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ABSTRACT Smart contracts on Ethereum can be used to encode business logic and have been applied to
many different areas, such as token exchanges and games. Unlike general programs, the computations of
contracts on Ethereum are restricted by the gas limit. If a transaction runs out of the gas limit before an
execution finishes, the Ethereum virtual machine throws an out-of-gas exception, and the entire transaction
fails, which reverts to the state before the transaction started, although the transaction fee is still deducted. It
is therefore, essential to conduct a gas estimation before sending a transaction. Existing studies have mostly
failed in estimating the gas for a loop function because the number of iterations of the loops cannot be
statically determined. However, we found that a quarter of all contracts have loop functions, and the gas
cost for the loops is higher than for the other functions. Therefore, it is necessary to apply a gas estimation
for the loop functions. In this study, we propose a gas estimation approach based on the transaction trace
to dynamically estimate the gas for the loop functions. Our belief is that we can learn the relationship
between the historical transaction traces and their gas costs to estimate the gas for new transactions. We
considered three different abstractions of the original transaction trace and fed them to different machine
learning models. The results show that our approach is effective in gas estimation and that a random forest
can achieve the most accurate estimation.

INDEX TERMS Ethereum, gas estimation, machine learning, out-of-gas, smart contracts.

I. INTRODUCTION
Ethereum [1] is currently the most popular public blockchain,
not only because it provides a decentralized, shared ledger,
allowing all users to participate in the ledger update activities,
but also because it builds a “world computer” that can host
and execute programs. These programs are so-called smart
contracts [1]. Any user can deploy their contracts to Ethereum
by sending a contract creation transaction. Concretely, users
construct programs using Solidity, a widely used program-
ming language on Ethereum. These Solidity programs are
then compiled to bytecode and stored in the code field of a
newly built contract account after the contract creation trans-
action succeeds. One can send a transaction to the contract

account when wanting to call a function on the contract. Once
all Ethereum nodes verify the transaction, the Ethereum vir-
tual machine (EVM) will run the contract runtime bytecode
on the transaction input data.

An EVM is a stack-based, Turing-complete machine that
can program any computation that a Turing Machine can ex-
ecute, such as a loop. To prevent resource waste from infinite
loops and make sure that contract programs can stop at a cer-
tain point, the computation effort required to execute the EVM
instructions is charged in the gas unit. When a user sends a
transaction, the user needs to specify a gas limit attached to
the transaction. GasLimit is the maximum available amount
of gas for a transaction execution. However, if a transaction
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execution requires more gas than the gasLimit, the EVM will
emit an out-of-gas exception immediately, and all executed
operations will be reverted. Meanwhile, the expenses required
for purchasing the gas limit are transferred to the beneficiary
accounts. The out-of-gas exception accounts for over 90% of
all exceptions on Ethereum and causes substantial financial
losses [2]. The leading root causes [2] for this exception are
users being unfamiliar with the transaction execution mecha-
nism and there being no useful tool for a gas estimation. There
are mainly two ways to prevent out-of-gas exceptions. One
way is to detect contracts with gas-focused vulnerabilities [3]
to prevent users from calling vulnerable functions. The other
way is a gas estimation in which, given a transaction, we need
to estimate its gas cost. Some studies have been devoted to gas
estimations [4]–[7]. For example, Solc1 statically predicts the
gas cost for all contract functions. Marescotti et al. [6] apply
symbolic model checking methods to detect the worst-case
gas cost.

We found that a quarter of all contracts have loop functions,
and the gas costs for loops are higher than that for other
functions. It is therefore, necessary to conduct a gas estima-
tion for the loop functions. Unfortunately, existing methods
mostly fail in estimating the gas cost for transactions to loop
functions (i.e., functions containing loops). A static analysis
cannot determine the number of iterations of any loops; hence,
Gasol [7], a gas estimation tool, fails when the maximal num-
ber of iteration times is unbounded. Dynamic methods often
send transactions to the local testnet and observe the gas cost,
although this gas is not the same as the actual transaction gas
cost because the Ethereum mainnet may change and differ
from the testnet.

In this paper, we propose a novel approach to achieve a dy-
namic gas estimation for loop functions based on the transac-
tion execution trace. The belief is that gas costs for new trans-
actions can be predicted based on analyzing the transactions
history. Our main idea is to learn the relationship between
the transaction trace and gas from the transactions history
and apply this to the gas estimation for new transactions.
We consider using machine learning algorithms to determine
these relations. To the best of our knowledge, we are the first
to introduce machine learning ideas to a gas estimation. How-
ever, it is challenging to implement this idea for two reasons:
(1) it can be difficult to know how to collect the traces for a
number of specific historical transactions and (2) the traces for
executing the loop transactions are extremely long, with the
longest trace observed being 382,552. It is difficult to directly
feed such a long sequence to any existing learning models.

