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ABSTRACT The massive data generated by large-scale dynamic systems makes its optimization facing a
tough challenge. Traditional White Box-based methods directly model the internal operating mechanism of
the system, so massive amounts of measured data need to be handled, which is costly and time-consuming.
The poor interpretability of the Black Box-based methods makes it difficult to adapt to the dynamic environ-
ment. Thus we propose a novel Gray Box-based approach namely Deep Reinforcement Learning-enabled
Constraint Set Inversion Algorithm (DRESIA), which establishes a quantitative model of the nonlinear
interoperability effects of system internal states which simplifies the White Box’s complex mechanism of
reconstruction and prediction and retains the interpretability of the model, therefore improves the prediction
efficiency of feasible region while also improving the generalization ability. It further improves the dynamic
adaptability of the modeling environment, which provides a new performance balancing scheme for system
modeling. Under the premise that the large-scale 5G Cyber-Twin system satisfies the given Quality of
Service (QoS) requirements, we perform DRESIA to realize the efficient and dynamic optimal search of
feasible region, the results show that the DRESIA reduces the computational cost, and balances the accuracy
and robustness of the feasible region, which validate the effectiveness and superiority of Gray Box-based
approach.

INDEX TERMS Cyber-twin, digital twin, dynamic system, white-box, black-box, gray-box, fuzzy measure,
choquet integral, deep reinforcement learning, feasible region inversion, massive MIMO.

I. INTRODUCTION
Most of the existing large-scale system models in the vast
majority of cases such as cyber-twin [12], digital twin [25],
intelligent transportation systems(ITS) [44], etc. are dynamic
and stochastic. For a cyber-twin technology-based simulation
platform, the analytical description does not fully cover the

behaviour of the actual systems. To evaluate the quality of
the future system in the preliminary design stage, or improve
the function of the system and the quality index value in the
operation stage, a region of efficiency should be found to
prove the stable service of the real system. The feasible region
is defined as a set of combinations of system parameters,
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namely a constraint set, for which the values of the selected
quality indicators are in the sense of Pareto better than the
pre-selected boundary values.

As a kind of complex time-varying system, the constraint
set of large-scale wireless communication system is the
reference range for the parameters that ensure its steady
operation. In our previous works, we have adopted both
the White Box-based and Black Box-based approaches
to optimize the performance indicators. The White Box-
based method using Channel characteristics such as de-
tailed ray-tracing data captured by our designed code-division
multiplexing-based parallel channel sounder [38], as the plan-
ning parameters to generate the 3D channel matrix based on
the 3GPP 38.901 protocol [13]. A complete simulation cal-
culation process generates higher-level path loss, throughput
and other performance indicators to obtain overall network
performance. The Black Box-based method [40], [41] that we
proposed training the neural network with ray-tracing data and
performance indicators generated by the White-Box method,
and rapid network performance evaluation is achieved by
reusing the trained neural network.

In the existing studies, Black-Box-based technology [33]
devised a specific model according to a specific scenario to
find the global optimum, thus finding the constraint set. [4]
performed the ascending iteration method with the largest
gradient through obtaining the local approximation of the ob-
jective function. Therefore, this method realized the online pa-
rameter optimization of the system containing random factors
but it is not ideal in a multi-parameter simulation system. To
tackle this problem, a Gradient Descent-based algorithm [21]
with a penalty method was proposed. It converted an opti-
mization problem constrained by the coverage condition into
a simple form with only lower and upper bound conditions,
and thus a discrete coverage index was converted into a con-
tinuous coverage index. Then it can be solved by Gradient
Descent Optimization. This method can be applied to various
optimization conditions. However, a large amount of real-time
data feedback is required to achieve the expected effect, the
parameter range is also limited. Otherwise, distortion infor-
mation will be generated in the process steps from discrete
to continuous. And this method is not applicable to the situa-
tion where there are too many parameters and the parameters
interfere with each other. Taguchi Method (TM) [10], [30],
[35] as a Data-Driven technology was developed to optimize
manufacturing processes and then imported into several en-
gineering fields, including wireless networks. Then it can be
used for multi-objective design optimization [28] and wire-
less networks parameter optimization [10] etc. However, for
large-scale systems with numerous parameters, wide range of
parameter values, and long simulation time, TM will cause
severe time overhead.

