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ABSTRACT Human collaboration has a great impact on the performance of multi-person activities. The
analysis of speaker information and speech timing can be used to extract human collaboration data in detail.
Some studies have extracted human collaboration data by identifying a speaker with business-card-type
sensors. However, it is difficult to realize speaker identification for business-card-type sensors at low cost
and high accuracy because of spikes in the measured sound pressure data, ambient noise in the non-speaker
sensor, and synchronization errors across each sensor. This study proposes a novel sound pressure sensor
and speaker identification algorithm to realize speaker identification for business-card-type sensors. The
sensor extracts the user’s speech at low cost and high accuracy by employing a peak hold circuit and time
synchronization module for spike mitigation and precise time synchronization. The algorithm identifies a
speaker with high accuracy by removing ambient noise. The evaluations show that the algorithm accurately
identifies a speaker in a multi-person activity considering varying numbers of users, environmental noises,
and reverberation conditions as well as long or short utterances. In addition, the peak hold circuit enables
accurate extraction of speech and the synchronization error between the sensors is always within ±30 μs,
that is, negligible error.

INDEX TERMS Human activity recognition, sensor networks, speaker identification, speaker recognition,
time synchronization.

I. INTRODUCTION
Human collaboration has a great impact on the effective-
ness of multi-person activities; examples include collaborative
work and learning. For example, the literature [1] finds that
in collaborative learning, learners using the same problem-
solving methods tend to consistently produce higher learning
outcomes. Some studies have used speaker information in
multi-person activities to estimate human collaboration [2]–
[5]. They found that the analysis of speaker information
and speech timing can be used to extract detailed infor-
mation regarding the collaboration, such as the most active
group and the conversation patterns of the members who lead
the activity.

Some studies have attempted to identify the speaker in
multi-person activities using microphones, including meth-
ods such as speaker localization [6]–[19], speaker verification
using voice features [20]–[29], speaker identification using
voice features [20], [23], [30]–[47], and speaker recogni-
tion using a mobile device [2]–[5], [48], [49]. For example,
speaker localization determines the location of the speakers
from multiple sound sources using a microphone or micro-
phone array. The abovementioned studies consider using mi-
crophones with a high sampling rate of several kHz or higher
for speaker recognition. In this study, we focus on speaker
identification using sound pressure sensors with a low sam-
pling rate. Speaker identification based on a low sampling rate
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sensor can extract collaboration data in multi-person activi-
ties, even using low-price and low-power-consumption mobile
devices.

One of the pioneer studies is Rhythm [5]. Rhythm uses
a mobile device, that is, a business-card-type sensor with a
700 Hz sound pressure sensor. Each speaker employs the
sensor, and Rhythm uses a series of integration circuits, voice
activity detection (VAD) [50], and thresholding algorithms for
speaker identification. However, it is difficult to accurately
identify a speaker using a sound pressure sensor because of
the following issues.

The first issue is spikes in the measured sound pressure
data. The integration circuit in Rhythm experiences spikes in
the measured sound pressure, and these spikes may cause in-
correct speech detection. The second issue is the classification
of speech and noise based on the measured sound pressure.
Even when spikes can be removed from the sound pressure,
each element of speech affects the sound pressure of the
business-card-type sensors of the non-speakers. For accurate
speaker identification, the sensor for each speaker needs to
classify the sound pressure into his/her speech or ambient
noise. The third issue is a synchronization error across the
sensor for each speaker. For classification, one solution is
to cooperatively use sound pressure across the sensor of the
speaker. However, there is no time synchronization module
used with the sensors of Rhythm. This causes synchronization
errors across the sensors, and errors also cause an incorrect
chronological order of the sound pressure data across the
sensors. In this case, classification is difficult, even with the
sound pressure data of the speakers.1

To resolve these three issues, we propose the following:
1) a sound pressure sensor for business-card-type sensors
and 2) a high-accuracy speaker identification algorithm using
sound pressure data with a low sampling rate. To realize the
proposed scheme, we implement a novel business-card-type
sensor, namely, the Sensor-based Regulation Profiler Badge.
Here, the business-card-type sensor is assumed to be worn on
the chest of the speaker. For accurate identification, our study
contains the following elements:
� Our sound pressure sensor uses a peak hold circuit for

spike mitigation.
� We propose three-step speaker identification for removal

of the effects of ambient noise.
� We implement a flooding-based synchronization module

on our business-card-type sensor for precise time syn-
chronization.

