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ABSTRACT As an important bearer network of the fifth generation (5G) mobile communication technology,
the optical transport network (OTN) needs to have high-quality network performance and management
capabilities. Proof by facts, the combination of artificial intelligence (AI) technology and software-defined
networking (SDN) can improve significant optimization effects and management for optical transport net-
works. However, how to properly deploy Al in optical networks is still an open issue. The training process of
Al models depends on a large amount of computing resources and training data, which undoubtedly increases
the carrying burden and operating costs of the centralized network controller. With the continuous upgrading
of functions and performance, small Al-based chips can be used in optical networks as on-board Al. The
emergence of edge computing technology can effectively relieve the computation load of network controllers
and provide high-quality Al-based networks optimization functions. In this paper, we describe an architecture
called self-optimizing optical network (SOON) with cloud-edge collaboration, which introduces control-
layer Al and on-board Al to achieve intelligent network management. In addition, this paper introduces
several cloud-edge collaborative strategies and reviews some Al-based network optimization applications to
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improve the overall network performance.

INDEX TERMS OTN, SDN, control-layer Al, on-board Al, cloud-edge collaboration.

I. INTRODUCTION
With the continuous popularization and promotion of 5G tech-
nology, the emerging services in the network puts forward
new requirements on the underlying transport network, such
as low latency and large bandwidth transmission [1]. OTN
combines the advantages of both optical domain transmission
and electrical domain processing. It provides not only end-to-
end rigid transparent pipe connection and strong networking
capabilities, but also long-distance and high-capacity trans-
mission [2]. OTN has become an important bearer solution for
5G technology, which also requires OTN to have flexible man-
agement capabilities and high-quality network performance
(31, [4].

In recent years, the rise of SDN and AI makes it almost
inevitable to combine these two promising technologies for an

unprecedented level of network automation [5], [6]. The intro-
duction of SDN into optical networks, i.e., software-defined
optical network (SDON), is used to trigger unified control
and orchestration, allowing for separation of control and data
planes in various degrees of centralization [7], [8]. At the same
time, the openness and programmability of SDN provide the
perspectives for adopting Al-based optimization algorithms
to improve network performance [9], [10]. With the great
analysis and fitting performance for multi-dimensional data,
Al has been demonstrated to play an important role in the
optimization of optical networks [11], [12]. It has been used
as an advanced tool to deal with complex problems in optical
networks from the following two perspectives. In terms of
optical transmission, Al is mostly used to tackle fiber lin-
ear/nonlinear impairments [13]. For example, detectors based
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on Parzen Windows are used to mitigate both deterministic
fiber nonlinearities and stochastic nonlinear signal-amplified
spontaneous emission (ASE) noise interactions [14]. More-
over, Al is also used to estimate crucial signal parameters.
A simple artificial neural network (ANN) is used to estimate
the quality of transmission (QoT) of unestablished lightpaths
[15]. A convolutional neural network (CNN) and constellation
diagrams-based method is proposed to estimate the optical
signal-to-noise ratio (OSNR) accurately [16]. In the aspect of
optical networks, Al algorithms are mostly used for network-
level optimization and improving network reliability. Some
studies use Al algorithms to allocate network resources to
achieve single/multi-objective optimization [17]-[19]. Other
studies analyze network traffic and device performance data
to predict network failures via Al algorithms [20], [21]. These
studies indicate that the Al-based optimization techniques
and methods are becoming more and more mature in optical
networks.

However, the proper deployment of Al in SDON is still
an open issue. A few Al-based network control and man-
agement schemes are designed to facilitate Al-assisted net-
work automation in software-defined elastic optical network
[22], [23]. These schemes analyze network data to predict
network status and implement automated management deci-
sions. Futhermore, the workflow of AI model needs to be
considered in the design of the network architecture based on
Al, including the training, testing and application. There are
several challenges:

e Unified control: To introduce Al in the SDON control
plane, it is necessary to design the workflow of the over-
all Al functions. The control plane should be able to
implement unified control operations on the storage and
call of the AI model. In addition, since the data required
by the AI model may be different from the data required
by traditional algorithms, it is necessary to redesign the
interface to facilitate the data collections.