To address challenge (1), we use an Ethereum-js virtual
machine2 to automatically record a trace when replaying his-
torical transactions in a forked chain. For challenge (2), we
take three abstractions of the trace as features and feed them
into different learning models. The first abstraction is the
frequency for 141 opcodes used on an EVM. The second

1https://github.com/ethereum/solidity
2https://github.com/ethereumjs/ethereumjs-vm

abstraction is to append a function vector to the end of the first
abstraction. Suppose a transaction calls function f. The func-
tion vector describes the number of occurrences for different
structural characteristics in f. These two types of abstractions
are inputs to three learning models: a random forest, K-nearest
neighbor (KNN), and a support vector machine (SVM) for
regression (SVR). An EVM charges dynamic gas for 24 op-
codes depending on the runtime state. The third abstraction is
a dynamic opcode sequence, which is sent to a long short-term
memory (LSTM) model. The experimental results show that
our approach is effective in a gas estimation for loop func-
tions. The mean absolute percentage error (MAPE) ranges
from 0.59 to 67.19 in different learning algorithms. In general,
the random forest and KNN can achieve a better prediction
accuracy rate than the SVR and LSTM.

Note that the conference version of our paper is provided
in [8]. This journal paper extends our previous study in two
aspects. First, we collected more loop transaction traces and
estimated their gas cost. The estimation results confirmed the
observation in our previous paper that a random forest and
a KNN can achieve a better estimation accuracy rate than
an SVR. Second, our conference paper only proposed two
types of features, i.e., the opcode frequency and a dynamic
opcode sequence. To improve the estimation accuracy rate,
in this study, we combine the opcode frequency and function
vector as the third type of feature for a transaction. The func-
tion vector describes the number of occurrences of different
structural characteristics in the function. Our experimental
results show that taking a combination of the opcode fre-
quency and loop function vector as features can lower the
prediction error rate compared with two previous types of
abstractions.

In summary, the contributions of this paper are as follows.
1) We provide a novel approach to estimating a gas based

on the transaction execution trace. The main idea is that
the relationship between the transaction trace and gas
from historical transactions can be learned to estimate
the gas for new transactions. To the best of our knowl-
edge, we are the first to use machine learning for a gas
estimation.

2) We consider the random forest, KNN, SVR, and LSTM
learning models in our experiments. The results show
that the random forest and KNN models can achieve a
better prediction accuracy rate than the SVR and LSTM.

3) We provide a dataset containing an opcode execution
sequence and gas costs for 5718 transactions specially
sent to the loop functions. This dataset can be used for
later studies on the gas cost of the transactions sent to
the loop functions.

The following sections are organized as follows. Section II
provides the necessary background for our study. Section III
presents the workflow of our trace-based learning method, and
Section IV describes the experimental results and limitations.
We provide a list of previous related studies in Section V,
and give some concluding remarks regarding this research in
Section VI.
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Listing 1: The iteration times of loop is decided runtime.

II. PRELIMINARY
A. GAS MECHANISM ON SMART CONTRACTS
Blockchain is a decentralized shared ledger, and Ethereum [1]
is currently the most popular public blockchain. There are two
types of accounts on Ethereum: externally owned accounts
(i.e., user accounts) and contract accounts. A contract ac-
count can store code (i.e., smart contracts) used to encode a
business logic. Once a user sends a transaction to a contract
account, the contract opcodes will be executed on an EVM.
Given a transaction, the executional opcode sequence in an
EVM is called a transaction trace. All transactions need to be
conducted on all blockchain nodes. To avoid network abuse
and some inevitable issues (e.g., infinite loops) caused by the
Turing-complete contract language Solidity, all EVM instruc-
tions are subject to fees [1]. A fee is measured in gas units.

The gas limit is implicitly deducted from the sender’s ac-
count balance at a certain gas price before the transaction
starts. During the EVM working process, the available gas is
reduced by executing the opcodes. Suppose the gas limit is G1

and the actual execution cost of a transaction is G2. Note that
there is another limit called the block gas limit Gb, which is
the maximum amount of gas allowed in a block. In terms of
the relationships among G1, G2>, and Gb, different transaction
execution scenarios are given below:

1) G2 < Gb and G1 >= G2: The transaction can be in-
cluded in a block and is successful. The gas remaining
at the end of the transaction is refunded to the sender’s
account.

