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ABSTRACT Digital agriculture, with the incorporation of Internet-of-Things (IoT)-based technologies,
presents the ability to control a system at multiple levels (individual, local, regional, and global) and generates
tools that allow for improved decision making and higher productivity. Recent advances in IoT hardware, e.g.,
networks of heterogeneous embedded devices, and software, e.g., lightweight computer vision algorithms
and cloud optimization solutions, make it possible to efficiently process data from diverse sources in a
connected (smart) farm. By interconnecting these IoT devices, often across large geographical distances,
it is possible to collect data at different time scales, including in near real-time (i.e., with delays of only a
few tens of seconds). This data can then be used for actionable insights, e.g., precise applications of soil
supplements and reduced environmental footprint. Through LATTICE, we present an integrated vision for
IoT solutions, data processing, and actionable analytics for digital agriculture. We couple this with discussion
of economics and policy considerations that will underlie adoption of such IoT and ML technologies. Our
paper starts off with the types of datasets in typical field operations, followed by the lifecycle for the data
and storage, cloud and edge analytics, and fast information-retrieval solutions. We discuss what algorithms
are proving to be most impactful in this space, e.g., approximate data analytics and on-device/in-network
processing. We conclude by discussing analytics for alternative agriculture for generation of biofuels and
policy challenges in the implementation of digital agriculture in the wild.

INDEX TERMS Data integration, data analysis, internet of things, Sensor systems, cloud computing.

I. INTRODUCTION

BY 2050, the world’s population is projected to increase
to nine billion, which will intensify the food-water-

energy nexus challenges. Demand will also rise because of
increase in people’s wealth resulting in higher meat consump-
tion plus the increasing use of cropland for biofuels. Site-
specific farm management (precision farming) has the poten-
tial to nourish the world while increasing farm profitability
under constrained resource conditions. Despite advancements
in field sensors, the global positioning system (GPS), and
grid soil sampling, adoption of technology by farm operators
has fallen short of expectations. Moreover, it is unclear how

profitable the adoption of such technologies will be. Use of
variable rate technology (VRT), for example, has lagged that
of yield monitors and automated guidance systems. A thor-
ough study [1], including rigorous analysis, has shown how
the lack of widespread adoption of VRT can be attributed
to the paucity of site-specific data. Specifically in this study,
the authors attributed the scant adoption of variable rate ni-
trogen application to the lack of site-specific yield data. The
generalizable insight from this is that site-specific detailed
data about the effects of digital agriculture interventions are
important to drive their adoption. Identified gaps motivating
LATTICE
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Some of the gaps on the agricultural side include:
1) Mapping seed variety to performance with better seeds

or engineered varieties (e.g., via genome editing [2]).
2) Mapping soil supplementation needs to re-

gional/temporal conditions using interpretable data
science [3].

3) Defining functional properties of derived bioproducts
(e.g., ethanol from corn), distinct from traditional prod-
ucts (e.g., heavier kernels using genome editing).

Conversely, some of the gaps in the data engineering and
machine learning areas for digital agriculture include:

1) Approximate data analytics for processing data from
multiple inexpensive sensors deployed on connected
farms. This is especially important for compute-
intensive workloads, e.g., vision workloads from drone
imaging for object classification/detection, e.g., in our
recent approximate object classification and detection
work [4], [5].

2) Tradeoff between privacy and utility when analyzing
data from multiple farms, similar to federated comput-
ing, used profitably in other fields, e.g., genomics [6].

3) Network management for sparsely connected farms us-
ing newer networking solutions that are bandwidth-
aware and do not require cell towers [7], [8].

4) Drones and tractors for data ferrying when needed es-
pecially under sparse network connectivity [9], [10].

5) Effective sharing of data processing and analytics load
between sensors, edge devices [11], [12], and the cloud
for maximizing throughput or latency, based on the
client (farmer/farm manager) preferences [13], [14].

6) Optimized cloud computation for beefier machine learn-
ing workloads using vision APIs, e.g., Azure Vision
or Amazon Rekognition [15] or processing streaming
workloads using on-premise database optimization or
using optimized clustered cloud instances [16]. Ex-
amples of such optimization can be found in our re-
cent work for on-premise database optimization [17]
for streaming workloads or cloud/serverless optimiza-
tion [18], [19] for computationally-heavier vision [5]
or lighter-weight, but latency-sensitive, IoT work-
loads [15].

7) Data ethics when sharing farm data with agricultural
companies or insurance providers.

On the economics side, VRT for fertilizer treatment, as an
example, depends on accurate intra-field soil data, which is
expensive. Unless the economic returns to site-specific man-
agement cover both the up-front investment and the cost of
collecting quality data, adoption will be low. Guidelines for
VRT use for fertilizer application illustrate the need for:
� Marking management zones for the VRT system.
� Identifying whether the system will be guided by map-

based inputs or finer-granularity sensor-based inputs.
While the sensor-based inputs are more sophisticated
because they reflect the changing conditions in the farm,
they are also logistically and computationally more ex-
pensive because they are battery-powered and will need

to continuously or intermittently be guided by anomaly
or bottleneck detection [20].

� Identifying the kind of data that will be used for mapping
or the kind of data for the actuation of VRT dispensers.

For farmers to adopt these technologies (VRT provided
as an example and others, e.g., edge-cloud data partitioning,
discussed in this article), concrete savings on resources (e.g.,
supplements or fertilizers) need to be demonstrated with po-
tential yield increase and environmental protection from de-
creased farm effluents from nutrient pollution and reducing
farm runoff and eutrophication (hypertrophication), such as
from high levels of nitrogen and phosphorous in fresh water.
In the case of livestock farmers, this translates to the decreased
use of hormones, supplements, or antibiotics for the livestock,
resulting in ecological gains [21], [22].