® Computing resources: In the training process, the Al
engine needs to be fed with a large amount of data, which
means that the Al-related components require storage
resources to save data sets and computing resources to
update model parameters. Al modules are usually lo-
cated on a resource-rich device such as the centralized
controller in SDON. This will undoubtedly increase the
burden on the centralized controller. However, for the
testing process, since the testing data set is much smaller
than the training data set, the testing process does not re-
quire high storage or computing resources. Therefore, it
is necessary to allocate appropriate computing resources
for Al engine.

® Hierarchical optimization: In some cases, the Al engine
needs to support a real-time response. However, due to
the delay in reporting network element data, it is difficult
for the Al engine in the centralized controller to handle
local problems on the equipment-side in real time. Since
such many-to-one synchronization causes heavy work-
load to the centralized controller, the controller-side Al is
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not an ideal solution for equipment-side problems. Thus,
it is necessary to combine the characteristics of Al for
hierarchical control and optimization.

To improve the capabilities of network control and man-
agement, a novel optical network architecture, i.e., self-
optimizing optical networks (SOON) was proposed [24],
which integrates Al and SDON. The network architecture in-
tegrates Al technology to improve network intelligent control
and management capabilities. In this architecture, the efficient
transmitting massive data benefits from an Al-oriented south-
bound extension protocol. Moreover, SOON can uniformly
manage Al models, and quickly processes and trains data for
different service requirements. In addition, in order to solve
the problem of uneven distribution of computing resources
and hierarchical optimization, we introduced on-board Al to
SOON [25], and proposed several cloud-edge collaboration
modes to improve the network control capability. The collab-
oration of control layer Al and multiple on-board Al can ef-
fectively improve efficiency of model training and testing, and
rationally use computing resources to provide rapid response
to different application requirements. This paper provides an
integrated review of the evolution of SOON with cloud-edge
collaboration. We begin with the evolution of SOON and elab-
orate on the key module functions that need to be implemented
in the combination of Al and SDN. We also introduce the
idea of introducing on-board Al and achieving the cloud-edge
collaboration in this architecture. Then, the SOON testbed
based on cloud-edge collaboration and several cloud-edge
collaborative strategies are introduced and validated. Finally,
some Al-based optimization applications are reviewed.

The rest of this paper is organized as follows. Section II
presents an overview of SOON. In section III, on-board Al is
introduced and deployed in SOON to achieve the cloud-edge
collaboration. In section IV, we introduce the SOON testbed
and cloud-edge collaborative strategies. Section V reviews
some innovative Al-based network optimization applications.
Finally, we summarize this paper.

II. SELF-OPTIMIZING OPTICAL NETWORKS

Due to the diversification of optical network services, net-
work management needs to be gradually intelligent. The rapid
development of optical network technology has spawned a
series of intelligent optical network architectures, such as
automatically switched optical networks (ASON) and path
computation elements (PCE). ASON introduced the control
plane in optical networks for the first time to solve the prob-
Iem of manual and complicated resource allocation and man-
agement capabilities of telecommunications management net-
work (TMN) [24]. The control plane can collect and diffuse
network topology information, quickly and effectively con-
figure service connections, and reconfigure or modify service
connections. In order to solve the problem of complex path
calculation in large multi-domain and multi-layer optical net-
works, the internet engineering task force (IETF) proposed
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FIGURE 1. Comparison of two network architectures: (a) SDON; (b) SOON.

the PCE model in 2006 [27]. The PCE architecture sepa-
rates the path calculation function from the network manage-
ment system and is carried by dedicated resources. PCE is
actually a logical functional component, which achieves the
optimization of inter-domain routing by sharing part of the
inter-domain information.

The PCE architecture can solve the problem of multi-
domain optical network interconnection under the existing
heterogeneous transmission system. However, the path cal-
culation and connection control process of the architecture
are highly related to the transmission system. Driven by new
switching equipment or methods, a solution is needed to sup-
port the smooth network upgrade. SDN provides a good idea
for this. In 2009, the concept of SDN was proposed based on
OpenFlow [28]. The idea of SDN is to separate the control
plane and data plane of network equipment. Introducing SDN
into optical networks, i.e., SDON (as shown in Fig. 1(a)),
can solve the problems of scalability, flexibility and smooth
upgrade of optical networks. The programmability of network
functions and protocols in SDON is beneficial to potentially
promote the coordination and orchestration of network ser-
vices [29]. SDON abstracts the lower layer resource infor-
mation into the common application programming interface
(API) functions of upper layer applications. The network de-
vices in each domain in the data layer are managed by the
local controller. The main components in the orchestration
layer, the network orchestrator, collects network information
from the optical domains and stores it in a database through
the southbound interface based on the OpenFlow protocol.
This information is used for functional bundles to construct
various applications through the northbound interface.