2) G2 < Gb and G1 < G2: The transaction can be included
in a block but fails through an error. The EVM will emit
an out-of-gas exception because there is no available
gas to support further operations during the transaction
execution. At this time, all gas cost is delivered to the
miner’s account (beneficiary account), and all states ap-
plied are reverted right before the transaction starts.

3) G2 > Gb: The transaction cannot be included to a block
and fails no matter how large G1 is.

B. DIFFICULTIES FOR GAS ESTIMATION
In general, there are three types of transactions on Ethereum:
(1) money transfer between user accounts, (2) contract de-
ployment, and (3) a function execution on the existing de-
ployed transactions. Note that the gas cost studied in this
paper is focused on the third type of transaction, which we

call an interactive transaction. The gas cost for an interactive
transaction (tx) consists of three parts [2]: (a) an intrinsic gas
cost, (b) an execution gas cost, and (c) a refund gas cost. The
formula used to compute the transaction gas cost is shown
in equation 1. The intrinsic gas can be calculated directly
according to [1], whereas the execution gas cost is complex
and almost impossible to accurately compute.

It is nontrivial to estimate the execution gas cost. First, an
EVM charges a gas cost when running a contract program and
finishes when it reaches a halted state or runtime exception.
Because a halting problem is not decidable [9], there is no
way to obtain the exact runtime opcode sequence on an EVM
before the transaction execution. Moreover, different EVM
versions provide a slightly different gas cost for the same
transaction [10]. It is unknown which EVM client the version
miner will adopt. In addition, the execution gas may depend
on the state of the blockchain [7], which continues updating
with new transactions.

G(tx) = Gintrinsic(tx) + Gexecution(tx) − Gre f und (tx) (1)

For example, it is difficult to statically estimate an accurate
gas cost for the transactions to the function shown in listing 1.3

This function traverses fsArray in the for loop, and the content
of fsArray is obtained from ownerToFashionArray for the
given _owner address. The iteration times for the for loop is
determined by fsArray.length (see lines 8 and 5). In addition,
the value of fsArray is determined by the input _owner (line
4). The execution gas cost is related to the iteration times of
the function but the latter one can only be decided upon run-
time. Thus, there is no way to precisely compute the execution
gas cost in only a static way.

C. LEARNING MODELS
To the best of our knowledge, there are no previous stud-
ies applying learning algorithms on a gas estimation. In this
paper, we define a gas estimation as learning a mapping f :
RN → R, where RN is an N-dimension feature, which is a
representation of the transaction opcode sequence, and R is
the predicted gas.

The concept of machine learning is to learn a model from
existing data with a performance measure metric and give a

3This function is excerpted from a contract whose address is
0x163af66AE287EB89554BFd2DE10f7C3Ac9fEDf84.
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judgment or prediction on new data. Machine learning algo-
rithms are currently being widely applied to various tasks,
including computer vision, natural language processing, and
recommendation systems. The feature space and regressor
selection are entirely unknown, and there are no widely rec-
ognized evaluation metrics for a gas estimation. To solve this
challenge, we search for several machine learning and deep
learning methods, i.e., random forest, KNN, and SVM, and
two different evaluation metrics, the MAPE and the accu-
racy rate. The performance for each regressor is discussed in
Section IV.

Random Forest: A decision tree learning algorithm can
build a regression model in a tree structure. It is prone to
overfitting when a tree is extremely deep. Thus, a random
forest is used to minimize this error. A random forest [11]
is a group of decision trees that aggregates their results to
one result. Based on the voting strategy, the random forest
may produce a better result from assembled models rather
than individual models. The random forest model overcomes
an overfitting and can be more interpretable because it can
explicitly output a weight for each dimension of the features.

K-Nearest Neighbor (KNN): A KNN [12] is a commonly
used supervised learning algorithm. Supposing the distance of
the samples is defined by a similarity measurement, for exam-
ple, the Euclidean metric, Minkowski distance, or Manhattan
distance, the KNN aims to find the closest K samples from the
training set. Based on these K samples, the prediction result
is the average with/without the weights of the real output
value. KNN methods usually achieve a better performance on
datasets with a smaller size.

SVM for regression (SVR): An SVM [13] is a widely used
machine learning method, and constructs a margin separator
that finds a hyperplane that has the maximum distance be-
tween features. The SVM method was initially proposed for
classification but can be extended to a regression, called a sup-
port vector regression (SVR), although a traditional SVM is
based on a linear separable assumption. By defining the inner
product of features in terms of a kernel function, the SVM
also suits the non-linearly separable problem. Intuitively, a gas
estimation is not a linearly separable problem. This inspired us
to use the Gaussian Kernel function in our experiments.

