observe similar
behaviour in other applications including those with parallel
stages.

Second, the reference execution uses data sampled from the
target data and the sampled data has the same structural char-
acteristics as the original data. We note that the wave times of
the reference execution may not provide a reliable estimate
of the wave times of the target execution if the structural
characteristics of the data across these 2 executions differ.
For example, Fig. 10 shows that the wave time of the longest
stage of Mm increases as the number of columns in the input
matrix increases even though the block sizes are the same for
all executions. Consequently, the data used in the reference
executions should have the same number of columns as the
data of the target execution for which a prediction is desired.

Finally, Table 2 shows PERIDOT’s classification of stage
groups for the different applications. From the table, PERI-
DOT identifies parallel stages for the Spark SQL queries. All
of these are also tagged as variable stage groups. PERIDOT
does not identify parallel stages in the other applications but
tags several variable stage groups. From the table, many stage
groups are tagged as fixed in all applications. Almost all of
these are stage groups of very short execution times involving
Spark operations such as collect, first, take, and runJob. The
overall execution times of all applications are dominated by

354 VOLUME 2, 2021



FIGURE 11. Wave times under different core assignments.

the execution times of variable stage groups. For example,
the variable stage groups contribute on average 68%, 83%,
and 67% to the overall execution times of Q26, Q64, and
Q26, respectively. Although the contribution of fixed stage
groups to the execution time is smaller, considering them in
the prediction process improves accuracy.

B. EFFECT OF PROCESSING CORE ASSIGNMENT
PERIDOT uses the mean wave times measured from the ref-
erence executions to offer predictions. We now verify whether
the number of cores assigned to an executor in these reference
executions impacts wave times thereby limiting the ability
of PERIDOT to offer predictions for different executor core
assignments. We collect the wave times of 4 different Spark
applications under various cores assigned to a Spark executor
on a single node. We study Mm, Lr, Q70 and Q64 to cover
different application types and application complexities. We
run each application with 2 GB of input data and vary the
number of cores from 1 to 10. Fig. 11, demonstrates the sim-
ilarity in the wave times of the longest stage group of the ap-
plications under study under all core settings. We observe this
behaviour because the number of cores assigned only changes
the number of waves and not the wave time. This experiment
verifies that the number of cores used to perform the reference
executions does not impact wave times significantly, thereby
justifying the use of wave times by PERIDOT for offering
predictions.

C. ACCURACY OF PERIDOT
Fig. 12 shows the mean prediction errors of PERIDOT for
the 13 applications on our default cluster, Breezy. We perform
predictions for all executor and data size settings that are
not used by the reference executions. The mean prediction
error on the Breezy cluster is 7.7%. Many of PERIDOT’s
predictions are either within or very near the 90% confidence
interval of their corresponding measured values. The mean
value of the CIG metric is only 4.3% further indicating the
effectiveness of the technique.

Further analysis of the errors reveals some general trends.
There is no clear correlation between the magnitude of errors
and the data size and executor core settings. Applications that
had a simple DAG structure with no parallel stages resulted

FIGURE 12. Prediction errors of PERIDOT on Breezy cluster.

in a small mean error of 5.0% because they have very well
defined fixed and varying stage groups in them. In contrast,
Spark SQL applications, which have complex DAGs and par-
allel stages, show a slightly higher mean error of 9.3%. In
our experiments, Q52 has the highest mean error among all
applications at 14.1%. The main reason behind the higher
errors is that PERIDOT assumes that a stage group where
the number of partitions stays the same across the reference
executions can be modeled as a fixed stage group whose
execution time is a constant across different runs. However,
this is not strictly true for Spark SQL applications. Despite
not displaying an increase in the number of partitions with an
increase in data size, these stage groups show small increase
in the execution time because of an increase in the size of data
processed by each partition. Capturing the exact behaviour
of such stages requires more complex models, which we will
explore as future work.

We note that increasing the number of reference executions
may provide better averaged values of our model parameters
and consequently can improve prediction accuracy. However,
this increases the time needed for executing the references.
We observed that the improvement in the accuracy beyond 2
reference executions is negligible. For example, increasing the
number of reference executions from 2 to 4 for the Correla-
tions (Co) application decreases the prediction error by only
2%, while doubling the time spent on reference executions.
Thus, 2 references allow a good trade off between accuracy
and quickness. If cluster operators wish to increase the num-
ber of references, this can still be done with no change in our
proposed method.