For the defects of high data sampling rate, e.g. high stor-
age requirement and low generalization, exhaustive methods
or deep learning methods cannot be used in large-scale dy-
namic system, therefore, heuristic learning is currently one

of the mainstream way to deal with this scenario. The Ge-
netic Algorithm (GA) [10], [14], [14], [27] is widely used
to quickly search for the optimal solution of combinatorial
optimization problems such as gateway placement optimiza-
tion [1] and coverage optimization of mobile wireless sensor
networks [20] etc. However, the Hamming Cliff [11] makes
the crossover and mutation steps in the GA hard to cross.
Otherwise, for the problem to be solved in this article, pa-
rameters with different meanings cannot be expressed in a
unified binary code. Moreover, it could face a local optimal
dilemma sometimes. Particle Swarm Optimization (PSO) [43]
and Ant Colony Optimization (ACO) [7], [8] as swarm in-
telligence algorithms performed a group of unintelligent or
slightly intelligent individuals (agent) through cooperation to
show intelligent behaviour, thus providing a new possibility
for solving complex problems [32]. In this way, PSO and
ACO can be used for optimizing the radio network parame-
ters [10], wireless sensor network path optimization [45], net-
work inference, 2-D coverage optimization in wireless sensor
network [3], cellular network spectrum allocation [42], and
parameter estimation [46]. These algorithms require a bulk
of data set to give feedback to agents. Therefore, PSO and
ACO will face difficulty solving the objective problem while
the data set is not dense enough, and the converge time is
too long. Simulated Annealing (SA) [8], [18] has the same
high robustness as PSO. It can be used for the location distri-
bution of non-anchor nodes in sensor networks [17], finding
the shortest path between wireless network sensors [8] and
wireless sensor network layout problem [23] etc. But SA has
the same problem of high calculation amount and dense data
set requirement.

Considering the defect of the above methods, Fuzzy Mea-
sure (FM) [16] as a special non-additive measure has good
performance in the evaluation of subjective, complex systems.
There are two well-known fuzzy measures, λ-measure and
P-measure. The former is not a close form, and the latter
is not sensitive. The non-additive model based on Choquet
integral [16] has great practical use in many fields, especially
in the interaction among predictive attributes towards the
objective attributes. Through Choquet integral, the nonlinear
relationship between the parameter and the objective output
is transformed into a linear additive form. Therefore, we can
characterize the mapping of simulation system parameters
to system performance [37]. [15] proposed a new genetic
algorithm for nonlinear multi-regression based on general-
ized Choquet integral with respect to signed fuzzy measures.
Unlike previous work of Choquet integral, the speciality of
this new model is that the interaction among predictive at-
tributes towards the objective attribute can be properly re-
flected through a signed fuzzy measure and the relevant Cho-
quet integral. It shortens the running time of the program and
increases the accuracy of the result. [2], [6], [36] proposed a
cross-layer design optimization algorithm based on Choquet
integral and its desired effect is obtained, the amount of cal-
culation and the memory required for calculation are greatly
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reduced. This method established an observable and inter-
pretable parameter model, but does not yet have the ability
to flexibly adjust parameters.

With the support of a large number of data samples, the
fitted Black Box-based method solves the problem of rapid
prediction, but the cost of obtaining samples and training is
too high, and it cannot dynamically adapt to environmental
changes. The White Box-based method does not require data
sampling, but the calculation process such as reconstruction
and prediction is complicated, low in efficiency and high
in cost. In this article, to weigh the accuracy and efficiency
of system measurement and reconstruction, we proposed
a novel Gray Box method containing two procedures to
solve the observability, controllability, and interpretability
of system parameters. The Gray Box method adopts the
Choquet integral-based Interdependency and Significance
Analysis (CISA) algorithm to obtain the combinations of
parameters from a limited number of data sets that have the
most significant impact on the MIMO system’s performance.
In the case of uniform sampling of parameters within the
value range, CISA can accurately reflect the contribution
of different parameter combinations to the MIMO system’s
performance. Moreover, for practical usage scenarios, a Deep
Reinforcement Learning-enabled Constraint Set Inversion
Algorithm (DRESIA) as another procedure of the Gray
Box method is adopted, which can find a combination of
parameters that ensure the QoS qualified when individual
parameters change due to the external environment. The key
contributions of this work are summarized as follows.

• CISA is proposed to characterize the contribution of pa-
rameter combinations in the MIMO system, therefore
significantly enhance our capability for system behaviour
characterization and provide better insights for system
running.

• A novel method with observable, adjustable and inter-
pretable parameters namely DRESIA is proposed to over-
come the problem of non-convergence caused by sparse
data set. DRESIA adopts the principle of data fusion
that can combine the result of Choquet integral with
the measured data as the reward of the deep reinforce-
ment learning-enabled constraint set inversion algorithm
to find the parameter constraint set that meets the system
performance requirements. And the dynamically updated
data set guarantees that the DRESIA can adapt to dy-
namic changes of the system.

To evaluate the effectiveness of Gray Box method on
dynamic stochastic system, we need a specific simulation
platform. As a key enabling technology for 5G, Massive
MIMO significantly increases the system capacity through
Space Division Multiplexing (SDM), and meanwhile it
also increases the complexity of network planning and
optimization. The difficulty of 5G large-scale MIMO network
planning and optimization lies in the complexity of 3D wire-
less channel and the need for a large number of parameters
to optimize the parameter configuration of wireless system
from the perspective of spatial, frequency and time domain.