Relevance of our team’s ongoing efforts. Digital
agriculture—encompassing precision agriculture, data an-
alytics and edge-cloud computing, and data privacy and
ownership—has the promise to transform agricultural
throughput. It can do this by applying data science for map-
ping input factors to crop throughput and that too in a region-
specific and crop-specific manner, while bounding the avail-
able resources, both tangible farm-specific resources such as
seeds, nutritional supplements, and farm machinery, and com-
putational resources (e.g., cloud credits or CPU/GPU cycles)
or networking expenses (e.g., LoRA or NBIoT towers). In
addition, as the volumes and varieties of data increase with
the increase in sensor deployment in agricultural fields, data
engineering techniques will also be instrumental in collection
of distributed data as well as distributed processing of the data.
These have to be done such that the latency requirements of
the end users and applications are satisfied.

At the same time, Microsoft has developed and is looking
to spread the reach of the FarmBeats program [23], which
has the vision of empowering farmers with low-cost digi-
tal agriculture solutions using low-cost sensors, drones, and
computer vision and machine learning (ML) algorithms. Un-
derstanding how farm technology and big data can improve
farm productivity can significantly increase the world’s food
production by 2050 in the face of constrained arable land and
with the water levels receding. While much has been written
about digital agriculture’s potential, little is known about the
economic costs and benefits of these emergent systems.

There are important questions to be answered before data
analytics for agriculture, questions related to technical via-
bility, economic feasibility, sustainability, and data protection
and ownership are implemented. These questions cannot be
looked at in isolation—for example, if some algorithm needs
data from multiple data owners to be pooled together, that
raises the question of data ownership and data privacy.

In summary, the paper reviews the current state of the fol-
lowing questions and presents a look forward at the challenges
that need to be resolved, namely: data lifecycle for digital
agriculture data; applied ML techniques for the domain; low-
power communication protocols for the domain; economics,
policy, and decision making driving adoption. LATTICE is the
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first to bring together these questions under one roof, dis-
cussing the goals, path forward, and challenges of digital agri-
culture to surmount the challenges of the food-water-energy
nexus. We present an integrated effort LATTICE,1 which will
culminate in the incorporation of foundational AI advances ,
driven by the domain constraints and requirements of digital
agriculture systems, resulting in efficient distributed compu-
tational infrastructure to execute the algorithms.

II. DATA GENERATION FROM SENSORS
This section will cover the modalities of data gathering and
controlled dissemination, the volume of data generated, and
the quality of the data, collected and processed from ubiqui-
tous sensors on farms and includes the following.

Soil sampling: Soil samples are extracted from field (may
or may not be georeferenced) and sent to a lab for analy-
sis. Lab results come back in a report detailing fertility lev-
els. In most cases, one must manually assign geo-referenced
points to report values. Fertilizer application: Based on soil
sampling, a fertilizer recommendation is generated. If geo-
referenced points are used, a variable rate prescription can
be generated. If fertility results are aggregated across the
field, a flat rate is applied (proprietary or shapefile). Planting:
Generated as applied maps with information on population,
singulation, misses (proprietary or shapefile).

Scouting: Conducted as frequently as once a week during
growing season. Traditionally data comes in the form of a
report that details presence of disease, insect, and weed pres-
sure. Currently much research is being conducted on drone-
based scouting using multi-spectral imagery to determine nu-
trient and water deficiencies as well as detect disease, insect,
and weed pressure. Data format is large image files that need
post processing. Spraying: Based on the results of the scout-
ing reports spraying operations are conducted. Most modern
sprayers can generate as applied maps. Files are saved in a
proprietary format based on the sprayer manufacturer. Har-
vesting: Yield maps are generated by harvesters and saved in
a proprietary, manufacturer-specific format. In irrigated fields,
soil moisture sensors are often used to determine irrigation
intervals. Despite the wealth of available data in most op-
erations, very little is actually analyzed and used to inform
future decisions. The most commonly used data sets are scout-
ing data (used to make chemical application decisions) and
soil sampling data (used to make fertilizer recommendations).
More progressive producers use yield data to determine vari-
able rate fertilizer application and to compare seed varieties.
Much of the data collected only when the richer context of the
data is known. This can be known through processing such as
aggregation with additional local or regional data and attach-
ing the correct metadata. Biorefining: Different bioprocess
operational modes for converting components of a crop (e.g.,

1Our name derives from Distributed Learning for Agriculture Systems
through Artificial intelligence. This is an inspiration from arrayed lattices that
integrate into innovative structures for cohesion and creativity — a reflection
on how the correctly structured and integrated data pipeline elements can lead
to leaps in crop productivity.

FIGURE 1. Example of no-till corn operation, data generation, and
lifecycle. In modern agriculture, data is generated from almost every
operation. This data may be site-specific or more broadly defined but often
there is no clear way to aggregate data layers.

corn) are recorded during enzyme catalyzed conversion, fer-
mentation, biocatalysis, and separations to achieve the desired
purity of the target. These data can be used to identify inherent
barriers, which can be overcome by modifying feedstock.

For VRT, with advanced electronic controls and improved
communication, applications include: fertilizer/nutrient appli-
cations, manure, seed applications, tillage as a function of soil
compaction, and irrigation. Thus, if the VRT leverages sensors
rather than static maps, farm processes can benefit.

One primary challenge facing digital agriculture is the lack
of data sharing, which happens due to technological as well as
human reasons. The technological impediment centers around
the lack of interoperability of data collection, processing, and
visualization tools. Producers are reluctant to share data due
to fears of regulatory issues and the lack of perceived value.

III. DATA LIFECYCLE
This section will cover the various phases in the lifecycle of
agricultural data—sanitization, loading, processing, storing,
summarization, and analysis; an example is shown in Fig. 1.
This will go into some of the general-purpose approaches
(e.g., data deduplication, calibration using sensor metadata) as
well as agriculture-specific approaches (e.g., known variations
in hyperspectral maps from ground sensing and aerial image
data and effective fusion among sensor arrays).

Data generation sources: Data generation is the first stage
of a data lifecycle. There are many ways in which data can
be generated. The sources of data generation can be broadly
classified into two types.

Localized data or private data: This is the data that is
generated on the farm such as soil nutrient composition, wa-
ter, and fertilizer usage. This type of data is generated from
sensors that are present on the farm.
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Public data: Data such as historic weather conditions and
market prices fall under this category. Imported data is often
generated at outside sources and shared with the farmers to
use in precision agriculture. Such data is not farm specific. An
example of data that is at the crux of localized and public data
is topography and soil type, which may be somewhat localized
but follow a trend for farms in geographical proximity.