With the development of Al technology, more and more
Al-based algorithms are used to optimize optical networks. As
shown in Fig. 1(b), a new network architecture, i.e., SOON,
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was proposed for deploying Al in SDON [24]. Compared
to SDON, SOON is a three-layer network architecture. The
traditional network control core (NCC) and Al engine (AIE)
are concentrated in the model layer. The model layer collects
data from the underlying network and uses unified Al model
management and network database to support the Al-based
applications in the policy layer. It is worthy that the training of
Al functions requires massive multi-dimensional data, which
affects the design of the interface protocol for data trans-
mission between the data layer and the model layer. SOON
performs data transmission through the management and data
interface (MDI), which contains two types of protocols and a
unified network model. The network control protocols (NCP)
that include traditional network protocols, such as the general
multi-protocol label switching (GMPLS) protocol stack in
ASON, the path computing element communication protocol
(PCEP) in PCE, the OpenFlow protocol in SDON, etc. In
addition, MDI utilizes the state aware protocols (SAP) to
perceive massive amounts of detailed information of network
elements (named self-optimizing network element (SNE))
about physical components, such as optical signal-to-noise
ratio (OSNR) and environment temperatures, etc. The unified
network model collects and filters data information for NCC
and AIE, which could gather and filter all information from
networks, and reformat these data by following some unified
network model format. The model management module pro-
vides a well-trained model storage library for AIE to perform
unified operations on models. The network database is a data
source in the model layer, which contains traffic engineering
database, data plane status database, etc. In this way, the mod-
ules in the model layer cooperate with each other to achieve
the upper-layer Al-based optimization applications, including
optical transmission-oriented, optical network-oriented, and
joint optimization applications.
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TABLE 1. Comparison between Control-layer Al and On-board Al

Evaluation Control-layer Al On-board Al
Model training support partial support
Model testing support support

Computing resource huge small
Power consumption high low
Delay for network-level low high
application
Survivability weak strong
Price high low

IlIl. SOON WITH CLOUD-EDGE COLLABORATION

Actually, the data layer in the SOON architecture can be a
physical optical network or other entities that can provide
historical records and real-time network status information.
The model layer and policy layer may be located on the
deep integration between the traditional SDN controller clus-
ter (such as ONOS and Opendaylight) and the platform that
supports Al (such as Tensorflow and Pytorch). In this way, the
training of Al models requires a large amount of computing
resources, which will undoubtedly bring a computing burden
to the central cloud controller. In addition, the deployment of
Al engine only on the central controller cannot realize the
device-side optimization quickly. Therefore, the concepts of
control-layer Al and on-board Al are proposed and introduced
into SOON to construct an intelligent optical network with
cloud-edge collaboration [30].

The control-layer Al is the aforementioned Al engine de-
ployed in the SDN-based central controller, which can achieve
network-level optimization. On-board Al is deployed on net-
work devices in the data layer. Therefore, on-board Al can
provide a faster response for device-side optimization and data
processing than control-layer Al. On-board Al exists in the
form of an embedded Al board that can be inserted into an
expandable slot of an optical network device (as shown in
Fig. 2(a)). Table 1 compares the different performances of the
control-layer Al and the on-board Al. According to the prod-
uct of embedded Al boards of multiple vendors (e.g., Xilinx,
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Cambricon Technologies, Horizon Robotics, etc.), on-board
Al has the characteristics of low cost and low power con-
sumption, which also limits its computing power and training
functions. Thus, deploying on-board inside the network de-
vices will not bring a large power consumption and computing
burden to networks. In this way, multiple Al boards can be
deployed in a network transmission device to achieve scalable
and flexible data processing capabilities. Meanwhile, such on-
board Al can also be distributed to deploy on multiple network
devices in the data layer, which means that it has stronger sur-
vivability than the control-layer Al Due to the characteristics
of centralized control, the functions of network devices in the
data layer have been simplified, which means that the device
side lacks the ability to support Al engines. Therefore, while
deploying Al on network devices, edge computing needs to
be introduced to enhance the data processing and storage
capabilities for on-board AI. On-board Al can access all data
of local devices, including network performance and device
status. With these data, on-board Al can not only quickly solve
device-level optimization problems, but also process original
data and collaborate with the control-layer Al to assist the
network-level optimization.