The parameters that directly affect the coverage effect of
large-scale MIMO include antenna selection, base station
deployment location, antenna downtilt, azimuth, power and
other major engineering parameters, as well as other major
wireless protocol parameters. The system capacity, wireless
coverage, and QoS of massive MIMO strongly depend on
the 3D channel propagation environment. While in the real
coverage scenario, the 3D channel is normally constructed by
the 3D spatial characteristics of the propagation environment.
Because of these characteristics, we adopt the 3D channel
model reconstructed by the ray-tracing data generated based
on the 3D map as the simulation platform, and perform the
Gray Box method on it to verify its feasibility.

The rest of the paper is organized as follows. In Section II,
the characteristics of three different models was briefly intro-
duced and compared. In Section III, the CISA algorithm was
introduced to analyzing the contribution degree of each sys-
tem parameter to the output. In Section IV, the novel approach
namely DRESIA was presented for searching the configura-
tion combinations of parameters that meet the requirements.
In Section V, the simulation results was given to verify the
effectiveness of the proposed approaches in Section III and
Section IV. Finally, this work is concluded in Section VI.

II. SYSTEM MODEL AND COMPONENTS
The advantages of comprehensive coverage, good adaptabil-
ity, and good portability make Deep Learning (DL) widely
used in many fields, especially efficient for the simulation
of applications that contain high-dimensional data or factors
that are difficult to quantify mathematically. Therefore, the
DL-based Black-Box simulation modeling system is widely
used in industry to replace some White-Box functions that are
time-insensitive and time-invariant.

However, the communication environment will change with
climate, time and real-time service volume, etc. To main-
tain high-quality transmission in the communication system,
except for some fixed-parameter function, other parameters
should be observable for system testing. Similarly, while these
parameters are observable, they should also be adjustable so
that the system can be optimized. However, the Black-Box
function is difficult to be observed and adjusted, which makes
the system update and optimization very difficult. Further-
more, without newly observed data, the Black-Box function
cannot be updated, resulting in poor generalization.

As one of the White Box-based approaches, FM-based
quantitative model overcomes the shortages of unobservable
and unadjustable parameters of the Black-Box system.
As shown in Fig. 1, the FM-based White Box system is
contributed by a set of FM-based functions, which require a
certain amount of uniformly sampled data, and select the ap-
propriate function form to fit. The system can change the ap-
propriate function form according to different operating envi-
ronments. Furthermore, the FM-based function’s parameters
are observable and adjustable since it builds a quantification
table. Although the parameters are adjustable, the model can-
not evolve because data sampled in the same period time could
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FIGURE 1. Fuzzy Measure based White Box system.

FIGURE 2. Gray Box System.

be coherent, which may leads to functional deviations and
poor generalization. Hence, the FM-based White Box system
in large-scale dynamic system cannot evolve in most cases.

In our work, we proposed a novel approach namely Gray
Box to solve the shortcomings of the FM-based White Box
system to achieve parameters’ contribution analysis and con-
straint set inversion. Since the system will be affected by
environmental changes, and the output will also change ac-
cordingly, which may cause the system output to fail to meet
the requirements. Therefore, it is crucial to improve the evolv-
ability of the model to ensure the stable output of the system.
Thus our method focuses on the update of the measured data
and how to search the constraint set. As shown in Fig. 2,
CISA calculates the contribution of each parameter to the
system output based on the existing data set. DRESIA trains
the built-in agents with the existing data set and the param-
eter contribution set by DRL-based method. Then agent stop
training when DRESIA always selects the parameter combi-
nations with high system output. Thus we can obtain a series
of parameter combinations when the output meets the system
output requirement. To enable DRESIA to continuously out-
put the parameter constraint set under the current operating
environment, we let the agent continue to output parameter
combinations and input them into the large-scale 5G wireless
communication system to get new measured data and discard

TABLE I. Notations

TABLE II. Approach Comparison

the same amount of origin data according to the First In First
Out (FIFO) principle. Furthermore, to make the agent sample
enough parameter combinations with high-output, and avoid
the distortion of the output result of DRESIA caused by the
agent sampling concentration, we additionally perform uni-
form sampling to supplement the data set. Finally, we update
the Gray Box System with new dynamic data to realize the
evolvability of the model. Table 2 shows a comparison be-
tween models.

III. CHOQUET INTEGRAL-BASED INTERDEPENDENCY
AND SIGNIFICANCE ANALYSIS ALGORITHM
Fuzzy measure is a powerful method to describe the cross-
interactions, especially the non-linear Choquet integral. It has
been successfully applied in evidence fusion and intelligence
information processing [5], [9], [19], [26]. Since the massive
MIMO system’s throughput is a multi-dimensional factor in-
fluenced conception, the interaction among contribution of
contributions towards the objective system throughput can be
measured adequately through a non-additive FM, which is the
main feature of the Choquet integral model.

Considering a set of attributes (system parameters in large-
scale 5G simulation platform) X = {x1, x2, . . . , xm}, where
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TABLE III. System Observation and Output

m = |X |. And n observed attributes together with their corre-
sponding objective (system throughput) y = {y1, y2, . . . , yn},
then we have the form as Table 3.

The observation of attributes x1, x2, . . . , xm can be regarded
as a function f : X → (−∞,+∞), and the jth observation of
xi is denoted by f ji, where 1 ≤ i ≤ m and 1 ≤ j ≤ n.

