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ABSTRACT Accurately predicting patient expenditure in healthcare is an important task with many applica-
tions such as provider profiling, accountable care management, and capitated medical payment adjustment.
Existing approaches mainly rely on manually designed features and linear regression-based models, which
require massive medical domain knowledge and show limited predictive performance. This paper proposes
a multi-view deep learning framework to predict future healthcare expenditure at the individual level based
on historical claims data. Our multi-view approach can effectively model the heterogeneous information,
including patient demographic features, medical codes, drug usages, and facility utilization. We conducted
expenditure forecasting tasks on a real-world pediatric dataset that contains more than 450,000 patients.
The empirical results show that our proposed method outperforms all baselines for predicting medical
expenditure. These findings help toward better preventive care and accountable care in the healthcare domain.

INDEX TERMS Administrative claims data, deep learning, electronic health record, expenditure prediction,
machine learning.

I. INTRODUCTION
The increasing healthcare expenditures represent a significant
challenge to healthcare providers and care organizations. As
reported by the Centers for Medicare & Medicaid Services
(CMS), the national health expenditure (NHE) for the United
States grew 4.6% to $3.6 trillion in 2018 (i.e., $11,172 per
person) and accounted for 17.7% of Gross Domestic Product
(GDP). Specifically, Medicare spending grew 6.4% to $750.2
billion, and Medicaid grew by 3.0% to $597.4 billion.1 The
healthcare system is likely to become unsustainable unless
medical cost growth is kept in check [1]. It is imperative to
control the healthcare expenditure increase and reduce the
medical cost for each individual.

Claims data, a special kind of Electronic Health Records
(EHR) mainly for billing purposes, contains longitudinal pa-
tient health records including demographics, diagnoses, pro-
cedures, medications, facility usages, and expenditures. The

1https://www.cms.gov/Research-Statistics-Data-and-Systems/Statistics-
Trends-and-Reports/NationalHealthExpendData

claims data is one of the richest available sources for es-
timating patients’ health conditions. The increasing amount
of claims data provides a new, promising approach to tackle
healthcare expenditure problems. Leveraging the historical
claims, one can develop data-driven models to reveal impor-
tant insights associated with the expenditure patterns. Specifi-
cally, an accurate medical cost predictive model at the individ-
ual level can help to identify patients with high medical risk
and deliver a better quality of care.

Existing approaches for patient expenditure prediction usu-
ally rely on handcrafted features and linear regression-based
models [2], [3]. For example, the Diagnostic Cost Groups
(DCG) [4] model applies linear regression to predict health-
care expenditure based on the diagnostic categories manually
designed by domain experts. Bertsimas et al. [5] developed
a Classification And Regression Tree (CART) based on the
aggregate medical codes and handcrafted cost features. These
models help to predict healthcare expenditures. However, they
are suffering from the following limitations: 1) They heavily
rely on domain knowledge to group high-dimensional medical

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

62 VOLUME 2, 2021

https://orcid.org/0000-0001-8110-903X
https://orcid.org/0000-0002-6721-1959
https:&sol;&sol;www.cms.gov&sol;Research-Statistics-Data-and-Systems&sol;Statistics-Trends-and-Reports&sol;NationalHealthExpendData


FIGURE 1. An illustrative example of claims data. Each patient can be
represented as three data fields: demographic features, facility utilization,
and medical codes.

codes into semantic-related categories. 2) they fail to utilize
the rich information within claims data, such as facility usage,
temporal information, and medical code correlation. 3). The
linear regression-based model limits the predictive power and
yields a sub-optimal model performance. This study aims to
address these limitations in the literature.

Our work is motivated by several observations. First, the
information in claims data is heterogeneous. As shown in Fig-
ure 1, different fields, such as medical codes, facility usages,
and demographics, may have different characteristics and data
structures. These fields are informative for expenditure pre-
diction but hard to be modeled by general-purpose machine
learning or deep learning models. To fully leverage these
fields, a framework that can handle the multimodal inputs is
needed. Second, there are more than 20,000 unique medical
codes in the claims data. Representing medical code using the
bag-of-words approach results in a sparse, high-dimensional
vector, while aggregating them into categories requires expert
knowledge and loses granular information. We need a method
to capture the semantic meaning of medical codes and ef-
ficiently represent them in a denser vector. Third, different
medical codes may have different importance for predict-
ing expenditure. For example, Malignant neoplasm (ICD-9
162) could be more important than impacted cerumen (ICD-
9 380.4) for estimating future medical expenditure. Thus, a
mechanism to calculate the importance of different medical
codes is needed.