Fig. 2(a) shows the collaboration between functional mod-
ules after deploying on-board Al in SOON. It is worth noting
that the training and testing of Al models depends on on-board
Al performance and service requirements. Table 1 shows the
computing capabilities and functions of the current embedded
Al board are limited. Only few embedded Al products support
the training of complex Al models, and most products only
support the testing of models or the training of simple model.
Therefore, the training process of complex AI models still
needs to be completed at the control-layer Al For on-board Al
supporting model training, different strategies of distributed
model training need to be adopted according to the delay
requirements of services on the device side and the state of
available computing resources in edge computing nodes.

Fig. 2(b) shows the collaborative workflow of the control
layer Al and the on-board Al In the data plane, the on-
board Al collects network device status data for analysis and
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FIGURE 3. SOON testbed with cloud-edge collaboration.

optimization to solve local optimization problems. The con-
trol layer Al in the policy layer can learn through the mas-
sive data reported by the network to solve the network-level
optimization problem. In addition, the on-board Al can also
interact with the control layer Al to solve the network layer
optimization problem.

IV. CLOUD-EDGE COLLABORATION STRATEGY

Faced with different performances of on-board Al, service
requirements, and computing resource status in network, dif-
ferent cloud-edge collaboration strategies can be used to train
and apply Al models. In this section, several implementation
strategies based on cloud-edge collaboration for Al applica-
tions are discussed and verified. We will start with the SOON
testbed based on cloud-edge collaboration and introduce the
cross-layer optimization with a single edge node. Then the
distributed model training and inference strategy based on the
collaboration of central cloud and multiple edge computing
nodes will be discussed.

A. SOON TESTBED WITH CLOUD-EDGE COLLABORATION

As shown in Fig. 3, the SOON platform is constructed by
the ONOS controller and Tensorflow. Tensorflow is integrated
in the ONOS controller to provide Al algorithm and service
development support. In addition, a unique graphical user
interface (GUI) is developed to perform unified operations on
the AI model library and service requirements, and display
application optimization effects. The platform can call the
corresponding model in the Al algorithm library according
to the needs of the Al-based applications, and use the data
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Largezscale backbone optical networks

SDN controller cluster

Al-enabled board

collected in the network for offline feature extraction and
model training. The model manager calls the trained model for
online testing and application according to requirements. The
control layer Al is supported by a high-performance computer
with two powerful GTX1080Ti GPUs in this experiment. The
SDN controller cluster shown in the figure cooperates with
the GPUs to control the network intelligently. All kinds of
training data come from the real large-scale backbone optical
networks in multiple regions. On-board Al is implemented
using multiple Al embedded boards, which are connected to
each other through wireless communication.

B. CROSS-LAYER OPTIMIZATION BASED ON OPTIMAL
MODEL

SOON with cloud-edge collaboration can achieve cross-layer
optimization. The central cloud controller can train the Al
model according to the data in the database and store the
Al model. On-board Al can directly perform data processing
and AI model application locally according to optimization
requirements. In the model training process, the choice of
hyperparameters has a greater impact on the performance of
the ATl algorithm, such as the number of neurons in neural net-
works and learning rate. The rapid implementation of multi-
model training/testing and the selection of the best model
can improve the efficiency and effect of network cross-layer
optimization.

A general cross-layer optimization strategy was proposed
to solve this problem [30]. As shown in Fig. 4(a), cloud Al in
the central controller is responsible for training the model on
the training data set. After each period or specific iteration, the
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model needs to be saved in the database. Then, on-board Al
downloads the model and executes the test on the test data set.
The downloaded models need to be compressed, compiled and
run to adapt the on-board AI. With the same hyperparameters
to complete multi-stage training, according to the type of
application, choose the best model to deploy on the central
controller or optical equipment.