The interaction among attributes X towards the objective y
is characterized a set function defined on the power set μ :
P(X )→ R with μ(∅) = 0, where R is the real domain. The
Choquet integral-based model is defined as

y =
∫

(C)
f dμ+ N(0, σ 2), (1)

where N(0, σ 2) is a normally distribution random perturba-
tion with expectation 0 and variance σ 2. Define an α-cut set Fα

of f , where Fα = {x| f (x) ≥ α}, for any α ∈ R. The Choquet
integral

∫
(C), with a fuzzy measure μ, is defined as

∫
(C)

f dμ =
∫ 0

−∞
[μ(Fα )− μ(X )]dα +

∫ +∞
0

μ(Fα )dα. (2)

Obviously, when some parameters have a wide range of val-
ues, it will leads to a particularly disturbance that influence
the Choquet integral’s result. Thus, we should add a normal-
ization method to preprocess the data in Table 3 with

xnorm = 1− e
− 2ex

xspan

1+ e
− 2ex

xspan

, (3)

where xspan = |max xi −min xi|.

A. SOLVING THE CHOQUET INTEGRAL WITH
NON-ADDITIVE MEASURE
To solve the Choquet integral, according to [2], we need to re-
duce the non-linear multi-regression model to the linear multi-
regression model by converting each m-dimensional vector
attribute datum to a 2m-dimensional vector datum, which is
defined by Eq. (2). Then we have the linear multi-regression
model

y = Zμ+ N(0, σ 2), (4)

where Z = (zi j )n×M , M = 2m − 1, and μ = (μ({x1}), . . . ,
μ({xm}), μ({x1, x2}) · · · , μ({x1, x2, . . . , xm−1}), μ({x1, x2,

. . . , xm}))T , y = (y1, y2, . . . , yn)T .
In order to reduce the amount of calculation and storage

space, [34] proposed a genetic algorithm to compute the Cho-
quet integral, where Z is expressed as Algorithm 1.

Algorithm 1: Augmented Matrix Construct.
1: Input: The observation attributes f defined in

Table 3
2: Outputs: The augmented matrix Z with size of

n× (2m + 1)
3: Initialize an empty matrix Z = [ank] with size of

n× (2m + 1), where k = 1, 2, . . . , 2m

4: for i = 0, n− 1 do
5: Initialize Z[i, 0] = 0
6: for j = 1, 2m − 1 do
7: if min j j′=1( fi j ) ≥ max j j′=0( fi j ) then
8: Z[i, j] = min j j′=1( fi j )−max j j′=0( fi j )

where j′ ∈ [1, m]
9: else

10: Z[i, j] = 0
11: end if
12: end for
13: end for

After derived the matrix Z ∈ Rn×M for the determination of
fuzzy measures, the matrix Z can be written as

Z = (zT
1 , zT

2 , . . . , zT
n )T

where zT
i = (zi1, zi2, . . . , ziM ) 	= 0

(5)

Then we can solve the Eq. (4) by using the standard least-
square method. For the given observation data, the optimal
regression coefficients μ can be determined by using the least
squares method in order to make σ 2 minimal. Therefore, the
least square problem Eq. (4) can be written as the following
equivalent form:

P1 = min
μ
‖Zμ− y‖, (6)

where μ = (μ1, μ2, . . . , μM )T . According to [2], Wang et al.
proposed a solution to Eq. (6):

μT
zi
= zi(z

T
i zi )
−1yi, (7)

and update μ with

μi+1 = μi + (1− γ )

[
1− 〈μ,μzi 〉
〈μzi , μzi 〉

]
μzi , (8)

where γ ∈ [0, 1].
With this procedure, one observation is processed with

the least norm approach per time. Assume n observations is
enough to approximate μ. This is reasonable because the num-
ber of rows in Z can be any number in the way of constructing
matrix Z by randomly sampling the n observations. Thus the
complete algorithm is shown as Algorithm 2.

In this algorithm, constructing the augmented matrix with
Algorithm 1 takes the time of O(nMm), where M = 2m − 1.
Calculating the solution with Algorithm 2 takes the time of
O(nMm). Therefore, the overall computation complexity is
O(nMm)+ O(nM2) = O(nM2).
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Algorithm 2: The Solution of the Least Squares Problem
Eq. (6).

1: Require: The observations {(zi, yi )n
i=1}, γ , ε

2: μ0 = 0
3: while i < n do
4: Derive the solution of Eq. (6) with Eq. (7), i.e.,

μzi = zT
i (zizT

i )−1yi

5: Calculate the solution with
μi+1 = μi + (1− γ )

[
1− 〈μ,μzi 〉

〈μzi ,μzi 〉
]
μzi ,

6: if the last 100 μs do not change then
7: Exit;
8: end if
9: i+=1

10: end while

B. SOLVING THE CHOQUET INTEGRAL WITH CISA
APPROACH
For a system with a real time updating data set, its operating
efficiency is sensitive to the computational complexity of a
single step. The Eq. (8) will generate a lot of calculation and
memory footprint. Thus we need a faster approach to solve the
Choquet integral.