This paper proposes a multi-view deep learning frame-
work to capture the heterogeneous information within claims
data. Our framework incorporates different data fields as dif-
ferent views. Specifically, the proposed model leverages a
feedforward neural network to embed the non-sequential de-
mographic features, an attention-based bidirectional recurrent
neural network to capture the sequential facility usage, and a
hierarchical attention network for learning medical code infor-
mation. The attention mechanism calculates the importance of
input variables and provides an interpretation of the predicted
outcome. We demonstrate that the proposed multi-view deep
learning framework achieves promising model performance
for expenditure prediction compared to various baselines on
a large pediatric claims data. The effectiveness of each view
in the framework is evaluated via an ablation study. A case
study is conducted to validate the learned personalized atten-
tion weights. Our model is also used to identify high utiliz-
ers and shows the potential to provide better population care

management. In summary, the key contributions of our study
are as follows:

1) We develop a multi-view deep learning framework to
model the heterogeneous information within claims
data. Our proposed method scales to input variables of
thousands of dimensions and millions of patients with-
out relying on expert domain knowledge.

2) The experimental results demonstrate that our approach
can better predict healthcare expenditure at the individ-
ual level (R2 >0.3). An ablation study is conducted to
illustrate the benefits of exploiting different data fields
in claims data.

3) Our framework shows better performance for selecting
future high utilizers. This improvement implies that our
model could enable care management entities to identify
millions more in future costs from high utilizers com-
pared to baseline approaches and better-allocate finite
healthcare resources accordingly.

The rest of the paper is organized as follows: Section 2
discusses the connection of the proposed approaches to rel-
evant literature. Section 3 presents the technical details of our
multi-view deep learning framework and experimental setup.
Section 4 shows the results of our approach in comparison to
baselines for expenditure prediction. Section 5 is the discus-
sion, and Section 6 concludes the paper.

II. RELATED WORK
Medical expenditure is a proxy for health-related utilization,
including prices, charges, and reimbursements. This study
defines medical expenditure as the dollar amount paid to the
care organizations and focuses on research with a similar
definition. This section first reviews the existing methods for
predicting medical expenditures in Section 2.1. Next, in Sec-
tion 2.2, we present the deep learning models that have been
used for mining electronic healthcare records (EHR).

A. MEDICAL EXPENDITURE MODELS
In the 1990s, a medical cost model, called the Chronic Disease
Score (CDS) [6], [7], was developed to predict future medical
costs and hospital visits based on pharmaceutical information.
The authors collected 250,000 managed-care adult enrollees
and utilized the medications within six months as the input
variable to calculate the predicted cost using a linear regres-
sion model. Then, the Medicaid Rx model [8], developed
for the Medicaid-insured population, utilized demographic
and pharmacy data to adjust per-person payment toward
healthcare plans. Two well-known models, Adjusted Clinical
Groups (ACG) [9] and Diagnostic Cost Groups (DCG) [10],
were developed to predict medical expenditures based on di-
agnostic data. The authors collected patients’ medical claims
from health maintenance organizations (HMO) and measured
their morbidity burden. To apply a regression model, they
hand-grouped thousands of diagnostic medical codes into
hundreds of condition groups. Later, many other researchers
have refined the ACG and DCG systems and have evolved into
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different variants designed for different populations and pur-
poses [11]. Despite the strong interpretability, these models
1) showed limited model performance in a real-world setting,
2) are biased toward a certain population, and 3) required a
considerable amount of human effort to develop and maintain.