From the evaluations, we found that 1) the peak hold cir-
cuit removes the spikes from the measured sound pressure
data, 2) the experiments show the effectiveness of the pro-
posed scheme under different numbers of users, environmen-
tal noises, and reverberation conditions as well as for long or
short utterances, and 3) the synchronization error between the
sensors is always within ±30 μs.

1To prevent meaningless analysis resulting from time synchronization er-
ror, the time synchronization accuracy should be less than one-tenth of the
maximum sampling rate of the sensor.

The remainder of this paper is organized as follows:
Section II describes related studies. In Section III, we present
the proposed system for identifying a speaker, including the
sound pressure sensor design (Section III-B) and speaker
identification algorithm (Section III-C). Section IV describes
the implementation of a business-card-type sensor for speaker
identification. Experimental and simulation evaluations are
conducted in Section V. Finally, Section VI concludes our
paper.

II. RELATED WORKS
Our study is related to studies on speaker recognition using
stationary and mobile devices.

A. SPEAKER RECOGNITION USING STATIONARY DEVICE
Existing studies can be classified into speaker localization,
speaker verification, and speaker identification using voice
features. Speaker localization [6]–[14] finds the location of
the speaker from multiple sound sources. There are various
applications that use speaker localization, such as mobile
robots [15]–[17], passive sonar [18], and hearing aids [19].
For example, in response to wideband noise, the literature [17]
proposes a method for distinguishing the time difference of
arrival (TDOA) of sources and noise to estimate the position
of the speaker.

Studies on speaker verification [20]–[26] compare the voice
of a speaker with that of a pre-registered person for authenti-
cation. Speaker verification is used for Internet of things (IoT)
device authentication [27], network security [28], and user
authentication [29]. For example, the literature [26] combines
mel-frequency cepstral coefficients (MFCC) and linear pre-
dictive coding (LPC) to improve the performance of speaker
verification for low-quality input speech signals.

Some studies have realized speaker identification [20], [23],
[30]–[44] by comparing the voice of a speaker with the voice
of a pre-registered person. Speaker identification has been ap-
plied to video conferences [45], criminal investigations [46],
and television programs [47]. For example, the literature [45]
improves the robustness of speaker identification by identi-
fying key speakers during a video conference, partially dis-
carding information originating from inactive participants and
reducing the interference caused by their temporary speech.

However, the abovementioned studies require high hard-
ware and processing costs because a voice must be sampled at
a high frequency of several kHz or more using a microphone.
Our study uses a business-card-type sensor that samples sound
pressure data at 100 Hz for speaker identification. It can re-
duce hardware and processing costs for identification, thus
enabling the extraction of collaboration data in multi-person
activities.

B. SPEAKER RECOGNITION USING MOBILE DEVICE
Some studies [48], [49] have realized speaker identification
using a smartphone or a business-card-type sensor for the
extraction of collaboration data in organizations [2]–[4] and
human interaction [5]. For example, Hitachi’s business micro-
scope [2]–[4] uses a business-card-type sensor to identify a

VOLUME 2, 2021 217



YAMAGUCHI ET AL.: SPEAKER IDENTIFICATION FOR BUSINESS-CARD-TYPE SENSORS

FIGURE 1. Overview of the proposed speaker identification technology.

speaker with an accuracy of 97.3 %. We note that the busi-
ness microscope demonstrates high power consumption by the
sound pressure sensor because of its high sampling rate of 8
kHz.