To solve Eq. (2) with lower complexity, we permute the
indices so that the value of { f (x1), f (x2), . . . , f (xm)} satisfies

f (x(0)) ≤ f (x(1)) ≤ f (x(2)) ≤ · · · ≤ f (x(m) ), (9)

where f (x(0)) = 0, and x(1), x(2), . . . , x(m) is a permutation of
x1, x2, . . . , xm.

Therefore, the discrete Choquet integral of a function f :
X → R+ with respect to μ is

∫
(C)

f dμ =
m∑

i=1

(
f (x(i) )− f (x(i−1))

)
μ(�i ),

where �i = {x(i), x(i+1), . . . , x(m)},
(10)

The specific steps to solve the discrete Choquet integral
is presented in Appendix A. According to Appendix A, for
observed attribution zT

i , there are at most m additive actions
on the system throughput formation with Eq. (7), then Eq. (7)
can be rewritten as

μT
ζ = ζi(ζ

T
i ζi )

−1yi,

where ζ T
i = {w1( fi(x(1))− fi(x(0))),w2( fi(x(2))

− fi(x(1))), . . . ,wm( fi(x(m) )− fi(x(m−1)))}, (11)

and w j is an adjustable weight parameter. When w j = 1, the
result of the Gray Box model reflects the real impact of param-
eter combinations to the system output. When w j increases
with the result of fi(x( j) )− fi(x( j−1)) increases, the parameter
combination that has a large impact on the system output will
have a higher contribution value. By adjusting the value of w j ,
we can control the accuracy and universality of the constraint
set. The specific analysis is introduced in Section.V.

Now we can obtain the parameter combination that has
the greatest impact on the system throughput by solving the
Choquet Integral with Algorithm 3.

Algorithm 3: Choquet Integral-Based Interdependency
and Significance Analysis Algorithm.
1: Input: Pre-processed ζ and objective y, hyperparam

ε

2: Outputs: The solution μ that represents each
parameter combination’s contribution to the output

3: Initialize an index list L to storage origin index of
each parameter

4: for i = 1, n do
5: Sort the ith observed attribution and storage the

sorted index and corresponding data Lsort and
fsort

6: end for
7: for i = 1, n do
8: Derive the solution with μT

ζ = ζi(ζ T
i ζi )−1yi

9: for j=1,m do
10: Compare the L and Lsort to find the ζi, j’s

corresponding subset and update is with
μ = εμ+ (1− ε)μζ

11: end for
12: end for

For solving the Choquet integral with Eq. (11), the com-
putation complexity of deriving μ(zi ) will be reduced from
O(M ) to O(m). So the overall complexity is reduced from
O(nM ) to O(nm), where M = 2m − 1.

IV. DEEP REINFORCEMENT LEARNING-ENABLED
CONSTRAINT SET INVERSION ALGORITHM
Q-Learning (QL) is a value-based algorithm [29], and it is
one of the most important breakthroughs in reinforcement
learning. Since QL is a tabular method, in the case of complex
states and actions, the Q table in QL will take exponential
time to converge, thus the applicable state and action space
explored in a given period time is very small. On the other
hand, if a state never appears, QL cannot handle it, which
means it has low generalization ability.

To break through the QL’s bottleneck, Deep Q-Learning
uses a Deep Q-Network (DQN) to fit Q_table:

Q(s, a; θ ) ≈ Q∗(s, a). (12)

The optimization goal of the DQN is to minimize the square
loss of 1-step TD error

L = E

[
(r + γ max

a′
Q(s′, a′)− Q(s, a))2

]
, (13)

leading to the QL gradient

∂L(θ )

∂θ
= E(r + γ max

a′
Q(s′, a′)− Q(s, a))

∂Q(s, a, θ )

∂θ
,

(14)
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thus the DQN can be optimized by Stochastic Gradient De-
scent (SGD).

After obtaining the contribution of the parameter combi-
nation to the system output, for parameter combinations with
high contributions, we can easily adjust the value of the pa-
rameter to improve the system output. However, the reasons
for the parameters that have little contribution to the experi-
mental results are not single. For instance, insufficient and un-
evenly distributed sampled data may result in some parameter
combinations having no corresponding valid results. Besides,
in the case of the control variate method, some parameters will
not show monotonicity as the value increases or decreases.
These scenarios make the process of constraint set inversion
very difficult.

To handle these situations, we adopt DNN to fit the corre-
sponding influence of unsampled parameter combinations on
the system output. Hence, the DQN can solve the problem
of discontinuity in the state space composed of parameter
configuration, so as to quickly search for the feasible region
of the system.

1) THE DQN FORMULATION
State Space: Suppose there has n parameters {V1,V2, . . . ,Vn}
that affect system output, each parameter combination
{V(1,randn),V(2,randn), . . . ,V(n,randn)} is defined as a state s,
where the ‘randn’ is a uniform random sampling in each
parameter’s ranges.