LSTM: Because traditional neural networks cannot handle
the context information of the time series data, recurrent neu-
ral networks are a proposed solution. The information of the
history data is preserved by introducing the time-variant hid-
den state for each network cell, and the relationship between
inputs can be learned during a gradient descent. Long short-
term memory (LSTM) networks are a modified version of re-
current neural networks, which makes it easy to train by avoid-
ing gradient vanishing and exploding problems. They contain
input, remember, and output gates, which gives the LSTM
network cells the ability to decide which values to apply and
which to abandon. We can treat the input opcode sequence as a
time series sequence, in which each opcode can be represented
by an embedding word vector. The LSTM aims to give a
prediction of the gas based on the new input opcode sequence.

FIGURE 1. Workflow of trace-based approach.

III. OUR APPROACH
Now we will describe the workflow of the proposed approach.
There are mainly three steps, as shown in Fig. 1. For sim-
plicity, we refer to the transactions sent to the loop functions
as loop transactions. First, we collect the input and receipt
for the existing loop transactions. We then replay all loop
transactions and extract their trace on the local blockchain.
Here, trace indicates a transaction executed opcode sequence
on an EVM. Finally, we build a gas estimator model based on
the transaction trace using machine learning and deep learning
algorithms. After a gas estimator construction, for a new loop
transaction, we simulate it on a local blockchain to derive its
trace and obtain the estimated gas by applying a model to this
trace.

A. LOOP TRANSACTION COLLECTION
A loop transaction is the transaction sent to a contract function
containing loops. First, for a given contract, we need to select
its functions having loops (hereafter called loop functions).
Next, we gather existing transactions sent to this contract. By
analyzing the inputs for the existing transactions, we collect
the transactions sent to the loop functions. Details of the
selection and analysis steps are as follows:

1) Select loop functions: We first use Slither [14] to obtain
the control flow graph (CFG) for the functions in the
contracts. Slither is a static analysis framework that can
convert Solidity contracts into an intermediate represen-
tation called SlithIR. SlithIR has a node type called an
“IF_ LOOP” indicating the start of a loop. In addition,
we traverse all functions of the CFGs to collect loop
functions that have at least one “IF_ LOOP” node.

2) Gather transactions sent to a contract: Etherscan4

shows all transaction hashes sent to a contract ad-
dress. For this study, we searched no more than
2000 recent transaction hashes for considered contracts

4https://etherscan.io/
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FIGURE 2. Collect runtime trace by replaying a transaction.

from Etherscan. We then pulled the detailed transac-
tion information (e.g., input and transaction sender)
from a full node on Ethereum mainnet by calling the
web3.eth.getTransaction() API. In particular, we de-
ployed a full node based on QuikNode’s node service.

3) Analyzed transactions sent to loop functions: The input
of a transaction contains the invoked function name and
parameters. We use abiDecoder5 to decode every trans-
action input to obtain the invoked function name. If the
called function name is one of the loop function names,
we add this transaction information into our database.

B. TRANSACTION TRACE GENERATION
The transaction trace is the transaction execution opcode se-
quence on an EVM. A method for generating traces is calling
the API debug.traceTransaction() 6 from a full node. How-
ever, using this API to obtain the trace triggered by a transac-
tion is a slow approach because, for a given transaction hash,
it requires finding the previous block where the transaction
resides and then replays all preceding transactions before the
transaction on the same block [15]. In addition, a further time
delay is caused by the remote procedure calls from the API.
Chen et al. [15] proposed another way to record the traces.
They apply a full Ethereum node and replay all transactions
during synchronization. After synchronization is finished, the
traces are automatically collected. They then aim to collect the
traces for all transactions. However, it is costly for us to replay
some specific loop transactions using their method.

We propose a new way to obtain a transaction trace, which
is illustrated in Fig. 2. Suppose the original transaction is
collected in the #Nb block. We fork Ethereum mainnet on a
#Nb − 1 block to start a local testnet. To implement this, we
use Ganache-cli7 and a Infura8 node service. Ganache-cli
is the command-line version of Ganache. It can be used to
build a personal blockchain for development. In particular, it

5https://github.com/ConsenSys/abi-decoder
6https://github.com/ethereum/go-ethereum/wiki/Management-APIs
7https://github.com/trufflesuite/ganache-cli
8https://infura.io/

provides a fork command to allow users to fork from another
running Ethereum client on the specified block, which allows
us to send transactions to contracts residing in mainnet. Infura
is a node cluster that frees developers from synchronizing
and maintaining an Ethereum node. In our study, an archive
node is hosted because it can respond to API requests for any
historical blocks. As shown in Fig. 2, the local testnet shares
the chain starting from the genesis block to the #Nb − 1 block
with Ethereum mainnet. This is applied to construct the same
correct state before the original transaction. In particular, we
revised the Ethereumjs-VM to collect the trace when replay-
ing the transactions. Ethereumjs-VM is the EVM used in the
Ganache blockchain. More concretely, the EVM interpreter
executes each opcode on the runStep function, and thus we
insert the recording code into this function. In this way, when
the EVM executes a transaction, the trace is automatically
collected.