In addition, the MIT’s Rhythm [5] also uses a business-
card-type sensor called Rhythm Badge for speaker identifi-
cation. Rhythm Badge consumes less power because it sam-
ples sound pressure at 700 Hz. It realizes speaker identifi-
cation based on thresholding without the extraction of voice
features; however, its identification accuracy is not high be-
cause of spikes in the measured sound pressure data using
an integration circuit, the fixed threshold that allows ambient
noise to cause errors, and the lack of time synchronization
between sensors.

We design a novel business-card-type sensor to realize
spike mitigation using a peak hold circuit and a speaker iden-
tification algorithm to remove the effect of ambient noise, and
we incorporate high-precision time synchronization between
sensors. Our experiments and simulations demonstrate that
these steps can improve the accuracy of speech detection and
speaker identification.

III. PROPOSED SYSTEM: SPEAKER IDENTIFICATION
A. OVERVIEW OF PROPOSED SYSTEM
To identify the speaker using sound pressure sensors on a
business-card-type sensor with a low sampling rate, we pro-
pose a sound pressure sensor and a speaker identification
algorithm. Fig. 1 shows the overview of our proposed system.
We employ the following steps to identify the speaker from
the sound pressure data.

1) We distribute our business-card-type sensors to users
prior to multi-person activity.

2) The sensors acquire user speech through the sound pres-
sure sensor with the peak hold circuit during multi-
person activity.

3) We collect the distributed business-card-type sensors
from the users.

4) We extract sound pressure data from the collected
business-card-type sensors and feed them into the pro-
posed speaker identification algorithm.

5) The proposed algorithm extracts and visualizes the iden-
tification results.

FIGURE 2. Sound pressure sensor.

B. SOUND PRESSURE ACQUISITION
Fig. 2 shows a sound pressure sensor. The sensor samples
sound pressure every 10 ms. A microphone converts user
speech into electrical signals; because the converted signals
are weak, the signals are amplified. The amplified signals are
input into a peak hold circuit, which enables the detection
of instantaneous signals using the discharge characteristics of
an RC parallel circuit. An analog-to-digital (AD) converter
converts the analog signal output from the peak hold circuit to
digital signals. The digital signals are output every 10 ms with
timing and frequency synchronization using a synchronization
signal generator.

Our sound pressure sensor is simple and inexpensive.
Specifically, the circuit consists of a microphone, an opera-
tional amplifier, a peak hold circuit, and an AD converter. This
simple circuit allows the implementation of a sound pressure
sensor at a low cost.

C. SPEAKER IDENTIFICATION ALGORITHM
Fig. 3 shows an overview of the proposed speaker identifica-
tion algorithm. There are three steps for speaker identification:
1) pre-processing of sound pressure data, 2) speech section
estimation, and 3) speaker identification.

1) Pre-Processing: The first step extracts the sound pressure
detection for each user. The algorithm calculates the minimum
sound pressure value for each user and subtracts the minimum
value from all the sound pressure data to make a zero-point
correction. The algorithm labels whether each user speaks
with sliding windows for the sound pressure data of each
user obtained by zero-point correction for each window. Algo-
rithm 1 exhibits the labeling procedure in Fig. 3, and Table 1
lists the algorithm notation. Algorithm 1 outputs the array A,
which represents “the 1–0 data for each user” from the set of
all sensor IDs U and the set of the sound pressure data from all
the sensors S = {S1, S2, . . . , S|U |}. We find the maximum of
the sound pressure m for each user in each window W in line 6.
If the maximum m in window W does not exceed the speech
threshold ηs across all users, it is assumed that the speech of
the user is not detected in window W , and the window slides
in line 16. If the maximum m in window W exceeds the speech
threshold ηs, the algorithm updates a threshold ηm as m ∗ 0.1
in line 8. The algorithm compares the sound pressure of a user
with the threshold ηm and assigns 1 if the sound pressure is
higher than the threshold and 0 if the sound pressure is lower
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FIGURE 3. Overview of the speaker identification algorithm.