Machine learning and deep learning approaches provide
another strategy to predict medical expenditures without rely-
ing on manually developed groupers [12]–[15]. Bertsimas et
al. [5] developed a CART mode, which considered temporal
patterns from the cost features. They have found that adding
aggregated medical features barely improved their model per-
formance. Additionally, Morid et al. [1] captured the spike
features (i.e., the fluctuation of prior medical costs) to model
future costs. These two models utilized temporal information
of prior expenditures and largely improved the model perfor-
mance. This improvement suggests that temporal information
is vital for modeling future medical costs.

B. DEEP LEARNING IN HEALTHCARE
Deep learning models are widely used for mining electronic
medical records (EHR), including patient phenotyping [16]–
[18], representation learning [19] and disease progression
[20]–[23]. Specifically, recurrent neural network-based mod-
els are extremely popular for their ability to model the se-
quential medical data. Dipole [24] utilized an attention-based
bidirectional recurrent neural network (RNN) to model medi-
cal visits and predict future diagnosis codes based on learned
representation. RETAIN [25] employed RNN with a reverse
attention mechanism for heart failure prediction. KAME [26]
and GRAM [27] integrated medical knowledge to increase
the models’ predictive power for rare disease prediction. GCT
[21] used a Transformer-based model to learn the hidden EHR
structure for predicting patient readmission and mortality rate.
Despite using similar datasets, these studies aim at a different
prediction task. Medical expenditure prediction is different
from the aforementioned tasks, as the outcome has different
types, distributions, and is sensitive to different factors.

III. METHODS
In this section, we first introduce the dataset and how we
preprocess the data. Then we describe the objective and pre-
dictors. Next, we present the details of our multi-view deep
learning framework. Finally, we present the baselines as well
as the evaluation metrics.

A. DATA AND PREPROCESSING
Experiments were conducted on administrative claims data
collected from the Medicaid program by Partner For Kids
(PFK). PFK is one of the largest nonprofit health care
providers in the United States and delivers coordinated ser-
vices for children in south-central and southeastern Ohio.
Our dataset contains more than 8,500,000 medical records of
450,000 patients from Jan 2013 to Dec 2014. To be included
in the experiments, enrollees must maintain continued eligi-
bility from Jan 2013 to Dec 2014. The continuous eligibility
enforcement is applied to avoid including patients with short

FIGURE 2. The distribution plot of per member per year dollar amount
before log-transformation (top) and after log-transformation (bottomn).
Due to the strong skewness (top), the model performance can be
significantly affected and yield a sub-optimal predictive performance. The
transformed outcome is normally distributed (bottom).

periods of enrollment but highly-variable profiles relative to
the general population. Expenditure is defined here as the final
paid amount, including professional, institutional, pharmaceu-
tical, and dental costs. All negative paid amounts (about 4%)
are converted to zero. In accordance with the Common Rule
(45 CFR 46.102[f]) and the policies of Nationwide Children’s
Institutional Review Board, this study used a limited dataset
and was not considered human subjects research and thus not
subject to institutional review board approval.

B. OBJECTIVE AND PREDICTORS
Objective: Our objective was to predict healthcare expendi-
ture at the individual level. In our predictive modeling, we
used 2013’s claims as the observation data and the medical
expenditure in 2014 as the prediction target. Toward this goal,
two predictive outcomes are conducted:

1) Per member per year dollar amount with the log scale
(log-PMPY, log transformation of the total medical
expenditure). The log-scale is applied to alleviate the
skewness of the expenditure, as shown in Figure 2.

2) Rank percentiles of the per member per year dollar
amount (pctl-PMPY, dividing the order rank of PMPY
by the number of data points). Values of the rank per-
centiles range from 0 to 1.

Predictors: As shown in Table 1, there are three data
fields in the claims data that are available as input variables:
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TABLE 1. Summary of Predictors

FIGURE 3. Multi-view deep learning framework.

non-sequential demographic features, hierarchical medical
codes information, and facility utilization sequences. Among
these features, diagnosis codes are encoded by the Interna-
tional Classification of Diseases, Ninth Revision, Clinical
Modification (ICD-9-CM), procedure codes are encoded by
the Current Procedure Terminology (CPT) and the Healthcare
Common Procedure Coding System (HCPCS), and medica-
tion codes are encoded by the National Drug Codes (NDC).
5,567 unique diagnosis codes, 4,087 unique procedure codes,
and 1,279 unique medication codes were identified during the
study period.