Data warehousing: Data generated then needs to be stored
in repositories called data warehouses. Data warehousing al-
lows integration of different data from multiple sources and
helps restructure the data for better performance. One recent
example of data warehousing is an initiative taken from the
government of India [24], titled INARIS (Integrated National
Agricultural Resources Information System). Woodard [25]
discusses Ag-Analytics—a platform that provides data ware-
housing in the field of precision agriculture. Although there
are readily available platforms for data warehousing, there
are several constraints when using these platforms directly in
precision agriculture. Some of these constraints are discussed
in [26].

Metadata annotation: Metadata annotation can be done
manually or automated. Since the data that we are consider-
ing is prone to be complex, automated metadata annotation
is preferred. Roy, Sarkar, and Ghose [27] provides a com-
parative study of the different learning techniques used for
metadata annotation. Fiehn, Wohlgemuth, and Scholz [28]
provides an algorithm for metadata annotation. Haug and Os-
termann [29] uses a human expert to first mark crops from raw
images. Masks were then derived from using these markings.
These masks are then used to acquire the metadata. Simi-
lar techniques can be used in different aspects of precision
agriculture.

Data annotation and cleaning: Due to the large size of
data, it is important to perform annotation and cleaning before
data analysis. Data annotation is subjective and depends on the
particular use case of precision agriculture. The choice of the
data annotation technique is dictated by the size of the data
set, cost of annotation per sample among many other guide-
lines. Schoofs, Guerrieri, Delaney, O’Hare, and Ruzzelli [30]
proposes a data annotation technique for electricity data in
wireless sensor networks (WSNs). Similar annotation tech-
niques could be developed in precision agriculture that can
be performed in a WSN infrastructure. Data cleaning removes
or corrects errors that are present in the data. There are sev-
eral existing works that propose data cleaning techniques in
precision agriculture. Simbahan, Dobermann, and Ping [31]
proposed a screening algorithm for cleaning yield data that
provided an increase in map precision. Sun, Whelan, McBrat-
ney, and Minasny [32] proposes an integrated framework for
software that increases mean yield through data cleaning.

Data processing: Steven [33] provides a good overview
of the constraints faced in data processing in precision
agriculture. In [33], the authors consider the case of using
satellite images for remote sensing in precision algorithms. In
such use cases, one of the important aspects of data processing
must be to make the data more readable. One such scenario

where these images can not be directly used is in the case of
cloud cover, where the images need to be processed before
utilizing the data. This can be extended to data acquired
through other means as well. Data acquired from soil sensors
may need to be processed in order to make it more utilizable.
Honkavaara et al. [34] proposes a processing chain that uses
data collected from unmanned airborne vehicles to generate
meaningful results. Loreto and Morgan [35] proposes an
automated system that performs both the data acquisition
and data processing of soil nitrate measurements. Murakami,
Saraiva, Junior, Cugnasca, Hirakawa, and Correa [36]
proposes a data processing algorithm that processes yield data
on a distributed framework.

IV. DATA ANALYTICS FOR DIGITAL AGRICULTURE
Here, we will cover approximate processing for in-sensor
analytics, advanced processing for backend analytics on the
edge or cloud platforms, and interpretable data analytics.
Analytics workloads are often quite demanding, and do not
fit, out-of-the-box, into the embedded devices, deployed in
agriculture. Advanced processing for backend analytics may
leverage edge platforms, e.g., Azure IoT Edge device [23],
[37], and there may be sensitivity of farmers to upload per-
sonal data to the cloud. Interpretable analytics are important
because the farmers will require insights into the results of
the algorithm, at their level of understanding, to potentially
take action. In Fig. 2, we show a high-level architecture of
the nodes deployed in different locations, illustrating the
execution of analytics routines on the heterogeneous nodes.

Data analytics plays an important role in precision agri-
culture. It can help farmers decide what crop to grow when,
monitor the crop growth, and decide on the logistics of farm
management. But agricultural data is often large and noisy and
needs careful processing to distill insights from them. The fol-
lowing subsections elaborate on the advanced ML capabilities
that can be used for such analysis.

Another relevant technology in this context is the use of
scalable databases to house and process these data sets for
downstream processing and retrieval. With this in mind, we
also include some innovations in NoSQL database technolo-
gies to assist in high-throughput information retrieval from
the evolving agricultural data. Traditionally, this domain did
not have requirement for low latency—the decisions were
more mid-term tactical or strategic and could be made in the
time frame of hours or days. However, with sophistication
in farm machinery and automated nutrient application, some
use cases of low-latency data analytics have evolved. One
example is farm machinery moving over a region of the farm,
queries ground sensors for soil quality or cameras on-board
probe for pest infestation on the plants. It then analyzes the
sensor feed and decides on the appropriate application of
nutrients/pesticides, actuating the on-board applicator on the
dispenser, real-time. In Fig. 3, we illustrate data flow in Farm-
Beats as an example.

Approximate processing for in-sensor analytics: A sen-
sor network acquires real-world measurements at discrete
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FIGURE 2. System architecture of the distributed analytics relevant to digital agriculture.

FIGURE 3. FarmBeats, an example of a data-driven agricultural platform from Microsoft, captures data from sensors and drones, and sends it to the
Cloud for processing with other data streams, such as satellite data and weather stations.

points, where each measurement is a snapshot in time and
space. In most scenarios in which sensor networks are de-
ployed, the sensors are frequently queried resulting in con-
tinuously monitoring alongside high energy costs. Thus, one
of the chief problems faced by WSN, often deployed in farm
settings, is the constrained availability of resources to these
devices.

The sensors used in such networks are low-power embed-
ded devices that are expected to last for long periods of time
(order of months) on standard batteries [38].2 This issue can
be mitigated by leveraging a more distributed architecture and
using more energy-efficient algorithms. Further, these devices
generate large volumes of data, which ideally will be pro-
cessed in real time in a streaming manner for usable insights.