PERIDOT provides quick predictions. For instance, ex-
haustive experimentation of all possible configurations we
explore for all 13 applications requires over 3,400 core hours.
The core hours needed by PERIDOT are only 0.8% of that
incurred by exhaustive experimentation. We also note that the
time taken to analyze the log files of application executions in
order to extract the model parameters is negligible.

D. COMPARISON WITH OTHER APPROACHES
Fig. 13 compares PERIDOT and Ideal Scaling (IS). PERIDOT
significantly outperforms IS offering predictions that are 10
times more accurate overall than IS. For the W c, Mm, So,

VOLUME 2, 2021 355



SHAH ET AL.: PERIDOT: MODELING EXECUTION TIME OF SPARK APPLICATIONS

FIGURE 13. Prediction errors of PERIDOT and IS.

Lr and Co applications, the mean accuracy of PERIDOT is
2 times that of IS for the Breezy experiments. IS performs
extremely poor with Lr and Spark SQL applications, which
have complex DAGs. For instance with Q64, which has a very
complicated DAG, the average prediction error of IS reaches
104% in the Breezy experiments. Other SQL queries show
average prediction errors of up to 116% with the IS prediction
method. These results show that the behaviour of applications
with complex DAGs and parallel stages cannot be predicted
by mere linear extrapolation of execution time.

Finally, we compare PERIDOT with the state-of-the-art
machine learning based Ernest approach. Ernest is shown to
be effective for predicting the execution time of the appli-
cations when combined with a training data selection pro-
cess [11]. In this study, we specifically focus on the effective-
ness of Ernest when trained with limited amount of training
data, i.e., the two reference executions. Ernest has a mean
error of 20.4% over the 13 applications used in this study
with the maximum error reaching up to 60%. The mean error
of Ernest is nearly 2.6 times of PERIDOT’s mean error. The
mean error of Ernest can improve when more training data
is provided. Using 4 reference executions the mean error of
Ernest reduces, however it is still 1.8 times of PERIDOT’s
mean error. This confirms that PERIDOT is more effective
in situations that need quick predictions based on a limited
number of executions.

E. EFFECT OF CLUSTER NODES
To explore how our modeling techniques can be generalized,
we evaluated our model on the Bigmem cluster [28]. Each
node in this cluster has a very different resource setting than
the Breezy nodes. We run the same set of experiments by
varying the input data and core sizes and record the measured
execution times. We then compare them against the predic-
tions of PERIDOT. On Bigmem, we achieved the mean error
and mean CIG of 10.8% and 9.7%, respectively over all 13
applications. Considering both clusters and all applications,
PERIDOT achieves a mean error and mean CIG of 9.1%
and 6.9%, respectively. These results validate the modeling
choices described in Section IV.

FIGURE 14. Prediction errors of PERIDOT on Bigmem cluster.

F. USING PERIDOT FOR RESOURCE ALLOCATION
In this section, using an example, we show that PERIDOT’s
execution time predictions can be used for selecting the min-
imum amount of resources while closely meeting application
deadlines. To evaluate the effectiveness of PERIDOT for re-
source allocation, we compare it against the default resource
allocation of Spark, which assigns all available cores to the
submitted application. For each application at 50 GB input
size, we start with an execution time target, and gradually
relax that target. We assume our system to have a maximum
of 50 execution cores that can be assigned to any application.
To make the comparison easier, we start experiments with
the execution time target that can be met with 50 cores. In
this case, both the default resource allocation and PERIDOT
will assign 50 cores to the application. Then, we conduct 10
additional experiments for each application, where we relax
the execution time target of the application from 20% to 200%
of the initial execution time target.