C. OUR APPROACH: MULTI-VIEW DEEP LEARNING
FRAMEWORK
Multi-view learning [39], [40] is a popular framework where
heterogenous data are represented by multiple distinct fields,
and each field is encoded through a unique learning module,
as referred to as a view. The core of a multi-view learning
framework is to learn efficient patient representation by in-
corporating the three data fields (i.e., demographics, medical
codes, facility utilizations) as three different views. The ar-
chitecture of our model is shown in Figure 3, where different
color refers to a different learning module.

As shown in Figure 3, the first view is the demographic
encoder, where demographic features are embedded into a

vector representation via a feedforward neural network. The
second view is the utilization encoder, where the utilization
sequence is fed through an attention-based bidirectional recur-
rent neural network to generate the utilization vector. The third
view is the medical code encoder, where the medical code
representation is generated via a hierarchical attention neural
network. Finally, the three vectors from the three views are
concatenated to predict medical expenditure. The proposed
model can be trained end-to-end.

First view, the demographic encoder: The raw demo-
graphic features are represented as the concatenation of binary
encoded variables (e.g., age, gender, and zip code) and contin-
uous variables (e.g., prior expenditures). Given the raw demo-
graphic feature vector d , a three-layer fully-connected neural
network FNN3 with ReLU activation function is applied to
learn the demographic representation, i.e., rd = FNN3(d ).

Second view, the utilization encoder: The utilization en-
coder is used to learn the patient representation from facil-
ity usage. The facility usage sequence [u1, u2, . . . , uT ] can
provide important complementary information for predicting
expenditure. For example, a patient who experiences a series
of intense emergency room (ED) visits might indicate a high
probability of future high utilization. To capture the longitu-
dinal dependency between utilization sequences, an attention-
based bidirectional recurrent neural network (BRNN) is used
to learn the representation of utilization information. The
BRNN consists of a forward and backward Long-Short Term
Memory (LSTM) cell. Specifically,

ei = Wu ui + bu (1)

h1, h2, . . . , hT = BRNNu (e1, e2, . . . , eT ) (2)

αi = exp (tanh (Wαhi + bα ))∑T
j=1 exp

(
tanh

(
Wαh j + bα

)) (3)

ru =
T∑

i=1

αi � hi, (4)

where αi is the attention weight, ei is the intermediate
hidden representation of ui , T is the length of the sequence,
Wα, bα are the attention parameters. The representation of
utilization sequence ru is the summation of the utilization
hidden states [h1, h2, . . . , hT ] weighted by the corresponding
attention weights [α1, α2, . . . , αT ].

Third view, the medical codes encoder. In claims data,
medical visits are represented as a set of medical codes. Con-
sidering that medical visits are usually clinically related when
they are temporally close to each other, we employ a time win-
dow to split the sequence of visits into multiple subsequences
with equal length. This processing step is commonly used
in many healthcare predictive studies [28], [29]. Within each
subsequence, there might be several medical visits or no visits
at all. The width of the subsequence window size is a hyper-
parameter. In this study, we set the window size to one month.
Given a patient represented as a sequence of subsequences,
medical code ci ∈ {0, 1}|C| within each subsequence was first
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projected into a m-dimensional continuous space as follows,

di = ReLU (Wc ci + bc), (5)

where Wc ∈ Rm×|C| is the weight matrix of medical codes, m
is the size of embedding dimension, |C| is the total number
of medical codes. We observe that the medical codes within
the subsequence are usually semantically related. Hence, skip-
gram algorithm is employed to pretrain the medical code em-
bedding and used the train vectors as the initialization of Wc.
The skip-gram algorithm is first applied to learn the efficient
representation of words in the natural language processing
domain [30]. The basic idea is to learn a distributed vector
representation of words by using each word in the sentence to
predict its nearby words. Similarly, in our study, the input is a
medical code, and the target is to predict medical codes within
the same subsequence.