2One class of sensors that does not have this energy constraint is those
sensors that are mounted on farm machinery that are connected to power
outlets. Such sensors can also be powered by AC line power.

As a balance between computational load and accuracy,
approximate computing tools and techniques have become
popular in several domains, e.g., computer vision [5], [39] and
scientific computing [40]. The idea is to perform approximate
computation over carefully chosen subsets of the entire input
dataset. In digital agriculture, some degree of approximation
or error in the output of the algorithm is tolerable, either
because humans cannot perceive these differences or down-
stream algorithms are not affected by such approximations.

Relevant to our discussion, an example is the approximate
computation can relay whether a particular soil nutrient con-
centration is above or below a threshold, rather than the exact
value of it. Also, it may compute this over a uniform ran-
dom subsample of say one in every 10 samples. Alternately,
we can also use information theory principles, such as the
Nyquist-Shannon sampling theorem to decide on the spacing
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of the sensors in the WSN [41] and also the actual redundancy
needed for robust sampling from sensors [42].

An important requirement of our target applications is low
latency. This can be achieved by using multiple nodes to
parallelize the work. However, this has to be done carefully so
that the load is approximately balanced and there is not much
overhead of energy to perform the distribution. For exam-
ple, ApproxIOT [43] proposes an algorithm based on Apache
Kafka [44] that uses IoT devices to generate data and forward
it to edge computers, managed by service providers. As shown
in Fig. 2, wireless communication, like LoRa/NBIoT, is used
to forward data, compressed or otherwise, to the edge devices.
These data streams are then sampled and forwarded to a cen-
tral location (compute server C1 in the figure), where user-
specific queries can be made. The sampling in such systems
are based on two techniques: Stratified Sampling: The streams
of data are categorized based on their distribution. A random
sampling is done on these distributions, with prior knowledge
of the data required for this kind of sampling. Reservoir Sam-
pling: A reservoir size R is maintained and at most R items are
uniformly sampled from the data set. Here, prior knowledge
of the data is not required. ApproxIOT extends both these
techniques to a weighted hierarchical sampling. The nodes
conduct sampling over data generated and compute statistics,
with a 1.3X – 10X speedup.

In-sensor analytics is relevant to our domain because it
means that the data being sensed will be (partially) analyzed
locally at the sensor itself. The value proposition is that raw
data will not have to be sent over the wireless network, thus
saving on wireless bandwidth and energy, and thus potentially
yielding low-latency decisions. In-sensor analytics algorithms
can either be value tolerant, where the approximation of val-
ues can be made and the resulting algorithms are lightweight
or they can be delay tolerant, where the resulting algorithms
can be made more accurate at the expense of latency.

SERENE [45] is a framework that selects representative
nodes, among clusters of correlated sensors. Here, the frame-
work also takes into account the dynamic changes in the
network topology and outliers. Since sensor data acquisition
and communication are energy intensive, and sensors are typ-
ically battery-powered, SERENE uses clustering algorithms
to spatially and temporally aggregate the data. For example,
it uses a density-based clustering algorithm, DBSCAN [46]
for robustness against outliers and noise. This algorithm can
cluster based on any shape, as the sensor readings may be
correlated. Based on the cluster shape, availability of battery
power, and distance of the target node from other nodes, the
representative nodes —M-sensors— are queried.

Another lightweight approach for in-sensor analytics is
Snapshot Queries [47]. Here the representative nodes are
elected through a localized process. Each node maintains a
data distribution model of its neighboring nodes. Based on this
model, the algorithm predicts the values of the neighboring
nodes. If the error between the predicted and actual value is
less than a threshold, the predicting node can represent the
neighboring node in question. The data model maintained is

based on the previous correlation between the values of the
node and its neighbors. Here, the model is updated frequently,
making it robust to dynamic network changes. Another work
that leverages the correlation between sensor values is Kar-
takis et al. [48] where they use this property to detect anoma-
lies with a Kalman filter to reduce false positives.

Distributed neural network inferencing: The concept of
lightweight algorithms can also be extended to deep neural
networks. Distributed Deep Neural Networks (DDNNs) pro-
vide better scalability and fault tolerance than DNNs. The
data generated by sensor nodes is processed locally at the
edge. DDNNs are used to utilize the advantages of distributed
computing hierarchy in DNNs [49]. Further, simple ANNs
have been used in tandem with Bayesian loops to reduce the
number of hyperparamters in models and thus improve the
interpretability of models and decrease the need for addi-
tional hyperparameter tuning. Having a multitude of hyper-
parameters to tune is often an overkill for simpler processing
needs with energy considerations in mind, as is often the
case for lightweight edge processing for sensor node analyt-
ics [50]. This and other approaches, such as Bayesian neural
networks (BNNs), sped up using hardware accelerators, can
be a panacea when data volume is limited (as in cases where
sensor nodes have been initialized on a farm) and to prevent
overfitting plus allow for limited memory footprint [51]. Lim-
ited memory space may be the case for microcontroller-class
devices or lower-resourced edge-class devices used in sensor
nodes or gateway nodes, where memory is of the order of a
few GBs rather than 100 s of GBs at server-class machines.

Another aspect to reduce the energy consumption of sensor
nodes is by reducing the duty cycles (sleep-wake cycling) of
sensors. By activating the sensors only when required, the
energy consumed by the sensors will be reduced. In our target
domain, this is highly feasible since the sensing frequency can
be kept low (of the order of a few minutes) due to the nature
of the underlying events being sensed.

Database management and backend analytics for large-
scale agricultural sensor data: Precision agriculture allows
for site-specific crop management to increase throughput and
achieve more sustainable farming by applying data science to
agriculture practices, learning from local data trends. More
and more agricultural sensing data is being live-streamed from
farms, whether it be through on-board cameras, on manned
or unmanned aerial vehicles, or through ground sensors in
the farms. There is thus a need for centralized databases to
store and process these data sets, often in real-time, to get ac-
tionable insights for farmers. Plus, there may be some degree
of federation in storage and compute resources that may be
needed as the computing needs of this domain increases, as
has been seen in the genomics domain [6].