C. BUILD GAS ESTIMATOR MODELS
After the gas estimator is learned, for a new transaction, we
can first execute it on a forked ganache blockchain and derive
its trace, and then obtain the estimated gas by inputting its
trace into the gas estimator.

However, the traces for the loop transactions are usually
long. The maximal trace we collected contains 382,552 op-
codes. Some studies [16], [17] on using deep learning algo-
rithms for malware detection based on input opcode sequence
have been conducted. These approaches only take the first L
opcodes to meet the need for a deep learning network of the
unified input length. As observed, the larger the L is, the more
memory and computation time required to train the neural
network. For a gas estimation, we cannot simply follow this
rule because each opcode contributes to the final predicted
gas. In addition, in our experiments, a memory overflow error
is raised owing to the long sequence, even with a batch size of
one. It is difficult to feed this long sequence into any existing
learning models directly.

In our previous study [8], we extracted the opcode fre-
quency and dynamic opcode sequence from the transaction
trace. The frequency-based method extracts the frequency of
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FIGURE 3. Control flow graph for function in listing 1.

all opcodes and feeds it to different learning models. The
sequence-based method only considers a dynamic opcode se-
quence but maintains the original opcode order. In this study,
in addition to mentioned two types of features, i.e., the opcode
frequency and dynamic opcode sequence, we combine the
opcode frequency and function vector as the third type of
features for a transaction. The function vector describes the
number of occurrences of different structural characteristics in
the function. As shown in Fig. 4, we attach the loop function
vector at the end of opcode frequency. In the next three sub-
sections, we describe the details for the three types of features.

1) OPCODE FREQUENCY
There are 141 opcodes used on an EVM. In Fig. 4, the
frequency-based method is used to extract the frequency of
all opcodes and feed it to the different learning models. The
sequence shaded in blue is the frequency of all opcodes ex-
tracted from the original opcode sequence on the left. For
example, the value of 612 in position 2 shows that the op-
code ADD occurred 612 times in the original trace (opcode
sequence). For opcode frequency features, we consider three
supervised machine learning models, namely, random forest,
KNN, and SVR.

2) COMBINATION OF OPCODE FREQUENCY AND LOOP
FUNCTION VECTOR
The loop function vector describes the number of occurrences
for different structural characteristics in the loop function. We

add the loop function vector to the end of the opcode fre-
quency table to build a new type of feature, as shown in Fig. 4.

The loop function vector is constructed in four steps. First,
we use Slither [14] to obtain the control flow graph (CFG) for
a loop function. Second, we modify the Exas algorithm [18] to
extract features of two types of patterns (n_path_pattern and
node_pattern) from the control flow graph of a function.

1) The n_path_pattern contains some directed paths that
contain n nodes. For any two nodes in the path, one node
can be reached from another node by a directed edge.
The feature for an n_path_pattern is a sequence of node
types along the path. For example, for the graph 3, a
feature of 3_path_pattern is “Node Type: BEGIN LOOP
6 → Node Type: IF LOOP 9 → Node Type: EXPRES-
SION 10”.

2) The node_pattern associates a node with p incoming and
q outgoing edges. For example, node 9 in Fig. 3 has two
incoming edges from nodes 6 and 13, and two outgoing
edges to nodes 7 and 10. Thus, the features for node 9 is
“Node Type: IF_LOOP 9 → 2 → 2”.

We partly modified the vector computing algorithm in [18]
to extract features for a loop function, as shown in Algorithm
1. The belief is that the features for a graph can be computed
from the features of its sub-graphs. From an empty graph with
only one node, we add edges to the graph one by one. For an
edge (u,v) and existing graph G, we add new features in terms
of whether u or v exists in G.

Third, we have to collect all features for all loop functions
(Algorithm 2). Fourth, for a contract function, its vector is
computed as the occurrence counts of its features among all
features (Algorithm 3).

Let us consider the function in listing 1 to understand the
construction of a loop function vector. The parts of the control
flow graph for this function are shown in Fig. 3. Each node
stands for a basic block consisting of expressions. For exam-
ple, the expression in “Node Type: EXPRESSION 1” is as
follows:

Using Algorithm 1, some of the features extracted from the
control flow graph in Fig. 3 are shown in Table 1. We col-
lected 1124 features from all loop functions using Algorithm
2. Thus, the loop function vector is a 1124-dimensional vector.
As shown in Fig. 4, supposing the transaction relating to the
original opcode sequence on the left is sent to a function f, then
the vector shaded in green on the right is the function vector.
The value in position 2 indicates the number of occurrences
(4) of the second feature (Node Type: EXPRESSION: 16→
1→1).