Action Space: To simplify the MDP state transition pro-
cess, the value change of each parameter is represented by
value increase or value decrease in each iteration, thus we
define at = 1 as value increase and at = 0 as value decrease.
Then we have

st+1 ←− {st , at }
= {(V(1,randn), at1), (V(2,randn), at2),

(V(3,randn), at3), . . . , (V(n,randn), atn)}.
(15)

The action is determined by the Q value fitting by DNN:

at = arg max
a

Qθ (st , a) (16)

Reward: In order to solve the problem of non-dense data sets
and high system simulation cost, the reward function is calcu-
lated by system output y and corresponding value of contribu-
tion μy obtained by Algorithm 3. To balance the efficiency
and accuracy of the feasible region, we find the parameter
combination in the measured dataset that has the minimum
Euclidian distance to the parameter combination represented
by the current State in 75% of the time, then calculated the
reward by combing its corresponding system output and its
result of Choquet integral. In the remaining 25% of the time,
we input the parameter combination represented by current
State into Cyber-twin system simulation platform to get the
real system output, and then calculate the corresponding re-
ward.

rt = Ay

ymax
· μy, (17)

FIGURE 3. Modeling process for the Cyber-twin system.

where A is a weight coefficient set according to the actual
situation. If st+1 does not exist in the measured data set, we
use the state which has the minimum Euclidean distance Ed

and its output to replace the y. If the minimum Ed is still too
large to influence the result, then set the rt = 0, the threshold
depends on the actual situation. When this situation happens,
input st+1 into the simulation system, and use the result to
update the data set.

1) TRAINING
Based on the above formulation, we using a DNN to rep-
resent the Qθ (st , a) as Q-network which takes as input the
state st , and outputs a set of Q value to represent the value
of each element in st after taken different actions. The Q-
network is trained with a variant REINFORCE algorithm in
an episodic setting. In the training session, we run M episodes
for a fixed duration of T iterations to explore the various
action’s reward using the current DNN’s output Q value. The
transition consisted of st , at , rt , st+1 in every iteration will
store in the memory D. Once the memory D is full, sample
a minibatch from D to update the weights of DNN with the
gradient descent method. The agent continuously explores the
rewards corresponding to different state st+1, until the output
corresponding to the explored st+1 meets the requirements
and reward converged at the same time, then performs the
next episode training. The implementation of the variant RE-
INFORCE algorithm is described as Algorithm 4.

V. EXPERIMENT
A. CYBER-TWIN SIMULATION PLATFORM
The Cyber-twin system is based on the 3D channel model
standard specified in 3GPP TR 38.901 protocol [13]. The
specific modeling process can be seen in the Fig. 3, all kinds
of large scale and small scale parameters are considered and
included. The channel model used in this article has been
corrected, and the benchmark data is from 3GPP R1-140843.
The data and average values of 9 major companies in the
industry are compared, and the CDF curve of the platform
output results is basically consistent with the average data of
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Algorithm 4: Deep Reinforcement Learning-Enabled
Constraint Set Inversion Algorithm.

1: Input: The hyper-parameter A and Threshold
2: Initialize memory D with the size of N ;
3: Initialize the evaluation network Qeval , the target

network Qtarget with random weights;
4: for episode=1, M do
5: Initialize the state {V(1,randn), . . . ,V(n,randn)}

randomly from the state space;
6: Initialize the counter=0;
7: while True do
8: With the probability ε select an action

at = arg maxa Qθ (st , a), otherwise select a
random action;

9: Fetch the st+1 ← {st , at } and find most similar
state in data set;

10: if Ed<=Threshold then
11: calculate the reward rt = Ay

ymax
· μy;

12: else
13: set reward rt = 0, and input state st+1 to

simulation system to update the data set;
14: end if
15: Store or cover transition (st , at , rt , st+1) in

memory D;
16: if D is full then
17: Sample random minibatch of transitions

(st , at , rt , st+1) from memory D;
18: Train the DNN with gradient descent ∂L(θ )

∂θ
=

E(r + γ maxa′ Q(s′, a′)− Q(s, a)) ∂Q(s,a,θ )
∂θ

;
19: end if
20: if rt converged or counter > T then
21: Break;
22: end if
23: counter+=1;
24: st = st+1;
25: end while
26: end for

companies. The interference scheme adopts an additive noise
model, and the interference power of other users sharing the
resource block is calculated based on the accumulation of the
resource block scheduled by the user. The interference power
is calculated according to the channel fading coefficient of the
interference user corresponding to the TTI calculated by the
3D channel model and the precoding matrix. The minimum
granularity of the resource block is at the sub-carrier level.
The white Gaussian noise model was used for the noise.

B. SIMULATION SETUP
The number of antennas at the base station (BS) is 16, and
its arrangement is 8× 2 planar array. We use the JSDM [39]
scheme as the precoding mode, and use standard defined
channel quality indication (CQI) as a link mapping scheme.