Fig. 15 shows the number of cores allocated by the default
static approach and number of cores selected by PERIDOT
for 4 applications. Spark’s default resource allocator will stat-
ically assign all of the 50 cores to the application regardless
of its execution time target. PERIDOT adjusts the resources
based on its prediction for the execution time of the applica-
tion under different core configurations. We record the actual
execution times for each application with 50 GB of input
data over core settings from 10 to 50 in steps of 5 on the
Bigmem cluster. For each experiment, we show the actual
minimum number of required cores for meeting the execution
time targets based on the measured execution times of the
applications. From the figure, the cores selected by PERIDOT
closely follow the number of cores that are actually required.
Similar behaviour is observed with the rest of the applications
in our experiment set. Considering all applications and sce-
narios we explore, PERIDOT’s resource allocation provides
43.1% conservation of resources on average over the default
approach.

The execution time targets may be violated when PERIDOT
selects less cores than required. In case of a violation, we
record the amount of the overshoot percentage os. Consid-
ering all applications and the 10 time targets that we study

356 VOLUME 2, 2021



FIGURE 15. Executor cores allocated with the default approach, PERIDOT, and actual required cores.

TABLE 3. Resource Savings & Violations

for each application, the mean os is 8.3%. This is a reason-
able value compared to the 43.1% resource conservation of
PERIDOT.

Table 3 compares other static allocation strategies in terms
of execution time target violations and resource conserva-
tion. As expected, assigning lower number of cores realizes
resource savings but results in time target violations. The
highest resource conservation relative to the 50 core assign-
ment is 60% and is achieved by statically allocating 20 cores.
However, this policy results in the highest execution time
target violation of 53.2%. In contrast, PERIDOT offers 43.1%
resource conservation relative to the 50 core case at the cost of
only an 8.3% target time violation. These results offers a good
balance of resource conservation and time target violation
compared to static allocation techniques.

VII. CONCLUSIONS AND FUTURE WORK
Users and operators of a Spark system can benefit from mod-
els that provide timely performance predictions for their ap-
plications. For example, such models can provide an applica-
tion developer early insights about scaling behaviour thereby
helping them optimize their implementation. They can also
be used at runtime by schedulers to size applications with
the right amount of resources. Existing approaches require
extensive prior executions of applications under a wide range
of resource allocations and data sizes of interest. Such data
might not be always available. Furthermore, obtaining similar
information through controlled experiments can be challeng-
ing and even impractical. This paper proposes a technique
called PERIDOT that uses just two reference executions on a
small subset of the application’s input data to obtain a model
that can extrapolate its predictions for other input data sizes
and resource allocations.

A key aspect that differentiates PERIDOT from existing
approaches is that it breaks down Spark to it’s most basic
operative functionality and explicitly models the task wave
behaviour and internal dependencies in a Spark application.
For any given application, it uses the reference executions
to identify application dependencies as a sequence of stage
groups. It also computes the times to execute a single wave
of tasks in each of the identified variable stage groups in the

VOLUME 2, 2021 357



SHAH ET AL.: PERIDOT: MODELING EXECUTION TIME OF SPARK APPLICATIONS

reference executions. Modeling the execution time in terms
of these parameters ensures that PERIDOT can capture the
performance behaviour of an application without the need for
exhaustive sampling of the application behavior.

Evaluations based on a diverse set of applications show
that PERIDOT can provide accurate predictions. Our selected
set of applications cover a wide range of Spark operations
and internal dependencies. PERIDOT outperforms competing
approaches. In particular, it is more effective in capturing
the execution time behaviour of applications with complex
dependencies. The results also show that PERIDOT requires
significantly lesser experimentation effort than machine learn-
ing approaches to provide accurate predictions. We also show
that PERIDOT is highly effective for right sizing a Spark ap-
plication such that the application satisfies a specified deadline
while using the least amount of resources.

Future work will focus on further enhancing PERIDOT’s
accuracy. In particular, we will focus on alternative methods
to model stages that have fixed partition size but varying
input record size and study the impact of those methods on
accuracy.

APPENDIX I. STEPS INVOLVED IN PERIDOT
The flowchart at the top of the page shows the steps involved
in the prediction process of PERIDOT. The main steps are
shown in colored boxes and the tasks involved in each step
are shown in white boxes.