TABLE 1. Notation

than the threshold in lines 9–13. The labels w in window W
overwrite the corresponding elements of array Ad in line 14.
We call the data obtained through pre-processing “the 1–0
data for each user.”

2) Speech Section Estimation: The second step extracts the
presence or absence of a user’s speech from the 1–0 data for
each user. The algorithm fills the data using the 1–0 data for
each user. The algorithm complements labels 1 in a section
with consecutive labels 0 within 90 ms between labels 1
considered in the middle of speech in the 1–0 data for each
user. The algorithm removes pulse noise using 1–0 data for
each user with complements. The algorithm replaces a short
interval with continuous labels 1 within 150 ms by labels 0,
assuming that the section is where speech is falsely detected
by ambient noise. The algorithm takes the logical summation
of the 1–0 data for each user with pulse noise removal. We call
the binary data obtained through the speech section estimation
“the speech section data.”

Algorithm 1: Labeling in pre-processing
Require: U, S
Ensure: A
1: for all d ∈ U do
2: Insert zeros into all elements of Ad

3: ξ ⇐ 0
4: while ξ < length of Ad do
5: W ⇐ Sd ∈ S between ξ to ξ + D
6: m ⇐ max(W )
7: if m > ηs then
8: ηm ⇐ m ∗ 0.1
9: if w ∈ W > ηm then

10: w ⇐ 1
11: else
12: w ⇐ 0
13: end if
14: Insert w ∈ W into elements of Ad with OR
15: end if
16: ξ ⇐ ξ + slide width
17: end while
18: Insert Ad into A
19: end for
20: return A

3) Speaker Identification: The third step determines who
speaks in each speech section by combining the 1–0 data for
each user and speech section data. The algorithm focuses on
each section where a user is considered to speak based on the
speech section data. The algorithm extracts a user with the
most labels 1 in each speech section and regards the user as a
speaker in the speech section on the basis of the 1–0 data for
each user.
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FIGURE 4. Sensor-based Regulation Profiler Badge.

IV. IMPLEMENTATION: BUSINESS-CARD-TYPE SENSOR
We implement a novel business-card-type sensor, namely, the
Sensor-based Regulation Profiler Badge. Figs. 4 (a) and (b)
show the proposed Sensor-based Regulation Profiler Badge
(sensor node) and its block diagram. The sensor node consists
of a power control unit, CPU sensor unit, and wireless unit.

The power control unit has a lithium-ion battery that drives
the sensor node. The lithium-ion battery supplies power to
the power switch and microcontroller unit (MCU). The sensor
node can continuously run for 24 h.

The CPU sensor unit is equipped with a STM32L476RGT6
from STMicroelectronics as the MCU, an ADXL362
accelerometer (ACC sensor) from Analog Devices, an
OSI5LAS1C1A infrared light emitting diode (IR LED) from
OptoSupply, a PIC79603 infrared receiver (IR sensor) from
Kodenshi Corp., and an INMP510 analog microphone in the
sound pressure sensor (SP sensor) from TDK. The three-axis
accelerometer samples 12 bits at 100 Hz, and the sound pres-
sure sensor samples 12 bits at 100 Hz. The microSD card
connector of a DM3AT-SF-PEJM5 from Hirose Electric is
used to record the sensor data. The acceleration, infrared, and
sound pressure data are recorded on a microSD card.

The wireless unit uses a CC2650 from Texas Instruments,
which contains a wireless synchronization module. The wire-
less synchronization module transfers a synchronization sig-
nal sent every 10 ms from a synchronizer (sync node) to
other sensor nodes to synchronize the time between the sen-
sor nodes. CC2650 uses UNISONet, which is also known
as Choco [51], [52], to realize precise time synchronization
between the sensor nodes. In Choco, an arbitrary sensor node

forwards a time-synchronous packet to the neighboring sen-
sor nodes and then propagates the received time-synchronous
packet to the destination node. When a sensor node receives
a new time-synchronous packet from a neighboring sensor
node, it immediately forwards the packet to all neighboring
sensor nodes. Each sensor node repeatedly receives and for-
wards time-synchronous packets by flooding, resulting in the
fast propagation of time-synchronous packets throughout the
sensor nodes.