Next, the bidirectional recurrent neural network is ap-
plied to encode the medical code embeddings within the
same subsequence. It takes the embedded code sequence
[d1, d2, . . . , di] as input, and outputs the hidden representa-
tion [g1, g2, . . . , gi]. Because medical codes occurring within
the same subsequence may have different informativeness, we
cannot directly aggregate them with equal weights. Therefore,
we leverage the attention mechanism to calculate the weights
based on the hidden state. The calculation is shown as follows,

g1, g2, . . . , gi = BRNNc (d1, d2, . . . , di ) (6)

βi = exp
(
tanh

(
Wβ gi + bβ

))
∑|v|

j=1 exp
(
tanh

(
Wβ g j + bβ

)) (7)

v =
|v|∑
i=1

βi � gi (8)

where gi is the intermediate hidden representation of di , βi is
the attention weight of medical code ci, Wα, bαare the atten-
tion parameters, |v| is the number of medical codes within
the subsequence. The representation of subsequence is the
summation of the medical code hidden states weighted by the
corresponding attention weights.

Given the embedded subsequence vectors v, a bidirectional
RNN is again used to encode the subsequence, then apply
the attention mechanism to measure the importance of the
subsequences. This yield,

l1, l2, . . . , lT = BRNNv (v1, v2, . . . , vT ) (9)

γi = exp
(
tanh

(
Wγ li + bγ

))
∑T

j=1 exp
(
tanh

(
Wγ l j + bγ

)) (10)

where γi is the attention weight of subsequence vi, Wγ and
bγ are the attention parameters. The representation of the
hierarchical medical code information is formulated as: rc =∑T

i=1 γi � li. The final patient representation r is the con-
catenation of the vectors learned from different views, and the
predicted expenditure is calculated as follows,

r = [ rd , ru, rc] (11)

ŷi = ReLU (Wor + bo) (12)

where Wo and bo are the output parameters. ReLU is used as
the output activation function as the expenditure should not be
negative in the real-world setting.

Objective function: Our target, medical expenditure, is a
continuous value, where yi ∈ R. Therefore, for model training,
the mean square error is used as the objective function,

L = 1

N

N∑
i=1

(yi − ŷi )
2, (13)

where yi and ŷi are the true and predicted expenditure of the
i-th patient, N is the total number of training data.

Implementation details. We set the maximum training
epoch to 100 to guarantee convergence. Early stopping and
dropout layer (with 0.5 dropout rate) are applied to avoid
overfitting. The embedding size and the LSTM unit size are
set to 200 to ensure sufficient predictive power. Model is im-
plemented with TensorFlow, and the code is publicly available
at our codebase.2

D. BASELINE AND EVALUATION METRIC
We evaluate our model’s performance with various baseline
methods that have shown promising performance in the previ-
ous study, including (1) Lasso [3]: Linear regression with L1
regularizer. (2) Ridge [3]: Linear regression with L2 regular-
izer. In the experiment, the L1 and L2 coefficients are set to 1.
(3) DT [31]: Decision Tree. (4) RF [5]: random forest with 100
estimators (5) GBM [32]: gradient boosting machine, we used
the implementation by [33] with default hyperparameters. (6)
FNN [34]: feedforward neural network with three hidden lay-
ers. ReLU is used as the activation function of each hidden
layer, and a dropout layer with a 0.5 dropout rate is applied
after each hidden layer.

For all baseline models, the demographic features are di-
rectly used as part of the input variables. Facility usages and
medical codes are first aggregated due to the sequential nature
and high-dimensionality. Specifically, diagnostic codes were
grouped into 251 categories using Clinical Classifications
Software (CCS). Medication codes were grouped into 307
drug classes using the NDC Directory from the Food and Drug
Administration (FDA). Approximately 600 input variables are
used for baselines. More details can be found in our codebase.

To evaluate the performance of predicting future patient
expenditure for each method, we use four measures:

1) Coefficient of determination (R2). R2 is often used to
evaluate the predictive performance of expenditure fore-
casting algorithms. It compares the accuracy of the pre-
dictive value with respect to the mean target value. A
higher R2 indicates a better fitting model.