Further, the sensing data is multi-dimensional and noisy,
coming from ground sensors deployed in farms to measure an
array of soil characteristics, such as, moisture, nutrient levels,
temperature profiles, soil acidity, etc. These live-streamed data
sets need to be stored in a fail-safe repository of nodes, such
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as Redis installations in Amazon Web Services (AWS) Elas-
tic Compute Cloud (EC2) [52]. Redis is a popular NoSQL
datastore that is being currently used by Twitter, Instagram,
Microsoft, Groupon, etc. It is an in-memory key-value store
that supports various abstract data structures, such as strings,
lists, maps, etc. By storing the data in the main memory,
Redis serves as both a datastore and a cache. This allows
for a very fast and flexible storage model, which is essen-
tial for real-time processing pipelines, such as in digitized
agriculture pipelines, e.g., FarmBeats [53]. Moreover, Redis
supports durability by periodically saving a snapshot of its
main memory to the permanent storage. This snapshot can be
loaded back into main memory in the case of a failure.

The aggregate live-streamed updates and queries repre-
sent a unique workload for such NoSQL datastores, as these
queries vary in rate and type over time. In such cases, a
workload-aware tuning system is needed to reconfigure the
NoSQL cluster, whether locally or on the cloud, to provide
high performance. This is becoming more important as the
data from small-scale farms across the country is burgeoning
both in size and diversity, slowly replacing the previously used
manual data-collection processes. Maximizing the throughput
of these processing pipelines of digital farm data will enable
actionable insights from agricultural sensing data. Also, given
that these pipelines are hosted on the cloud and this domain
is very cost conscious, we want to maximize the performance
within a user-defined cost bound.

Our recent work on cost-aware optimization of NoSQL
database has shown promise [17], [18]. A pipeline for analyt-
ical workloads (OLAP, online analytical processing) consists
of two main parts: a storage cluster (e.g., Redis or Cassandra)
and a computing cluster (e.g., Spark), the latter operates on the
top of the storage cluster to execute queries and thus perform
analysis on the stored data. The task of the optimization is to
find the best combination of configurations maximizing the
objective metric, modeled as:

P∗ = arg maxCon f s f (Con f s(t ),W L(t )) (1)

Where P∗ is the optimal performance that is achieved by the
best combination of configurations Con f s. The search space
of Con f s is large, e.g., NoSQL databases, e.g., Cassandra and
Redis, have 50+ and 40+ performance-sensitive parameters,
respectively. Hence, an exhaustive search through all possible
configurations is impractical. Therefore, evolutionary search
techniques are preferred in this case due to their ability to find
close-to-optimal solutions in practical time, e.g., 1.

Experimental Evaluation: We perform our experiments
on multi-modal sensor data, mimicked on real data collected
from our experimental digital agriculture farms. First, we
identified the most impactful NoSQL parameters for our agri-
cultural processing pipeline. We use D-optimal design to
specify the data points to collect to reveal these impactful
parameters. We collect 128 data points. These data points
represent different combinations of configuration parameters
and their corresponding performance (in terms of throughput,
i.e., Operations/s or Ops/s). Second, we use the collected data

FIGURE 4. Feature importance for accurate performance prediction.

FIGURE 5. Improved performance with increasing ensemble size.

points to train and test our performance prediction model.
We estimate the importance of each feature and select the
most impactful parameters (Fig. 4). We then use these top-k
impactful parameters in training our model.

Performance prediction model training: In this experi-
ment, we study the impact of using an ensemble of predic-
tors on the prediction accuracy. Ensemble of predictors can
achieve better bias–variance tradeoff than a single predictor by
combining the predictions of many predictors. Each predictor
in the ensemble is trained with 75% random sampling of the
training data. This sampling step is repeated for every model,
which increases the diversity of the models and hence improve
the prediction accuracy of their combined results. As shown
in Fig. 5, a single DNN shows a very poor prediction perfor-
mance with an R-squared value of 0.16 and an RMSE of 5671.
However, a significant improvement is observed when we
combine the predictions (by taking the average) of 5 or more
models. We notice that there is a diminishing improvement in
the performance prediction (for both metrics) after increasing
the size of the ensemble beyond N = 15.

We evaluate three possible single server prediction mod-
els for evaluating the prediction of throughput for NoSQL
databases such as Redis and Cassandra. The prediction is done
for different configurations of the NoSQL DB as well as the
cloud VM on which the VM is hosted. In each case, we use a
Random Forest using 75%:25% for training and prediction.
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TABLE 1 Comparison of Different Single-Server Prediction Techniques.
OptimusCloud, Which is Our Cloud-Based Optimization Technique
Achieves Better Performance in Terms of R2 and RMSE Over All Baselines

1) N-Solitary-Models: This builds a separate prediction
model per VM instance type (referred to as “architecture”). It
predicts the performance of a given architecture/configuration
combination using previously collected data points from the
same architecture. Thus, there is no scope for transfer learning
here.

2) Combined-Categorical: This builds a combined model
using all points from all architectures, while it represents the
architecture as a categorical parameter (with integral values).
Thus, knowledge transfer is limited across architectures, e.g.,
C4.large to C4.xlarge, for AWS VM instances.

3) Combined-Numerical: This also builds a combined
model for all architectures. However, it describes the archi-
tecture in terms of its resources e.g., C4.large is represented
as vCPU 8, RAM 3.75 GB, Network-Bandwidth 0.62 Gbits/s.
This model allows extrapolation across all VM architectures,
even across cloud vendors. We test the accuracy of each pre-
dictor using the same number of data points (100 points per
architecture) and show the result in terms of R2 (Table 1). We
see that using a separate model per architecture (N-Solitary
Models) gives poor performance due to the lack of knowl-
edge transfer between architectures. Further, the numerical
representation shows a significant improvement in prediction
performance over categorical from better knowledge transfer
across architectures.