V. EVALUATION
A. SPEAKER IDENTIFICATION ACCURACY
We experimentally evaluated the accuracy of the speaker iden-
tification algorithm using the sound pressure data obtained
from existing and proposed business-card-type sensors. We
carried out the experiment in a conference room considering
different numbers of users, environmental noises, and rever-
beration conditions as well as long or short utterances. All
users were male university students in their early 20 s. The
dimensions of the conference room were 10.6 m × 7.05 m ×
2.65 m. In each experiment, each user wore a sensor node on
his chest and sat on a chair 1.50 m away from adjacent users
around the table. We set a sync node at the center of the table
for time synchronization between the sensor nodes.

For the experiments of long and short utterances, we pre-
pared two types of speech scripts for each user. Table 2 shows
the prepared script for the experiments of long and short utter-
ances. Specifically, all the users spoke a sentence in Table 2 in
order with a two-second interval to avoid speech overlapping.
After all users spoke a sentence, they started to speak the
next sentence.

We compared the speaker identification accuracy of our
proposed scheme with that of Rhythm [5]. Rhythm identifies
a speaker using only sound pressure. Both algorithms use
sliding window-based speech detection for speaker identifi-
cation. Rhythm uses the VAD and thresholding algorithms
for speaker identification. Here, the identification accuracy
depends on the window size, slide width, and speech de-
tection threshold. Because each user began his speech after
a two-second interval from the speech of the former user,
we set the window size to two seconds in both algorithms
to include at most one speech in each window. We set the
slide width to 0.01 seconds and one second for Rhythm and
the proposed algorithm. The slide width in Rhythm is to the
same as in the literature [5]. The slide width in the proposed
algorithm is the best parameter, which achieved the most
accurate speaker identification in the preliminary evaluations
using varying slide widths. The optimal value of the speech
detection threshold for Rhythm and the proposed algorithm
depends on the evaluation settings.

1) THE NUMBER OF USERS
We show the speaker identification accuracy considering dif-
ferent numbers of users from two to five using the script of
long utterances in Table 2. We set the speech thresholds of
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TABLE 2. Speech Script Prepared for the Experiments

TABLE 3. Confusion Matrices Under the Different Numbers of Users

FIGURE 5. Speaker identification accuracy under the different numbers
of users.

82 dB and 75 dB to Rhythm and the proposed algorithm. The
thresholds were appropriately met irrespective of the number
of users.

Fig. 5 shows the speaker identification accuracy of the
proposed scheme and Rhythm and Table 3 shows the corre-
sponding confusion matrices for two through five users. In
this case, the F1-scores of Rhythm are 0.667, 0.662, 0.659,
and 0.661, whereas the F1-scores of the proposed scheme are
0.667, 0.662, 0.667, and 0.667. We can see that the F1-score
of Rhythm is lower than that of the proposed scheme for four
and five users. Because Rhythm uses a single speech threshold
across users, the threshold does not detect speech in some
users.

2) ENVIRONMENTAL NOISE
To evaluate the effect of environmental noise on the speaker
identification accuracy, we prepared a noise source in our
environment. The experiments were conducted for three users.
The noise source was set on the ceiling of the room 2 m away

FIGURE 6. Speaker identification accuracy under the different
environmental noises.

from the center of the table. The noise source used five types
of ambient noise recorded in trains, offices, streets, cars, and
rain. Other considerations were the same as the experiments
in Fig. 5. We set the average sound volume of each noise as
75 dB in the train, 70 dB in the office and street, and 60 dB
for cars and rain. We set the speech thresholds of Rhythm to
89 dB, 86 dB, 89 dB, 84 dB, and 85 dB for train, office, street,
car, and rain noises. We also set the speech thresholds of the
proposed algorithm to 84 dB, 85 dB, 84 dB, 83 dB, and 80 dB
for train, office, street, car, and rain noises.