TABLE IV. Parameters for Choquet Integral-Based Algorithm

TABLE V. Parameters for DRESIA

Adopt statistical correlation model as the quantitative feed-
back scheme of the downlink channel. To verify the influence
of other antenna settings on the system throughput, other
parameters needed for the simulation are listed in Table 4.

Once the simulation parameters are set, the value will be
randomly sampled to form a series of parameter combinations
X . After obtaining the output y after system simulation, we
can get the contribution degree μ of the parameter combina-
tion to the output through Algorithm 3.

For DRESIA, the size of the state space is the same as the
size of the parameter combination X , which is 8. The size of
the action space is 16 with the form of 8× 2, corresponding
to the increase or decrease of each state in the state space. The
discount factor γ is set to 0.9. For DNN’s structure, the size
of the input layer and the output layer is the same as the size
of the state space and the size of the action space. And we use
5 hidden layers consisted {32, 128, 256, 128, 32} neurons to
learn and approximate the quality value. Other parameters
needed for the simulation are listed in Table 5.
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FIGURE 4. Non-additive measure vector μ.

C. METHOD VERIFICATION
We will verify the feasibility of the two algorithms separately
in this subsection.

1) CHOQUET INTEGRAL-BASED INTERDEPENDENCY AND
SIGNIFICANCE ANALYSIS ALGORITHM
We randomly sampled these 8 parameters X as mentioned
in Table 4 for n times and input them into the large-scale
5G simulation platform to get the corresponding system aver-
age throughput y as sampled paths. Since each path contains
8 option points, we derive the coefficient matrix Z with Algo-
rithm 1. Thus, we have a least square problem as

min
μ
‖Zμ− y‖, (18)

where Z is the n× 256 matrix, μ is the 256× 1 vector, and y
is the n× 1 vector. Then we implement the Algorithm 3 to de-
rive the non-additive measure vector μ as shown in Fig. 4. The
parameter combinations marked in green will be multiplied
by the maximum weight w, and the parameter combinations
marked in purple and red will have smaller weights.

As mentioned in the above analysis, the higher the value of
the contribution, the greater the impact on the system. And
we found the 195th element of the vector μ has the high-
est contribution, which represents the parameter combination
{x1, x2, x7, x8}, and its binary form is {1, 1, 0, 0, 0, 0, 1, 1},
corresponding to System Bandwidth, BS Antenna Array
Downtilt, Channel Feedback Delay of JSDM Algorithm of
MU-MIMO and UT Speed these 4 parameters. To verify the
accuracy of the results, we use the control parameter method
to verify the influence of these parameters on the system
throughput. The result is shown in Fig. 5.

Refer to Fig. 5, we can find that the system throughput is
basically monotonic with the changes of these parameters.

Thus, we only adjusting these selected parameters. The
options for the other parameters are randomly selected from
the related ranges. By only adjusting these 4 in 8 parame-
ters, the system throughput is 108,841,764 bit/s, 90.295% of

FIGURE 5. The relationship between throughput and parameter value.

the maximum throughout (120,540,409 bit/s) by adjusting all
8 parameters.

2) DRESIA
In the previous experiment, CISA can extract the contribution
of each parameter to the system QoS through a small amount
of uniformly sampled measured data, and great QoS can be
obtained by simply adjust the system parameters based on
these data. However, in consideration of generalization, de-
ploying such a parameter adjustment scheme in a real scenario
does not have strong robustness. Therefore, we need to attach
an inversion algorithm to determine how the parameters are
configured.

To ensure that the data used for testing is highly reliable,
the large-scale 5G simulation system we adopted simulates
the multi-user and multi-cell communication system and the
internal working mechanism of the system through a system-
level simulation method, which can realize the evaluation of
the key performance indicators of the system. It calculates
the channel fading characteristics based on the ray tracing
data, and calculates the signal to interference noise ratio and
throughput based on the channel fading characteristics. Multi-
core parallel simulation and hardware acceleration simulation
technology are used to realize an efficient 5G system sim-
ulation platform, calculate the channel matrix and precod-
ing matrix, and further realize the evaluation of performance
such as interference and system capacity. After deploying
Algorithm 4 to train the agent, we use the trained model
to explore the parameter configuration that meets the output
requirements. First, we randomly select three different param-
eter combinations as the initial state s1. Then we input the state
s1 into the trained model with the probability of ε to get the
action a1 with the highest Q value, or randomly choose an
action as a1. As shown in Fig. 6, after a period of iteration,
the reward {r1, r2, . . . , rt } shows an upward trend. Due to the
difference in the initial state, the initial reward is also different,
but in the end, they both converged.
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FIGURE 6. Reward of 3 initial states (ε=0.85).

TABLE VI. Correctness of Agent’s Selection Under Different Requirements

To verify the effectiveness of the algorithm more intuitively,
we sample the state corresponding to the converged reward at
equal intervals and input it to the large-scale 5G simulation
platform, and verify whether the state s selected by the agent
meets the standard according to the output throughput rate.