Interpretable and interoperable data analytics: Al-
though there are several predictive models, it is important that
the analysis be interpretable. Molnar et al. [54] explains the
importance of interpretable ML. This could help clients better
understand why a model is predicting a certain intervention
for crop growth. Vellido, Martín-Guerrero, and Lisboa [55]
provides an overview of several works that address the issue
of making ML techniques more interpretable. Dimensionality
reduction is a popular choice here. A comparison of such
existing techniques is provided in [56]. After dimensionality
reduction, it becomes tractable to rank order the different
features by their importance, providing insights [57]. Another
aspect of interpretability is to resolve post-hoc “sanity check”
questions [58], such as, after a rain event, does the model
predict the moisture content in the soil is higher. If the model
fails to answer correctly a sanity-check question, then further
examination of the model is done. An important aspect of
interpretability is to allow domain experts to parametrize the
models, e.g., by feeding the appropriate parameter values for

different regions of operation. This can be fed in as manual
input by experts or by blending simulation models (typically
built by experts) into the data analytics models. Another im-
portant design consideration is interoperability of the soft-
ware systems used to acquire and analyze data. Too often
software vendors provide silo-ed software packages either due
to lack of design consideration or due to conscious decision to
force vendor lock-in. In all such cases, it becomes a burden,
often insurmountable, to make them interoperate [59].

V. EDGE COMPUTING AND LOW-POWER
COMMUNICATION TECHNOLOGIES
Here we discuss recent developments in edge computing and
low-power communication technologies that aid our use do-
main. Edge computing is rapidly evolving, so it is timely
to consider the lessons that can be learned and further cus-
tomized for digital agriculture. The use of low-power commu-
nication is a common requirement in several domains. How-
ever, our target domain places some distinctive requirements
and opportunities that we discuss next.

Microservices and edge-cloud partitioning for low-
latency communications: The world of connected devices
has fueled the IoT era, where applications rely on a multi-
tude of devices aggregating and processing data sets across
highly heterogeneous networks. In this context, distributed
deployment alongside containerization of the different infor-
mation channels will shield the systems from isolated fail-
ures, conferring resiliency. The other important aspect is the
partitioning of the data stream for computing at different
degrees of latency—computing nodes at the edge are used
for user-facing applications (face recognition, reconnaissance
from a video stream, etc.). Owners will react negatively if
the computers become unusable due to intermittent edge an-
alytics. Therefore, the prioritization of the processes needs to
change dynamically. In contrast, the application itself needs
to be designed in a way that it is insensitive to such dynamic,
and unpredictable, changes to the priority level, e.g., it will
not time out if there are client-server interactions. Another
aspect of the prioritization is that the different analytics re-
sults are needed with vastly differing timing requirements.
Such high-level, user-expressed requirements will be used to
dynamically prioritize in the face of unpredictable arrivals
of the events (e.g., a flash flood event, or onset of a locust
infestation). Thus, overall the partitioning needs to happen in
a top-down or bottom-up manner. Top-down means that we
take the high-level user requirements on latency and accuracy
and define the partitioning based on that. Bottom-up means
that depending on the available resources on each platform,
the resource handler decides where to run the application
component. Top-down requirements naturally have a higher
priority. This will leverage the significant amount of work that
has been done in automatic partitioning of applications to run
on mobile devices and the cloud [60]–[64].

In-network processing: Sensors used in precision agricul-
ture are Internet of Things or IoT devices and like all IoT
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devices have constraints on power and connectivity. It is nec-
essary to have the first step of data processing that takes place
at the sensor end to be energy efficient. Thus, anomalous
data can be suppressed and need not be communicated. Al-
ternately, in some scenarios, the exact opposite is desired—
when an anomalous event is detected, that event needs to be
communicated to the gateway promptly.

AutoRegressive Integrated Moving Average (ARIMA) is
used for fitting time-series data in order to predict or estimate
the trend. This can then be used for suppressing data commu-
nication — if the sensor node and the receiving gateway node
use the same model to predict values and the predicted value
is close to the sensed value, the sensor node can suppress the
communication [65], [66]. While ARIMA models work on a
linear process, more sophisticated ML algorithms can model
non-linear processes. Examples of traditional ML techniques
such as k-Nearest Neighbors (KNNs) and Support Vector Re-
gression (SVR) as well as more complex Recurring Neural
Networks (RNNs) [67] and Long Short-Term Memory Neural
Networks (LSTMs) [68] have been used for prediction of sen-
sor network values [69], [70]. The predicted values can again
be used for suppression of redundant data communication.
The tunable configuration allows us to navigate the tradeoff
space between accuracy and data communication.

While RNNs and LSTMs give more accurate prediction
over statistical methods like ARIMA and ETS, they are more
complex in nature. For simpler user queries and in-sensor an-
alytics, ARIMA and ETS models can be used as a lightweight
alternative. A more detailed analysis can be done on the cloud
backend with some context achieved through attention pool-
ing for example.

Low-power communication technologies Low-power
communication for wireless IoT communication is key for
digital agriculture and falls in three broad categories:

1) Low-power wide area networks (LPWAN), with a
greater than 1 km range, essentially low-power versions
of cellular networks, with each “node” covering thou-
sands of end devices. Examples include LoRaWAN,
Sigfox, DASH7, and weightless.

2) Wireless personal area networks (WPAN), typically
ranging from 10 to a few 100 meters. Examples include
Bluetooth and Bluetooth Low Energy (BLE), ANT, and
ZigBee, which are applicable directly in short-range
personal area networks or if organized as mesh networks
and with higher transmit power, larger coverage areas.