R2 (x, y) = 1 −
∑N

i=1 (yi − xi )2∑N
i=1 (yi − ȳ)2

(14)

2https://github.com/1230pitchanqw/multi-view
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TABLE 2. The Results for Predicting Log-Pmpy

TABLE 3. The Results for Predicting Pctl-Pmpy

2) Mean absolute error (MAE) and Root mean square error
(RMSE). MAE and RMSE are two straight forward
evaluation metrics for regression models. MAE and
RMSE are calculated as:

MAE (x, y) = 1

N

N∑
i=1

|yi − xi| (15)

RMSE (x, y) =
√

1

N

∑N

i=1
(yi − xi )2 (16)

3) Pearson Correlation Coefficient (PCC). PCC measures
the linear relationship between two lists of values. The
result of PCC varies between -1 to 1, with 0 indicat-
ing no correlation. In our expenditure prediction task,
higher PCC indicates better predictive outcomes. The
correlation coefficient is calculated as follows:

PCC (x, y) =
∑N

i=1 (xi − x̄)
(
yi − ȳ

)
√∑N

i=1 (xi − x̄)2 ∑N
i=1 (yi − ȳ)2

(17)

IV. RESULT
A. FUTURE EXPENDITURE PREDICTION
In this subsection, we examined the model performance on the
expenditure prediction task. Table 2 and Table 3 showed the
predictive results of our proposed model and baselines with
the two objective outcomes, i.e., log-PMPY and pctl-PMPY,
respectively. According to the tables, our multi-view approach
can significantly outperform all baseline methods (p<0.01).

All baseline models, except the decision tree (DT), achieve
promising predictive performance as indicated by the R2.
More than 20% of the variation can be explained by these
baselines with the log-PYPM predictive outcome. The PCC
value is more than 0.5, and MAE/RMSE reaches 1.1 and 1.6,
respectively. GBM achieves the best model performance for
all measures among all baselines. The superior performance
of GBM is likely because of its strong predictive power: it
combines many decision trees in series, and each is focusing

FIGURE 4. Effectiveness of the multi-view framework with log-PMPY
predictive outcome. The lower RSME and MAE indicate better model
performance (top). The higher PCC and R2indicate better model
performance (bottom).

on errors from the previous one. On the other hand, we ob-
serve that the decision tree method performs the worst among
all models. This result is likely because the decision tree
memorizes some noise from the data and fails to generalize.

The attention mechanism is widely used in the sequential
problem for boosting model performance and providing in-
terpretability to the model. We validate the attention mech-
anism’s effectiveness by removing the attention layer, i.e.,
Multi-viewplain. Comparing Multi-view and Multi-viewplain,
we can observe that the attention mechanism slightly im-
proves the predictive power.

The superior predictive performance of our model can be
attributed to the efficient representation that learns from the
claims data. The information in claims data is heterogeneous
and has different structures. The multi-view framework incor-
porates different information as different views via a multi-
view deep learning framework. By employing three different
encoders to encode the three different data fields, our proposed
method is able to accumulate relevant historical healthcare
information and learn the succinct feature presentation of
patients. Our framework also leverages the embedding tech-
nique to capture medical codes’ semantic meaning and utilize
attention mechanisms to focus on important information.

B. EFFECTIVENESS OF MULTI-VIEW FRAMEWORK
To illustrate the benefit of the multi-view approach, we ana-
lyzed the model performance using a single-view approach.
Figures 4 and 5 show the experimental results under four
evaluation metrics for predicting log-PMPY and pctl-PMPY,
respectively. We can observe that the multi-view approach is
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FIGURE 5. Effectiveness of the multi-view framework with pctl-PMPY
predictive outcome.

better than the three single-view approaches under all eval-
uation measures. This improvement demonstrates the effec-
tiveness of the multi-view framework. The model with demo-
graphic features yields reasonably-well outcomes. This obser-
vation indicates that age, gender, and prior total healthcare
expenditures are good predictors for healthcare expenditure
prediction. This finding was also reported by previous studies
[12]. In addition, the model with medical codes information
yields superior performance compared to the model with de-
mographic features. This may be because the medical codes
contain richer health status information than demographic
features. Overall, combining three different information can
significantly improve the predictive power (yield a 30% im-
provement on R2). This performance improvement validates
the effectiveness of our proposed multi-view framework.