Fig. 6 shows the speaker identification accuracy under the
different environmental noises, and Table 4 shows the corre-
sponding confusion matrices. In this case, the F1-scores of
Rhythm for the ambient noises of train, office, street, car,
and rain are 0.622, 0.651, 0.536, 0.662, and 0.662 whereas
those of the proposed scheme are 0.667, 0.651, 0.662, 0.662,
and 0.667. We can see that the proposed scheme achieves
a better F1-score compared with Rhythm irrespective of the
environmental noise type.
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TABLE 4. Confusion Matrices Under the Different Environmental Noises

TABLE 5. Simulation Environments for Reverberation Conditions

FIGURE 7. Speaker identification accuracy under the different
reverberation conditions.

3) REVERBERATION CONDITIONS
We used trace-driven simulation to evaluate the effect of re-
verberation conditions. We first recorded the sound pressure
signals of three users from the experiments in Fig. 5, and then
added the effect of the reverberation conditions on the signals
using the room impulse response generator [53]. The room
impulse response generator simulates the impulse response
considering the reverberation conditions of a room includ-
ing the room dimensions, source position, receiver position,
and reverberation time. We considered four room conditions
based on [54]: small, medium, and large and the same room
dimensions as in our experiment. Table 5 shows the assumed
room conditions. We set thresholds of 83 dB and 80 dB to
Rhythm and the proposed algorithm irrespective of the room
dimensions.

Fig. 7 shows the speaker identification accuracy under the
different reverberation conditions and Table 6 shows the cor-
responding confusion matrices. In this case, the F1-scores of
Rhythm for the four room conditions of the small, medium,
large, and actual rooms are 0.662, whereas those of the
proposed scheme are 0.667. We can see that Rhythm and the
proposed scheme achieves almost the same accuracy irrespec-
tive of the reverberation conditions.

4) SHORT UTTERANCES
We evaluated the effect of short utterances, speeches of less
than one second [33], using the script of short utterances in

Table 2. The experiments were conducted for three users.
Other considerations were the same as the experiments in
Fig. 5. We set the thresholds of 78 dB and 73 dB to Rhythm
and the proposed algorithm.

Table 7 shows the corresponding confusion matrices. In this
case, the accuracy of Rhythm and the proposed scheme for
short utterances are 88.9 % and 97.8 % and their F1-scores
are 0.651 and 0.657, respectively. Even in a short utterance,
the proposed scheme achieves a better F1-score than Rhythm.

B. IMPACT OF SOUND PRESSURE SENSOR
Figs. 8 (a) and (b) show the circuit diagrams of a sound
pressure sensor in the Rhythm Badge and our Sensor-based
Regulation Profiler Badge. Rhythm Badge, which is based
on Open Badge [55], uses an integration circuit, whereas
the Sensor-based Regulation Profiler Badge uses a peak hold
circuit for sound pressure acquisition. Each circuit parameter
in the proposed Sensor-based Regulation Profiler Badge is
determined to achieve the following three purposes in the
proposed circuits.
� Noises in low-frequency components, i.e., less than

20 Hz, should be removed from the sound pressure data
because they are not related to users’ speech.

� The sound pressure data should be amplified 100 times
to detect detailed changes in each user’s voice volume.

� The beginning and end of each speech section should
be accurately extracted from the sound pressure data by
adjusting the discharging slope of a resistor capacitor
(RC) circuit.

Circuit simulations were conducted for each circuit. Here,
we regarded a sinusoidal wave as the speech of a user. The
amplitude of the sinusoidal wave was 0.8 V at a frequency of
340 Hz, with a length of 500 ms. In addition, we used a direct
current (DC) signal with an amplitude of 0.9 V and a length
of 100 ms to represent silence. The DC signal was inserted
before and after the sinusoidal wave.