3) DYNAMIC OPCODES SEQUENCE
We checked the go-ethereum9 source code and divided it into
three classes: constant cost opcodes, dynamic cost opcodes,
and both constant and dynamic cost opcodes, as shown in

9https://github.com/ethereum/go-ethereum
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FIGURE 4. Three types of features for a transaction.

Table 2. An EVM charges 117 opcodes and 10 opcodes in
terms of constant and dynamic gas costs, respectively. For
example, an ADD opcode has a gas cost of three, and an
EXP gas cost can only be decided at runtime. In addition to a
constant gas cost, 14 opcodes also have dynamic gas, such as
SHA3, which has a fixed gas cost of 30 and a dynamic cost
relating to memoryGasCost.

We propose a sequence-based method that only contains
a dynamic opcode sequence while maintaining the original
opcode order. In Fig. 4, the sequence shaded in yellow is the
dynamic opcodes extracted from the original opcode sequence
on the left. Because only 24 opcodes have a dynamic gas cost,
the dynamic opcode sequences shorten the original trace.

IV. RESULTS
We use the Smartbugs [19] contract dataset containing 47,398
unique contracts. As stated in Section III, for each contract
program, we employ Slither [14] to select its loop functions,
i.e., functions that contain at least one loop. We observed that
10,855 contracts have loop functions, which is 23% of all
Smartbugs contracts. We searched the recent 2000 transaction
records of the 10,855 contracts from Etherscan and analyzed
the transaction inputs. The results show that there are 706
contracts with transactions sent to the loop functions. Up to
50 transactions are sent to each of the 457 loop contracts,
which amounts to 64.7% of all loop contracts. In addition,
64 loop contracts range in loop transactions of 500 to 2000,
which occupy 9.1% of all loop contracts. Almost a quarter of
the contracts have loop functions, although users do not often
send transactions to them. The reasons behind this might be
as follows: First, smart contracts might contain loop-related
vulnerabilities, such as an unbounded loop [3], despite there
being no effective tool that can remedy them. Second, there
is no practical tool to estimate the gas cost for the loop
functions.

As stated in Section III, we need to replay the loop transac-
tions on a forked testnet and collect their transaction traces.
In our experiments, the average transaction replay time is
approximately 30 s. In addition, 3 min is required to replay
an extremely complicated transaction. Considering the time

limits, we replayed the recent up to 10 transactions10 for each
loop contract. We collect traces for 5718 transactions. The
opcode length for these traces ranges from 43 to 382,552.

To evaluate the effectiveness of our approach, we consider
the following two metrics:

1) Mean Absolute Percentage Error (MAPE): This ex-
presses an error as a ratio defined in the formula L =
1
n

∑n
i=1 | gi

actual−gi
pred

gi
actual

| ∗ 100, i.e., the average difference

between a predicted gas and an actual gas is divided
by the actual gas, where the predicted gas is directly
estimated by the learned gas estimator. A smaller MAPE
indicates a better prediction performance.

2) Prediction accuracy rate: Because the learned estima-
tor may underestimate the gas for certain transactions,
we compute this metric as different accuracy rates by
adding an additional gas to the estimator provided gas.
Here, the accuracy indicates whether the predicted gas
is higher than actual gas. For example, in Fig. ??, the
prediction is accurate for almost 45% of the transac-
tions when directly using the estimator. However, when
adding 5000 to the estimator predicted gas, the predic-
tion is accurate for over 70% of the transactions.

A. OPCODE FREQUENCY BASED METHOD PERFORMANCE
The frequency-based method fixes the opcode frequency to
141 as a feature. For this method, in addition to collect-
ing 5718 transactions, we replayed the transactions for the
four representative hash contracts listed in Table 3. We first
counted the opcode frequency for each trace, and then applied
machine learning models (random forest, KNN, and SVR)
to the frequency vectors separately. The training and testing
sets were randomly split at 70% and 30%, respectively. The
training time is less than 5 s. The MAPE results are shown in
Table 3. We have three observations:

1) In general, a gas estimation based on transactions to the
same contract has a lower error rate than transactions
for different contracts. For example, if we use a random
forest learning algorithm to estimate the gas for the
transactions to contract 0x92240..., and to combine four

10These 10 transactions invoke the same loop function.
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Algorithm 1: get_function_feature (Adapted From
[18]).