C. EVALUATION OF MEDICAL CODE EMBEDDING
The quality of the medical code embedding is important for
capturing the semantic information of medical codes. We
evaluated the learned medical code embedding process using
the mapping table between medical codes and medical code
vectors. Specifically, we performed nearest neighbor queries
to determine whether the embeddings have successfully cap-
tured medical codes’ semantic similarity. For each medical
code query, we sorted all other codes by the cosine distance
to the query and displayed the top 5 nearest medical codes.
Table 4 shows the medical codes selected as queries and their
nearest neighbors.

The results in Table 4 are consistent with common intuition
and clinical ontology. The diseases that share similar semantic
meanings are close to each other. For example, asthma (ICD9

TABLE 4. Example of the Nearest Medical Code Query

∗ The description of the medical code is shown in the parenthesis. Diagnosis code with
the same first three digits belongs to the same disease category (e.g., 493.90 and 493.92
both represent asthma-related diseases). Redundant descriptions are ignored for display
purposes.

493.90) is close to other asthma diseases (ICD9 493.92,
493.02, 493.91, 493.81), while wheezing (ICD9 786.07) is a
common disease that often presents in asthma [35]. Therefore,
it makes clinical sense that the top 5 most similar medical
codes to asthma (ICD 9 493.90) are asthma-related diseases
and wheezing. The top 5 most similar medical codes to dental
caries (ICD9 521.00) are all dental procedures (CPT D2330,
D2335, D1510, D2331, D3220). This result is expected, and
it indicates that our vector representations can also capture
the semantic relationships between diagnosis codes and pro-
cedure codes.

D. INTERPRETATION VIA ATTENTION MECHANISM: CASE
STUDY
Interpretation is vital in the healthcare domain. In addition to
predictive performance analysis, a case study with two high
expenditure patients is conducted to interpret the model pre-
diction. We first present the profiles of the selected patients,
then we display the relative importance of the medical codes
using a heatmap. As shown in Figure 6 (top), Patient A was
an 8-year-old female who spent $8,589 in 2013. The predicted
next year expenditure of this patient is $35,596, while the
actual cost is $43,914. The cost-driving disease of patient A
was phenylketonuria (ICD9 270.1) and personality disorder
(ICD9 301).

Figure 6 (bottom) shows the attention weights of medical
codes at each time window. The attention weights represent
the relative importance for predicting medical expenditures,
where the darker color indicates a stronger correlation be-
tween the medical code and the predictive outcome. Among
the displayed medical codes in Figure 6 (bottom), we ob-
served that phenylketonuria (ICD9 270.1) has the highest at-
tention weights across the different time periods. This finding
is consistent with the medical literature as phenylketonuria is
considered a severe disease that can lead to intellectual dis-
ability, seizures, and mental disorders [36]. It is also a chronic
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FIGURE 6. The profile (top) and attention weight heatmap (bottom) for
Patient A.

condition that often lasts for years or even lifelong. Compared
to phenylketonuria (ICD9 270.1) and personality disorder
(ICD9 301), the attention weights on headache (ICD9 784.0)
and dental sealant procedure (D1351) are relatively small.
These two codes are both related to acute diseases and thus
less likely to influence future medical expenditure.

Figure 7 presents the profile and medical code attention
weights of Patient B. As shown in Figure 7 (top), this patient
was a 13-year-old female with a $36,046 annual expenditure
in 2013. The predicted cost for Patient B is $25,591 and the
actual cost is $ 28,001. Looking through medical records of
patient B, we identify one driver disease: Diabetes mellitus
(ICD9 250.00). The relative importance of medical codes for
predicting Patient B’s future expenditure is depicted in Fig-
ure 7 (bottom). We can easily observe that diabetes mellitus
(ICD9 250.00) and Direct skilled nursing services (HCPCS

FIGURE 7. The profile (top) and attention weight heatmap (bottom) for
Patient B.