Figs. 8 (c) and (d) show the measured sound pressure ob-
tained by Rhythm and the Sensor-based Regulation Profiler
Badge as a function of elapsed time. Rhythm leaves spikes
at the beginning and end of the measured sound pressure by
inputting the sinusoidal wave into an integration circuit. Con-
versely, the measured sound pressure from the Sensor-based
Regulation Profiler Badge has no spikes at the beginning
nor end of the sound pressure data because it uses the peak
hold circuit.

To discuss the effect of the measured sound pressure data,
we adopted a threshold-based speech detection algorithm for
both Rhythm and our business-card-type sensor. We set the
sound pressure threshold to detect the edges of the section
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TABLE 6. Confusion Matrices Under the Different Reverberation Conditions

FIGURE 8. Simulation results for speech detection in Rhythm and Sensor-based Regulation Profiler Badge.

of user speech. As shown in Fig. 8 (c), the power of the
measured sound pressure in Rhythm before and after spikes
was approximately 0.90 V and 0.95 V. In this case, we set
the threshold to 0.92 V to reduce the effect of the spikes. As
shown in Fig. 8 (d), the power of the measured sound pressure
in the proposed scheme before and after the speech of the
user was 0.9 V and 1.8 V. In this case, the threshold between

0.9 V and 1.8 V achieved almost the same performance; thus,
we considered the same speech threshold of 0.92 V for the
proposed scheme.

Figs. 8 (e) and (f) show the results of the threshold-based
speech detection using Rhythm and the proposed Sensor-
based Regulation Profiler Badge. It is difficult for Rhythm to
extract the speech of a user accurately using threshold-based
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TABLE 7. Confusion Matrices of Short Utterances

speech detection because spikes remain in the measured sound
pressure data. Our Sensor-based Regulation Profiler Badge
can accurately detect the speech of a user because the mea-
sured sound pressure has no spikes. The results in Figs. 8 (e)
and (f) suggest that the peak hold circuit may detect the speech
of a user more accurately than the integration circuit, that is,
Rhythm.

C. TIME SYNCHRONIZATION PRECISION
We experimentally evaluated the time synchronization ac-
curacy between the sync and sensor nodes in the proposed
Sensor-based Regulation Profiler Badge. We set up a sync
node and a sensor node at a short distance from each other
on a desk and measured the time deviation between the nodes
based on the synchronization signals sent from the sync node.
An oscilloscope was used to measure the clock rise time at
each node to accurately obtain the time deviation between the
nodes. We assumed that the number of samples was 30 003,
and the wireless synchronization module of each Sensor-
based Regulation Profiler Badge transmitted a synchroniza-
tion signal every 10 ms.

The results show that the time synchronization error is
maintained within ±30 μs. Here, the mean and maximum
synchronization errors are −7.7 μs and 30 μs. The obtained
synchronization error is well below the required synchroniza-
tion accuracy of 1 ms because the sampling rate of the pres-
sure sensor in the sensor node is 100 Hz. Because the sen-
sors realize accurate synchronization, they maintain the time
series of the speech of each user. Accurate time-series data
can realize speaker identification with high accuracy. Periodic
correction of synchronization frequencies between the sync
node and the sensor node maintains synchronization errors
within ±30 μs, suggesting accurate speaker identification by
combining sensor data from multiple sensors.

VI. CONCLUSION
In this study, we proposed a novel sound pressure sensor
and speaker identification algorithm for business-card-type
sensors to extract collaboration characteristics in multi-person
activities. The sound pressure sensor employs a peak hold cir-
cuit and time synchronization module for spike mitigation and
precise time synchronization between sensors to detect the
speech of a user at low cost and high accuracy. The algorithm
removes ambient noise from non-speaker sensors to identify
a speaker with high accuracy. We found that the evaluations
show the effectiveness of the proposed scheme under different
numbers of users, environmental noises, and reverberation
conditions as well as for long or short utterances. In addition,
the peak hold circuit accurately extracts the speech of a user

and the synchronization error between the sensors is always
within ±30 μs.
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