Algorithm 2: get_all_features.

Algorithm 3: get_function_vector.

contract transactions separately, the former MAPE is
0.78, and the latter is 1.71.

2) In most cases, random forest and KNN can have a
lower error rate than the SVR. Consider the contract
0x117cb..., the MAPE for a random forest and a KNN
are 5.05 and 6.94, respectively, which is lower than the
9.74 predicted by the SVR.

3) Recall that we replayed less than 10 recent transactions
for each loop contract and collected 5718 traces. The
MAPE for these transactions is distinctly higher than
that combined for four contract transactions.

To further validate whether a random forest is the most suit-
able model, we collect transactions for more loop contracts.
The number of loop transactions ranges from 12 to 121. Fig. 6
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TABLE 1. The Patterns and Features Extracted From Fig. 3

FIGURE 5. Prediction accuracy rate for transactions to different contracts.

FIGURE 6. MAPE for different numbers of loop transactions.

depicts the MAPE results using three models in different num-
bers of loop transactions. We apply the same inspection as our
previous study [8], i.e., the MAPEs for a random forest are
generally lower than that for a KNN and an SVR.

Fig 5 list the prediction accuracy rate with an incremented
gas using a random forest algorithm for the six types of trans-
actions listed in Table 3. Generally, more gas that is added to
the estimator provided gas, the higher the number of transac-
tions that occur with the increased gas over than the actual gas.
For example, for transactions to contract 0x117cb..., as shown
in the green line of Fig 5, if we add 2000 to the predicted gas
from the gas estimator, the prediction accuracy rate can reach
70%, i.e., for 70% of the tested transactions, we can make sure
that incremented gas is higher than the actual gas. However, if
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TABLE 2. Opcodes and Their Gas Cost

FIGURE 7. MAPE for different numbers of PCA components.

we add 6000 to the predicted gas from the gas estimator, the
prediction accuracy rate can reach 82%.

B. COMBINATION OF OPCODE FREQUENCY AND LOOP
FUNCTION VECTOR BASED METHOD PERFORMANCE
As with the frequency-based method only, we chose 5718
transaction for 706 loop contracts as our dataset. For each
transaction, if the transaction calls the function f, we first
compute the function vector V for f and attach V to the end
of the opcode frequency features for the transaction. The
dimensions for V and the opcode frequency are 1124 and
141, respectively. We applied a principal component analysis
(PCA) technique [20] to reduce the dimensionality of V. The
training and testing sets were randomly split at 70% and 30%,
respectively. The training time is less than 5 s. In Table 4, we
observe the following:

1) For the same number of PCA components, a random
forest model provides the smallest MAPE results.

2) For the random forest model, the method that appends
the function vector to the opcode frequency can de-
crease the MAPE compared with that having only the
opcode frequency. For example, using only the opcode
frequency, the MAPE for a random forest is 9.95. How-
ever, the subsequent numbers in the same column are all
lower than 9.95.

Fig. 7 shows the MAPEs using PCA components ranging
from 1 to 300 in number. The maximum MAPE is still smaller

than 9.95 (i.e., MAPE in the random forest for using only the
opcode frequency), which shows that the function vector can
help make the estimated gas closer to the actual gas.

C. DYNAMIC OPCODE SEQUENCE BASED METHOD
PERFORMANCE
The sequence-based method maintains a dynamic opcode se-
quence as features, the maximal length of which is 14,267.
For the sequence-based method, we chose 5718 transactions
for 706 loop contracts as our dataset. We first extracted dy-
namic sequences (i.e., a sequence only containing dynamic
opcodes) from each trace and fed these dynamic traces to
the LSTM models. The training and testing sets were ran-
domly split at 70% and 30%, respectively. The training time is
approximately 3 days. The MAPE for LSTM is over 800,
which is far higher than the MAPE for the random forest,
KNN, and SVR.

D. EVALUATION OF OUR METHODS
First, our methods are effective in estimating the gas costs for
loop transactions. A dynamic sequence is unsuitable for a gas
estimation because the predicted gas is significantly different
from the actual gas. The combination of the opcode frequency
and function vector can better describe the original trace than
only the opcode frequency and dynamic sequence. In addition,
for the same features, the random forest and KNN have a
better estimation rate than the SVR. Moreover, a prediction
of the transactions from the same contract is better than that
from different contracts.

Second, our method is robust. The smart contracts used in
our experiments are all crawled from Ethereum mainnet, and
we assume that this contract dataset have covered most types
of contracts. So our method is applicable for gas estimation of
more transactions to other new contracts. Besides, we can get
a better prediction accuracy rate with more transaction traces.