G0154) are the two significant medical codes. Diabetes mel-
litus is a chronic condition that requires consistent care inter-
vention [37]. G0154 is a valid HCPCS code for Direct skilled
nursing services of a licensed nurse in the home health or hos-
pice setting. We also observe many diabetes-related medical
codes such as ICD9 250.13, ICD9 250.11, ICD9 250.03, and
ICD9 250.02. All these medical codes are under the Diabetes
mellitus genre (ICD 250).

E. HIGH UTILIZER SELECTION
One application of healthcare expenditure predictive models
is patient stratification. Using the predicted value as the risk
score, we can risk-stratify patients and provide care coor-
dination to the high-risk individuals. In this subsection, we
compared the stratification performance of our multi-view
model with LASSO and GBM, the two baselines that show
competitive performance on expenditure prediction. As shown
in Table 5, patients selected by our approach are more likely
to incur a higher medical expenditure in the following year.
Specifically, the top 1% population (218 individuals in the
testing data) selected by our model had a combined healthcare
cost of approximately $3 million, which is $1 million higher
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TABLE 5. The Result for Selecting Future High Utilizers

FIGURE 8. Scatter plot of expenditure percentiles between two time
periods. The correlation score is 0.53, indicating that patient expenditures
are positively correlated between year 2013 and year 2014. The upper right
corner is denser, implying the high-cost patients are more temporally
consistent.

than that of the patients identified by the LASSO model. This
result implies that the ACO could potentially influence an
additional $1 million in cost compared to LASSO.

V. DISCUSSION
The goal of this study was to develop an accurate model
for expenditure prediction based on historical claims. Some
prior studies [38] have suggested that healthcare expenditures
may be episodic and not consistent, while some literature
[12] shows that healthcare expenditures are significantly tem-
porally correlated. The benefit of modeling prior claims for
expenditure prediction depends on the degree of randomness
in the healthcare utilization pattern. Thus, we examined the
temporal correlation of annual expenditure at the individual
level on our pediatric dataset.

Figure 8 presents the ranking percentile scatter plot of the
patient expenditure in two time periods (i.e., year 2013 and
year 2014). In Figure 8, we can observe a large portion of
points spreading along the diagonal line. This spreading pat-
tern indicates that patients are more likely to have a consistent
healthcare expenditure. This observation is also confirmed by
the Pearson Correlation (>0.5). Pearson Correlations range
from -1 to 1 with 0 implying no correlation. The Pearson Cor-
relation between two ranking percentiles is 0.53, indicating
a strong positive correlation between prior expenditure and
future expenditure (i.e., if prior expenditure increases, future
expenditure will likely increase).

Our study developed a deep learning model that can incor-
porate the heterogeneous information within claims data as
different views. Utilizing the embedding learning processes,

our model eliminates the reliance on domain knowledge to
handcraft medical codes into semantic similar categories.
Through extensive analysis, we found that our model out-
performed baselines on the expenditure prediction task and
the high utilizer selection task. These findings highlight the
potential of our model to provide better population healthcare
care management.

This study has several limitations. First, the findings and
conclusions were made based on the experimental results on
a state Medicaid pediatric claims dataset. The results and
observations may vary by state, insurer plan, or payer type.
Second, we conducted the study under continuous eligibility
across 2 years. This eligibility enforcement may have dis-
torted the underlying population. Third, although the attention
mechanism provides a certain level of interpretation for the
predictive outcome, few actionable factors are provided for
efficient intervention.

Our future work will try to address these limitations. We
plan to extend our study scope by gathering additional data
from different types of healthcare programs. We will also
collaborate with physicians and domain experts to deploy the
model into a real-world setting to provide better guidance for
care management.

VI. CONCLUSION
This study proposes a multi-view deep learning framework
to learn efficient and interpretable patient representation for
medical expenditure prediction. Our approach leverages a
feedforward neural network, an attention-based bidirectional
recurrent neural network, and a hierarchical attention network
to exploit heterogeneous information in claims data from dif-
ferent views. Experimental results show our approach out-
performs various baselines on a real-world pediatric dataset
for predicting medical expenditure in the following calen-
dar year. We conducted a case study to interpret the learned
feature importance, which can help understand the model’s
decisions. Moreover, we applied the learned model on a high
utilizer selection task. The promising result implies that our
model could enable care management entities to better allo-
cate healthcare resources.
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