Five baselines that represent 80%∼100% of the maximum
throughput (120,540,409 bit/s) are set to measure the quality
of the results selected by the agent. We input the parameter
configuration selected by the agent into the large-scale 5G
simulation platform, then count the number of parameter
configurations that meet different standards and records
in Table 6. We can observe from Table 6, when the
standard is 85% of the optimal system throughput (about
100,000,000 bit/s), DRL-enabled constraint set inversion
algorithm can output the parameter combinations that
meet the requirements with the probability of 84.66%.
Moreover, when the standard is 80% of the optimal system
throughput (about 96,000,000 bit/s), DRL-enabled constraint
set inversion algorithm can output the parameter combinations
that meet the requirements with the probability of 97.20%.

The Black Box-based method is scenario-dependency,
and training a brand new model for each time node is
time-consuming. Therefore, several White Box-based
heuristic algorithms, including GA [22], SA [8] and ACO [31]
are compared and discussed. An improved PSO [24] that
combines the advantages of both PSO and ACO is also
compared and discussed, the detailed algorithm refers to
Appendix B. The experimental results in static environment
are shown in Table 7. For operation efficiency, compared
with the Gray Box method. The White Box-based method
takes more time to perform each episode, especially the ACO
algorithm takes over 100 s. The trained Gray Box model
can quickly output the parameter configuration in the current

FIGURE 7. The relationship between weight and the correct rate and
quantity of parameter combinations. (a) The relationship between the
number of qualified different parameter combinations and the weight
parameter w. (b) The relationship between the accuracy of output
parameter combinations and the weight parameter w.

environment according to the input. More efficient algorithms
can achieve algorithm adaptation faster. The phenomenon
of the White Box-based method output repeated parameter
combinations that meets the system output requirements
is very common. The SA algorithm has the most different
effective parameter combinations but the lowest accuracy,
whereas the ACO has the opposite situation. In comparison,
the Gray Box method has the best performance with
442 different effective parameter combinations in 500 itera-
tions. Since the GA, SA, ACO and the improved PSO algo-
rithms are entirely the White Box-based algorithms, they have
higher accuracy than DRESIA when the weight parameter
w = 1.0 as mentioned in Section III due to the real-time data
feedback.

Considering that under actual conditions, the probability of
congestion in the wireless communication network at mid-
night is small, and the change in service density, bandwidth
requirements is also small. In this case, the compliance rate of
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TABLE VII. Method Efficiency and Accuracy Comparison

FIGURE 8. The accuracy in dynamic large-scale 5G simulation platform.

the output parameter configuration of DRESIA is not as high
as that of the White-Box method, but we want to retain the
advantage of fast parameter configuration output of DRESIA.
By changing the weight parameter w, we can therefore adjust
the output of DRESIA to favor high robustness in a dynamic
environment or high accuracy in a static environment.

With the max weight parameter w increases, the agent will
have a higher probability to choose the optimal solution. Thus,
the number of the available parameter configurations explored
becomes less. As shown in Table 7 and Fig. 7, when w be-
comes larger, the compliance rate of output parameter con-
figuration approaches the White Box-based method, which
proves that DRESIA has good generalization.

To meet the actual dynamic environment, we set some pa-
rameters of the large-scale 5G simulation platform fluctuate
in a small range, and run the White Box-based algorithms
until convergence and then iterate 500 times, respectively.
The accuracy of Gray Box can be directly expressed using
the results of the above experiment since the experiment was
done in the dynamic environment. As shown in Fig. 8, we
can find that the accuracy of the White Box-based algorithms
immediately declines (7.60%, 9.60%, 13.4% and 18.2% with
25 randomly configured environmental parameters, respec-
tively) because the global optimal solution has changed due
to the dynamics of the system. Since the data set of Gray
Box is continually updated, and the Q-network is continually
being updated, the accuracy of Gray Box has not changed

significantly (84.66% with 25 randomly configured environ-
mental parameters), which means it has the strong adaptive
ability and is therefore more suitable for deployment in the
real environment. Furthermore, Gray Box has a faster feasible
region search speed. Hence, the Gray Box method has abso-
lute advantages in dynamic system.

VI. CONCLUSION
In this article, a novel Gray Box-based approach namely
DRESIA that contains CISA algorithm has been proposed
and analyzed. Different from traditional methods based on
White-Box or Black-Box that facing the problem of high
complexity and low generalization, our new method does
not require massive measured data in different time periods,
and can obtain the constraint set in dynamic environment by
sampling real-time data with low frequency. We compared
multiple criteria for DRESIA, SA, GA, PSO and ACO, which
include the accuracy of the feasible region, the time for the
algorithm to output a single parameter combination, the num-
ber of different parameter combinations satisfying the given
output index, and the accuracy of the output results under
dynamic environment as indicators. The results show that the
proposed Gray Box-based approach DRESIA is more stable
in the dynamic environment compared with other algorithms.
The complexity of DRESIA and the required data are much
lower than White box-based methods. Meanwhile, and it has
better generalization ability than the Black box-based and
White box-based methods. Therefore, DRESIA is suitable for
large-scale dynamic system.
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