3) Cellular solution of IoT, including any protocol that are
reliant on the cellular connection

Some of the bottlenecks in wireless transmission in farm
settings include the harsh physical conditions in farm settings
and the proliferation of inexpensive and less reliable sensors
coupled with the intrinsic challenges of the LoRaWAN and
cellular network technologies, such as 5 G. The core prob-
lem in farm settings is to acquire and transfer disparate data
sources to support the various demands of a wide range of
computation tasks while meeting the stringent constraints of
heterogeneous wireless connectivity available in agricultural

domain (especially for the livestock application). Data traf-
fic from different sources and for distinct computation tasks
raise diverse requirements to wireless connectivity in terms
of its availability, bandwidth, responsiveness, resilience and
energy efficiency. For example, sparse data relating behavior
changes needs highly responsive, highly reliable communica-
tion; streaming videos captured by the drones3 or surveillance
cameras expects high bandwidth but is elastic to varying-
bandwidth with appropriate rate adaptation; A large amount
of livestock herd-level information can be delay-tolerant but
requires energy-efficient connectivity. Further, compared to
wireless networks in the urban and civil uses, wireless net-
working for the livestock experiences more practical chal-
lenges regarding coverage holes, fast-fading channels, high
interference and time-varying performance. Wireless connec-
tivity is not always available in the wild rural areas: WiFi or
other local-area communication (white space, ZigBee, LoRA)
to the edge is unavailable when the cattle is far away from
the farm facility, and cellular connectivity is missing at places
given the poor coverage in the countryside.

In most operational large-scale farms in the US, WiFi con-
nectivity is not present. While cellular providers in the US do
provide cellular plans for IoT devices (prominently NB-IoT),
the cost of such plans makes them infeasible for farms, con-
sidering that the cost is per device and we anticipate many IoT
devices in a large-scale farm. Hence, the use of LoRa, and its
variants LoRaMesh or LoRaWAN, is popular. The IoT orches-
trators that are provided by Microsoft, Amazon, and Google,
i.e., Microsoft Azure IoT, AWS IoT Greengrass Greengrass,
and Google IoT Core, can also leverage any of these net-
working modalities. However, Azure IoT uses a hybrid of per-
device and data-based pricing system and AWS Greengrass
uses a per-device pricing system, while Google’s IoT Core
uses a pricing system based on data volume alone. Thus, all
existing commercial edge-based orchestrators need additional
operational costs to function. So using a non-metered network
like LoRa and using homegrown orchestration software will
avoid these additional charges. A suite of techniques for data
acquisition and wireless networking must work in concert,
and at a price-point, to meet the diverse demands in digital
agriculture.

Agricultural data types relevant to algorithmic design:
It is important to set up the data architecture prior to in-

gestion of the data. A broad and yet useful principle relates
to the FAIR data principles, which refer to the Findability,
Accessibility, Interoperability, and Reuse of digital assets.
This is particularly important as in this domain there is close
interaction between man and machine throughout the data

3The use of drones is gaining favor in large farm settings because they are
often not set up for WiFi or other wireless coverage. Therefore drones can
act as data ferries for visiting the sensor nodes and acquiring the data, when
the data is not latency sensitive. For example, time-lapse video showing the
growing characteristics of plants can be brought back by the drone to the
backend for heavy compute processing. The use of drone preserves the low
power operation of the sensor nodes as the expensive long-range wireless
communication is avoided and the low duty cycle of the nodes is maintained
(the nodes are woken up by the drones on an on-demand basis).
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pipeline. Now let us consider the primary types of data as
they relate to our theme here. Batch Data mainly includes
information collected from sensing devices, such as informa-
tion of cropping, feeding, waste, livestock, etc. As the data is
often sparse in time and space, it has a loose synchronization
requirement and does not require a continuous wireless con-
nectivity. Therefore, batch data can be periodically recorded
and asynchronously updated. The main limitation for sensing
devices is that they are usually battery powered and have
limited operational lifetime. An optimized device manage-
ment and transmission protocol is quite essential for energy
efficient data acquisition and transmission, device lifetime
maximization and sustainable development of the livestock
system. Streaming Data is usually dynamic video/audio re-
coded by surveillance cameras or drones for real-time moni-
toring and early anomaly detection. Such data, especially for
real-time monitoring, analytics and diagnosis is time sensitive
and demands a continuous high-volume bandwidth for inten-
sive content storage and delivery. A joint procedure of data
acquisition and transmission is thus required to adapt the high
data volume, handle varying wireless conditions, and support
a reliable information flow.

Multi-class data acquisition, storage, and processing: We
consider two main classes: delay-sensitive and delay-tolerant.
Delay-sensitive data is used for real-time monitoring, early
anomaly detection and other highly-responsive tasks. It is
further divided into multiple sub-classes depending on their
bandwidth requirement: continuous high bandwidth (e.g.,
streaming videos recorded by the cameras or drones), contin-
uous low bandwidth (e.g, streaming audio/voice, GPS or other
in-cattle sensing data), or instantaneously-available but short
connectivity (e.g., information like critical alarms).

Delay-tolerant data is used for strategic tasks and includes
sensing data collected for cropping, feeding, waste, livestock,
etc. For different classes of data, we propose to develop a suite
of techniques: 1) task-aware sampling schemes to reduce data
volumes but retain data samples essential to the computation
tasks, 2) content-aware data aggregation and compression to
eliminate statistical redundancy and adjust data volume to fit
the dynamic channel capacity and varying wireless condition
(e.g., content-aware video frame compression).

Integrated network over heterogeneous wireless communi-
cation: We have designed an integrated network to enable
both delay-sensitive communication and delay-tolerant com-
munication (in an opportunistic manner) over heterogeneous
wireless connectivity [8]. We consider both infrastructure-
based and ad hoc modes. Hybrid mode is also designed for
whereby data resides at a location till infrastructure becomes
available such as a drone as a data ferry. Network adapta-
tion needs to be performed at multiple levels spanning from
wireless technologies (e.g., cellular, cellular-IoT, WiFi, Zig-
Bee, LoRA etc), transport layer (MPTCP, delay-driven op-
timization), lower-layer techniques like resource allocation,
scheduling and rate adaption, to name a few. Many techniques
can be modified at runtime to further optimize data acquisi-
tion and transmission under time-varying conditions. These

FIGURE 6. Farm economic decision making pipeline and barriers to
profitability in digital agriculture.

include predictive optimization based on time varying wire-
less connectivity and data requirements and joint optimization
of local storage, local processing, and wirelesss transmissions.