During the verification of the strategy, two DP-8020 boards
developed by Xilinx were used as on-board Al. Fig. 4(b)
shows the training effect of 100 models with various combi-
nations of two hyperparameters, the input neuron number and
learning rate. This strategy can quickly select the best model.
Fig. 4(c) shows the actual performance collected from the
experiment. The power of DP-8020 is much smaller than GTX
1080Ti. In addition, we also reported the time consumption of
the control-layer Al and the on-board Al when processing an
epoch data. The average time consumption of a training epoch
in the controller is about 784.98ms, and the average time con-
sumption of testing on the on-board Al is about 1016.60ms.
Since two boards are used at the same time in this experiment,
the test time consumption is reduced to 508.30ms. The test
time consumption is lower than the training consumption in
cross-layer collaboration mode, which means that testing with
on-board Al will not block the training of the control-layer Al
This strategy saves the additional 98.12ms test time consump-
tion than the case where Al models are only trained and tested
using the control-layer Al

C. DISTRIBUTED TRAINING OF Al MODELS BASED ON
DATA PARALLELISM

Some AI embedded boards support the training of simple
Al models, which makes it possible to perform distributed
training of Al models in SOON. Due to the limitations of
the computing and data caching capabilities of on-board Al,
the collaboration of edge nodes and cloud node is required
to implement the model training process. The collaboration
can shorten training time and reduce the computing resource
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requirements on a single node. In the research of Al model
distributed training, synchronous training has been validated
by splitting and distributing the training data on multiple edge
nodes [31], [32]. As shown in Fig. 5(a), during each iteration,
all edge nodes independently train the model and send model
parameters to the cloud. The model will be returned to the
edge node after the Al in cloud controllers summarizes and
update parameters. Once the accuracy of model is reached,
the training process is stopped. In this process, there is still
the problem of how to achieve the dynamic allocation and
deployment of training data for multiple training tasks. Specif-
ically, the scheme of data partition and training deployment
will affect the use of computing and transmission resources
in the network. Given a batch of training tasks, the cloud
controller needs to find the best data partition and deployment
to perform as many training tasks as possible.

A data parallelism deployment algorithm (DPDA) is pro-
posed to solve the training tasks deployment problem. DPDA
first searches candidate offload edge nodes for each training
task and calculates the resource occupancy factor of each can-
didate offload node. Secondly, DPDA performs routing and
spectrum allocation (RSA) for the shortest path between task
source node and candidate nodes with low resource occupancy
to transmit training data. If there are not enough resources to
support the training task, the request is terminated. Finally,
divide and deploy training data according to the proportion
of available computing resources in edge nodes. The DPDA
algorithm uses ILP to model the deployment problem. In the
process of partitioning data and selecting transmission path,
the algorithm designs resource constraints and time consump-
tion based on the training task (including the size of the train-
ing data, the maximum tolerable task delay requirement, etc.)
and the available computing and frequency slot resources in
the network. The time consumption factors include the time
consumption for offloading data edge nodes, the calculation,
and the data transmission to the cloud controller. The objective
is to jointly minimize the resources cost and the average time
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to complete a training task. The complexity of DPDA depends
on network size, FS number per link and the offloading re-
quest of tasks.

In the verification of the algorithm, a benchmark algorithm
is designed for comparison, which selects the closest edge
node to the source node for each request to offload train-
ing data. Fig. 5(b) shows the performance results of DPDA.
The comparison with the benchmark algorithm illustrates that
DPDA can deploy more training tasks under limited network
resources. As the number of tasks increases, the task blocking
rate of DPDA is about 5% lower than the benchmark algo-
rithm. In addition, the ratio of idle time to task completion
time of the algorithm is relatively low, which means that the
computing resources of each node can be effectively used.

D. DNN INFERENCE AS A SERVICE

The inference of deep neural networks (DNN) can also benefit
from SOON with cloud-edge collaboration. In order to reduce
the computational burden of a single node or satisfy the delay
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requirements of different services in SOON, a concept of
flexibly adjusting the DNN inference process was proposed,
which called DNN inference as a service (DIaaS) [33]. DI-
aaS refers to the on-demand provisioning of DNN inference
based on flexible model partition and distribution according
to service requirements and network resources. Specifically,
as shown in Fig. 6(a), a DNN model with multiple layers
can offload some layers to edge or cloud nodes to complete
the overall inference process of DNN. This partition of DNN
model can effectively reduce the inference delay and the
calculation burden of a single node. This process involves
two issues: the partitioning of multi-layer DNN and the de-
ployment of computing nodes, which requires comprehensive
consideration of service delay requirements, node computing
resources and spectrum resources used for data transmission.