E. LIMITATION
1) As shown in Fig 2, we assume that the Ethereum state

on block #Nb − 1 is the correct state before the execu-
tion of the original transaction. Suppose the replayed
transaction is sent to contract C. Here, we consider that
the preceding transactions in block #Nb do not change
the state of contract C. To mitigate this, we will try
to analyze the relationships among transactions in the
same block.

2) The gas relating the runtime trace sequence is the EVM
execution gas cost, which is not the transaction gas cost.
The gas cost of a specific transaction contains three
parts [1]: the intrinsic gas cost, execution gas cost, and
refund gas cost. The intrinsic gas includes a fixed mes-
sage call transaction fee of 21,000 and the gas for the as-
sociated data of the transaction. We ignore the intrinsic
gas cost differences for different transactions because
gas cost for the transaction data is far lower than the
overall transaction gas cost. In addition, we assume that
the refund gas for all loop transactions is zero. However,
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TABLE 3. MAPE Results Using a Random Forest, a KNN, and an SVR

TABLE 4. MAPE Results for Only Opcode Frequency and Both Opcode
Frequency and Function Vector

our method can be used (although not perfectly) even
when considering the intrinsic and refund gas costs.
Later, we will study the impact of the intrinsic gas and
refund gas in the overall transaction gas cost.

V. RELATED STUDIES
Gas estimation: Albert et al. constructed a gas analyzer called
GASOL [7], which can over-approximate the gas consump-
tion of a function. In addition, Marescotti et al. [6] presented
two methods for deciding the exact worst-case gas consump-
tion. Signer provided Visualgas [5], a tool to visualize how gas
costs relate to different parts of the code. However, the actual
transaction gas costs on mainnet have not been compared with
the predicted costs to prove the effectiveness of these methods.
Based on feedback-directed mutational fuzzing, Ma et al.
designed GasFuzz to construct inputs that maximize the gas
cost [4]. The Ethereum community has also developed tools
to help estimate such costs. For example, Solc11 statically
predicts the gas cost, and Remix12 provides a debugger to
list the gas cost of a transaction execution trace. Once users
upload the contract codes to Remix, Remix will estimate the

11https://github.com/ethereum/solidity
12https://github.com/ethereum/remix

gas costs after compilation. Both Solc and Remix show an in-
finite gas cost for any transaction calling functions with loops.
Moreover, the Web313 package can apply a gas estimation by
executing the transaction directly in the EVM of the Ethereum
node, although this only makes sense when this transaction
does not throw any exceptions. Paterno et al. presented a
tool called a gas exactimation [21], which addresses the issue
in EIP-144 by exploring how the gas held at any nested
stack depth/frame influences the gas outside of its execution
context.

Gas optimization and vulnerability detection: Chen et al.
identified seven gas cost patterns for the Solidity code and
developed GASPER [23] to locate three of these patterns by
analyzing the bytecodes. They later listed 24 anti-patterns and
implemented GasReducer [24] to detect and replace them with
an efficient code. They focused on optimizing the gas usage
whereas we want to apply a gas estimation. Nagele et al.
applied the super-optimization idea [25] to a gas optimiza-
tion. They encoded a sequence of instructions within a basic
block as SMT formulas and found cheaper bytecodes using a
constraint solver. Albert et al. [26] also employed a super-
optimization approach to optimize the instruction sequence.
They extracted a stack functional specification from a block
and synthesized a new optimized block with the minimal gas
cost, which has the same stack functional specification as the
extracted version. Grech et al. [3] surveyed three gas-related
vulnerabilities and detected them at the bytecode level.

VI. CONCLUSION
In this work, we identified the importance of estimating the
gas costs for transactions sent to loop functions. We proposed
a trace-based approach to estimate the transaction gas. We
abstracted the original trace for three types of features: (1)
the opcode frequency only, (2) a combination of the opcode
frequency and a function vector, and (3) a dynamic opcode
sequence. We applied three machine learning models (i.e.,
random forest, KNN, and SVR) in features (1) and (2) and
LSTM in feature (3). The results show that our method is

13https://web3js.readthedocs.io/en/v1.2.0/web3-eth.html
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effective in estimating the gas cost for loop functions. In
particular, random forest and a KNN have a better estimation
rate than an SVR and an LSTM. In addition, we provide a
dataset that contains 5718 traces for transactions to the loop
functions. The dataset suggests that more research is needed
to estimate the gas cost for a loop transaction.

In the future, to improve the prediction accuracy rate, we
plan to collect more transaction traces to train our gas estima-
tion model and extract new features from the original trace.
Besides, we would like to apply our idea to estimate the gas
costs for functions other than loops.
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