REFERENCES
[1] Apache Spark, “Lightning-fast unified analytics engine,” 2018.
[2] Apache Spark, “Monitoring and instrumentation,” 2017.
[3] P. Petridis, A. Gounaris, and J. Torres, “Spark parameter tuning via trial-

and-error,” in Proc. INNS Conf. Big Data, Springer, 2016, pp. 226–237.
[4] G. Wang, J. Xu, and B. He, “A novel method for tuning configuration

parameters of spark based on machine learning,” in Proc. 18th Int. Conf.
High Perform. Comput. Commun.; IEEE 14th Int. Conf. Smart City;
IEEE 2nd Int. Conf. Data Sci. Syst., 2016, pp. 586–593.

[5] A. Gulino, A. Canakoglu, S. Ceri, and D. Ardagna, “Performance
prediction for data-driven workflows on apache spark,” in Proc. 28th
Int. Symp. Modeling, Anal., Simul. Comput. Telecommun. Syst., 2020,
pp. 1–8.

[6] M. U. Javaid, A. A. Kanoun, F. Demesmaeker, A. Ghrab, and S. Skhiri,
“A performance prediction model for spark applications,” in Proc. Int.
Conf. Big Data, Springer, 2020, pp. 13–22.

[7] G. Cheng, S. Ying, B. Wang, and Y. Li, “Efficient performance predic-
tion for apache spark,” J. Parallel Distrib. Comput., vol. 149, pp. 40–51,
2021.

[8] G. P. Gibilisco, M. Li, L. Zhang, and D. Ardagna, “Stage aware perfor-
mance modeling of dag based in memory analytic platforms,” in Proc.
IEEE 9th Int. Conf. Cloud Comput., 2016, pp. 188–195.

[9] K. Wang and M. M. H. Khan, “Performance prediction for apache spark
platform,” in Proc. 17th Int. Conf. High Perform. Comput. Commun.,
IEEE 7th Int. Symp. Cyberspace Safety Secur., IEEE 12th Int. Conf.
Embedded Softw. Syst., pp. 166–173.

[10] A. Gounaris, G. Kougka, R. Tous, C. T. Montes, and J. Tor-
res, “Dynamic configuration of partitioning in spark applications,”
IEEE Trans. Parallel Distrib. Syst., vol. 28, no. 7, pp. 1891–1904,
Jul. 2017.

[11] S. Venkataraman, Z. Yang, M. J. Franklin, B. Recht, and I. Stoica,
“Ernest: Efficient performance prediction for large-scale advanced ana-
lytics,” in Proc. 13th USENIX Symp. Networked Syst. Des. Implementa-
tion, 2016, pp. 363–378.

[12] M. T. Islam, S. Karunasekera, and R. Buyya, “dSpark: Deadline-based
resource allocation for big data applications in apache spark,” in Proc.
IEEE 13th Int. Conf. E-Sci., 2017, pp. 89–98.

[13] A. D. Popescu, Runtime prediction for scale-out data analytics. Ph.D,
thesis, Dept. Comput. Sci., École Polytechnique Fédérale de Lausanne,
2015.

[14] Z. Chao, S. Shi, H. Gao, J. Luo, and H. Wang, “A gray-box performance
model for apache spark,” Future Gener. Comput. Syst., vol. 89, pp. 58–
67, 2018.

[15] Y. Amannejad, S. Shah, D. Krishnamurthy, and M. Wang, “Fast and
lightweight execution time predictions for spark applications,” in Proc.
IEEE 9th Int. Conf. Cloud Comput., 2019, pp. 1–3.

[16] F. Pukelsheim, Optimal Design of Experiments. Philadelphia, PA, USA:
Society for Industrial and Applied Mathematics, 1993.

[17] M. T. Islam, S. Karunasekera, and R. Buyya, “dSpark: Deadline-based
resource allocation for Big Data applications in apache spark,” in Proc.
13th IEEE Int. Conf. e- Sci., 2017, pp. 89–98.

[18] R. Singhal and P. Singh, “Performance assurance model for applications
on SPARK platform,” in Proc. Technol. Conf. Perform. Eval. Bench-
marking, Munich, Germany, 2017, pp. 131–146.

[19] S. Shah, Y. Amannejad, D. Krishnamurthy, and M. Wang, “Quick exe-
cution time predictions for spark applications,” in Proc. Int. Conf. Netw.
Service Manage., 2019, pp. 1–9.