We designed the DNN inference provisioning (DIP) algo-
rithm to realize the DIaaS, with the aim of maximizing the
inference provisioning [30]. According to the requirements
of inference delay and network resource availability, the DIP
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algorithm can select the most suitable DNN partition and
inference deployment between the edge and the cloud for
each task. In the process of DNN partitioning and offloading,
two network resources need to be considered: i) the available
computing units (CU) of each node for data caching, and
ii) the available frequency slots (FS) for data transmission.
The DIP algorithm is constrained to the edge node where the
inference task originates, the input data size and the maximum
tolerable delay of the task. The sizes of intermediate data and
transmission route selection all affect the task delay. Network
resource metrics (CU and FS metrics) are used as load balance
metrics to evaluate candidate solutions for each model parti-
tion deployment. Finally, DIP will select the candidate with
the lowest load balance metric as the best solution for model
partition and deployment.

To verify the effectiveness of the DIP algorithm, ResNet-
18 was used as the DNN model. DIP-CU and DIP-E2C are
designed as comparison algorithms. The former only con-
siders the usages of computing resources and ignores the
transmission resources during model partitioning. The latter
only studies the DNN partition between edge nodes and cloud
nodes, without considering the coordination of edge nodes.
As shown in Fig. 6(b), higher traffic load leads to higher
resource utilization, which makes it more difficult to meet the
inference delay requirements. Compared with the other two
algorithms, DIP has the highest success rate. When the traffic
load is set to 500 Erlangs, the success rate of DIP reaches
85.3%. Moreover, the ratio of edge coordination is the ratio
of inference tasks completed by edge coordination to the total
inference of services. Fig. 6(b) shows that DIP and DIP-CU
are close in terms of the ratio of edge coordination.

V. INNOVATIVE AI-BASED APPLICATION

Various innovative Al-based optimization applications are de-
veloped within the SOON testbed. These applications are de-
signed to use Al technology to provide users with network
optimization services. In this section, several important use
cases are reviewed.

1) Alarm prediction: A single fiber/node failure in optical
networks may cause massive service interruption and
heavy economic loss, even for a few seconds. Alarms
are the most direct manifestation of network failures.
Therefore, predicting alarm information can provide ad-
vantages for network administrators to deal with faults
in a timely and effective manner. The alarm predic-
tion use case can perform data preprocessing and data
enhancement on a large amount of dirty data reported
in networks, combining Al algorithms and knowledge-
based collective self-learning methods to extract the fea-
tures of performance data in multi-domain networks to
predict the next time series of alarms [34], [35].

2) Resource allocation: Allocating resources for network
services in optical networks has always been the fo-
cus of research. There are many heuristic algorithms
for routing and wavelength assignment (RWA) that
can only achieve approximately optimal performance
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under certain circumstances. The resource allocation
optimization application in SOON uses reinforcement
learning (RL) to make resource allocation decisions for
multi-modal optical networks to maximize the utiliza-
tion of network resources [36]. In addition, the appli-
cation also considers the constraints of other resources
such as the number of device ports [37].

3) Fault localization: A major difficulty in dealing with
faults in optical networks is that the complex relation-
ship between the alarms will interfere with the identi-
fication of root-cause alarms. A single point of fault in
networks may cause the reporting of massive alarms,
and one alarm will generate multiple alarms. Fault local-
ization use case proposes the concept of alarm knowl-
edge graphs (KGs). According to the alarm knowl-
edge in the equipment manual, the knowledge graph
is automatically constructed. And graph neural network
(GNN) is used to infer the location of network faults
[38], [39].

VI. CONCLUSION

The deployment of Al in the optical network is conducive to
improving network control capabilities. This paper reviews
the evolution of self-optimizing optical network architecture
that implements Al services in SDON. In addition, on-board
Al is introduced to SOON to achieve the cloud-edge collabo-
ration. Based on this architecture, a SOON testbed and several
collaborative strategies have been proposed and verified to
improve the efficiency of Al applications in the network and
balance computing resources. Finally, we summarize several
innovative Al-based use cases. The current Al model training
and testing methods based on cloud-edge collaboration are
limited by the performance of on-board Al In the future, as
the performance of Al embedded boards improves, more Al
service strategies based on cloud-edge collaboration will be
proposed, which means that Al services can be provided better
in optical networks.
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