VI. ECONOMICS, POLICY, AND DECISION MAKING
The most relevant policy questions in digital agriculture and
related business data and are summarized in Fig. 6. Though
farm data enjoy some of the IP protections afforded to trade
secrets, its legal ownership remains ambiguous [71]. The deci-
sion to subscribe to a data service provider stem from fears of
personally identifiable information (PII) being misappropri-
ated. Yet, farm data generates positive network externalities
when aggregated across a large number of operations.

Profitability and on-farm decision making: Site-specific
farm management has the potential to enhance farm prof-
itability while conserving resources. But despite advance-
ments in field sensors, GPS guidance, and grid soil sam-
pling, adoption by farmer operators has fallen short of ex-
pectations. Operator demographics, operation size, and per-
ceived benefits influence the decision to invest in site-specific
management practices. Subsequent economic returns to adop-
tion depend on the nature of the adopted technology and its
interface with on-farm decision making. Miller et al. [72]
identify two types of precision agriculture technologies: em-
bodied knowledge—tools that generate value in isolation,
e.g., GPS guidance systems or automatic section control—
and information intensive—tools that produce data for use
in future decision making such as yield monitors, grid soil
sampling, or electrochemical sensors. Embodied knowledge
technologies create immediate convenience while the bene-
fits of information-intensive technologies are revealed over a
longer time horizon and depend on their role in the on-farm
decision making process. Differences in the immediacy and
measurability of realized gains may explain differences in
adoption rates across technology types. Use of VRT and GPS
soil mapping, for example, has consistently lagged that of
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GPS guidance systems. Rather than assessing technologies in
isolation, agricultural economists are increasingly interested
in how producers bundle complementary tools to create an
overall precision technology strategy. Profitable use of “hard
technologies” such as variable rate planters and fertilizer
spreaders depends crucially on the availability of accurate
intra-field soil data, or “soft technology” inputs [1]. These data
sources however, are themselves costly to obtain. Moreover,
the optimal data collection frequency or sampling density is
not obvious and likely varies by field. Unless the economic
returns to site-specific management cover both the up-front
investment and the cost of collecting and using actionable
information, adoption will be low.

Policy: The most relevant policy questions in digital agri-
culture regard the value and legal status of farm data. Agri-
cultural data generates benefits when aggregated across a
large number of farm operations. These benefits—referred to
as network effects or network externalities—grow with the
number of participants. Business models such as Farmers
Business Network, Inc. (FBN) have demonstrated the value
of data sharing through its crowd-sourced database of input
costs and performance benchmarking. But farm data often
remains siloed within the farm gate. An individual farm’s data
leads to more reliable recommendations when pooled with
comparable operations using similar practices and inputs. To
overcome this “small data” problem, the perceived benefits
of joining a big data community must exceed the perceived
costs—e.g., privacy concerns over data misappropriation. To
better understand the privacy concerns of producers, the na-
ture and legal status of agricultural data must be considered.
Miller et al. [71] discuss farm data’s place on the private-
public good spectrum. For a good to be a “private good,”
i.e., its benefits and costs are fully realized by the owner, it
must be both rivalrous—consumption by one party prohibits
the consumption of another—and excludable—access to the
good can be restricted. A private good allows for the highest
possible degree of privacy protections for the owner. Copies
of farm data can be shared without inhibiting its use by the
original owner. In this way, farm data is clearly non-rivalrous.

The ability of a farm operator to exclude others from using
their data depends on their relationships with data service
providers and the data sharing agreements that govern those
relationships. For example, equipment manufacturers collect
telematics data on new products they sell for improving per-
formance and service. The equipment owner has no reason-
able expectation of excludability and may not even be aware
that they opted into such an agreement. Farms that subscribe
to a data service provider to manage and analyze their data,
e.g., Climate FieldView, are similarly forfeiting excludability.
However, data may be partially excludable if access is lim-
ited to the network, or “club” of subscribers. Farm data most
closely satisfies the definition of a “club good”, meaning the
degree to which a farmer’s privacy is at risk depends on how
extensive and excludable their data network is [71].

A farmer’s data is not legally protected from disclosure in
the way medical records are protected by the Health Insurance

Portability and Accountability Act (HIPAA) or education in-
formation is protected by the Family Educational Rights and
Privacy Act (FERPA). Without overarching legal safeguards
for farm data, individual sharing agreements dictate the terms
of access and use. Though farm data enjoy some of the intel-
lectual property protections afforded to trade secrets, its legal
ownership structure remains ambiguous. There may be a role
for liability insurance that addresses unintended consequences
of information sharing. Over large regions, such data might
be reported on a non-attributional basis, thus shielding spe-
cific individuals. The flip side of this is that this reduces the
precision of mitigation actions, e.g., for a specific geograph-
ical region. Possible solutions to the conundrum might con-
sider cryptography coupled to access keys, facilitating access
to large databases, without revealing specific information to
those who do not hold keys. Keys could be made available
based on a regional user group, and to those who contributed
to the database. For further sophisticated use cases, secure
multi-party computation can be used, allowing a group of
members of a minimum size coming together to access the
information, but individuals or smaller-sized groups cannot.
For example, homomorphic encryption in federated comput-
ing serves this purpose of balancing privacy and data utility.

VII. LOOKING AHEAD
Big data and precision agriculture will likely be a disruptive
force in the farm economy over the medium to long-term
range. Digital agriculture, with the incorporation of Internet-
of-Things (IoT)-based technologies, presents the ability to
evaluate a system at multiple levels (individual, local, re-
gional, and global) and generate tools that allow for improved
decision making in every sub-process related to digital agri-
culture. In this article, we have reviewed the different types
of datasets and relevant data science processing algorithms
in typical field operations together with the typical lifecycle
for the data to be contributory to the digital farm economy.
We have then discussed the optimized NoSQL-based data
storage solutions. Then, we have developed the idea of Ma-
chine Learning being adapted for use in digital agriculture,
which means putting domain-specific requirements regard-
ing interpretability, distribution, ability to handle intermittent
wireless connectivity, and low cost. Finally, we have reported
on results from real-world data from real-world testbeds with
respect to which features are important in the analytics and
the performance of analytics-based prediction. We conclude
by discussing the policy challenges, the farm economic de-
cision making pipeline, and barriers to profitability in digital
agriculture.
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