[20] S. Shah, Y. Amannejad, D. Krishnamurthy, and M. Wang, “Peridot Data
Set,” 2020. [Online]. Available: https://github.com/Yasaman-A/Peridot

[21] TPC-DS Benchmark, “ Tpc-Ds Benchmark,” [Online]. Available: http:
//www.tpc.org/tpcds/

[22] S. A. Jyothi et al., “Morpheus: Towards automated slos for enterprise
clusters,” in Proc. 12th USENIX Symp. Operating Syst. Des. Implemen-
tation, Savannah, GA, USA, 2016, pp. 117–134.

[23] Apache Spark, “Job Scheduling,” 2017.
[24] S. Sidhanta, W. Golab, and S. Mukhopadhyay, “Optex: A deadline-

aware cost optimization model for spark,” in Proc. 16th IEEE/ACM Int.
Symp. Cluster, Cloud Grid Comput., 2016, pp. 193–202.

[25] J. Lee, B. Kim, and J.-M. Chung, “Time estimation and resource min-
imization scheme for apache spark and hadoop big data systems with
failures,” IEEE Access, vol. 7, pp. 9658–9666, 2019.

358 VOLUME 2, 2021

https://github.com/Yasaman-A/Peridot
http://www.tpc.org/tpcds/


[26] L. Baresi, A. Leva, and G. Quattrocchi, “Fine-grained dynamic resource
allocation for Big-Data applications,” IEEE Trans. Softw. Eng., vol. 47,
no. 8, pp. 1668–1682, Aug. 2021.

[27] Apache Spark, “Running Spark on YARN,” 2017.
[28] ARC, “Research Computing Cluster,” 2018. [Online]. Available: https:

//hpc.ucalgary.ca
[29] A. Arora, “Scalable-Matrix-Multiplication-on-Apache-Spark,” [On-

line]. Available: https://github.com/Abhishek-Arora/Scalable-Matrix-
Multiplication-on-Apache-Spark, Accessed: Oct. 2018.

[30] D. Ardagna et al., “Performance prediction of cloud-based Big Data
applications,” in Proc. ACM/SPEC Int. Conf. Perform. Eng., New York,
NY, USA, 2018, pp. 192–199.

[31] M. Poess, R. O. Nambiar, and D. Walrath, “Why you should
run TPC-DS: A workload analysis,” VLDB, vol. 7, pp. 1138–1149,
2007.

SARAH SHAH received the B.Sc. degree from the
National University of Sciences and Technology,
Pakistan, and the M.Sc. degree from the Univer-
sity of Calgary. She is currently the Ph.D. student
with University of Calgary. Her research interests
include software performance engineering for big
data analytics systems.

YASAMAN AMANNEJAD received the bachelors
and masters degrees in computer information tech-
nology from the Amirkabir University of Technol-
ogy and the Ph.D. degree in software engineering
from the University of Calgary. She is an Assis-
tant Professor with Mount Royal University. She
received the Ph.D. degree in software engineering
from the University of Calgary, Canada. Her re-
search interests include software engineering, data
analytics, and machine learning.

DIWAKAR KRISHNAMURTHY received the
bachelors degree in electrical and electronics en-
gineering from the Thiagarajar College of Engi-
neering, Madurai, India in 1995 and the M.Eng.
and PhD. degrees in electrical engineering from
Carleton University, Ottawa, Canada in 1998 and
2004, respectively. He is a Professor with the Uni-
versity of Calgary. His research interests focused
on the performance evaluation of software systems.
He is currently involved in research projects re-
lated to cloud computing, virtualization technolo-

gies, big data analytics, and healthcare simulation.

MEA WANG received the Bachelor of Computer
Science (Honours) degree from the University of
Manitoba, Winnipeg, Manitoba in 2002. She stud-
ied in the Department of Electrical and Computer
Engineering at the University of Toronto from
2002 to 2008 and earned the MASc and PhD de-
grees in 2004 and 2008, respectively. She is an As-
sociate Professor with the Department of Computer
Science, University of Calgary. Her research inter-
ests include peer-to-peer networking, multimedia
networking, cloud computing, as well as network-

ing system design and development.

VOLUME 2, 2021 359

https://hpc.ucalgary.ca
https://github.com/Abhishek-Arora/Scalable-Matrix-Multiplication-on-Apache-Spark


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


