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ABSTRACT In the past, the security of most public-key encryption or key encapsulation schemes is shown
in an ideal model, where private keys, secret keys and random values are assumed to be absolutely secure to
adversaries. However, this ideal model is not practical due to side-channel attacks in the sense that adversaries
could gain partial information of these secret values involved in decryption operations by perceiving energy
consumption or execution timing. In such a case, these schemes under the ideal model could suffer from
side-channel attacks. Recently, leakage-resilient cryptography resistant to side-channel attacks is an emerging
research topic. Certificate-based encryption (CBE) or certificate-based key encapsulation (CB-KE) schemes
are a class of important public-key encryption. However, little work addresses the design of leakage-resilient
CBE (LR-CBE) or leakage-resilient CB-KE (LR-CB-KE) schemes. In this paper, we present the first LR-CB-
KE scheme with overall unbounded leakage property which permits adversaries to continuously gain partial
information of the system secret key of a trusted certificate authority (CA), the private keys and certificates
of users, and random values. In the generic bilinear group model, formal security analysis is made to prove
that the proposed LR-CB-KE scheme is secure against chosen ciphertext attacks.

INDEX TERMS Leakage resilience, side-channel attacks, key encapsulation, public-key encryption,
certificate-based public-key setting.

I. INTRODUCTION
In traditional public-key settings [1], [2], the certificate of a
user is used to create a link between her/his identity and public
key while a public-key infrastructure (PKI) is constructed to
manage certificates of all users. Identity (ID)-based public-
key settings [3], [4] were presented to eliminate the costs of
both the PKI construction and certificate management. Un-
fortunately, all ID-based public-key settings have an inborn
drawback, called the key escrow problem, in the sense that the
private keys of all users are produced and known by a private
key generator (PKG). To resolve the key escrow problem, Al-
Riyami and Paterson [5] presented a new public-key setting,
called certificateless public-key setting. Both the ID-based
and certificateless public-key settings remove the usage of cer-
tificates, but they have to offer extra revocation mechanisms to
revoke compromised/misbehaving users [6], [7].

In 2003, Gentry [8] presented the concept of certificate-
based public-key setting without extra revocation mecha-
nisms to resolve the key escrow problem. In the certificate-
based public-key setting, there are two roles, namely, users
and a trusted certificate authority (CA). A user first chooses
a private key and produces the corresponding public key.
The user then sends her/his identity and the correspond-
ing public key to the CA. By the user’s identity and pub-
lic key, the CA computes and sends the associated certifi-
cate to the user. It is worth mentioning that the user must
employ both her/his private key and certificate to decrypt
a ciphertext and sign a message. In the past, based on
the certificate-based public-key settings, numerous crypto-
graphic primitives have been proposed, such as certificate-
based encryption [9], [10] and certificate-based signature [11],
[12].
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Typically, the security of the public-key settings mentioned
above is shown in an ideal model, where private keys, secret
keys and random values are assumed to be absolutely secure
to adversaries. Indeed, the ideal model is not practical due to
side-channel attacks [13], [14] in the sense that adversaries
could gain partial information of these secret values involved
in computation operations by perceiving energy consump-
tion or execution timing. In such a case, these cryptographic
schemes based on the ideal model could suffer from such
side-channel attacks and be insecure. Recently, the research
of leakage-resilient cryptography resistant to side-channel at-
tacks is an emerging research topic and has gained significant
attention of cryptographers. These leakage- resilient crypto-
graphic schemes allow adversaries to gain partial informa-
tion of private keys, secret keys and random values while
keeping the security of these leakage-resilient cryptographic
schemes. In the past decade, numerous leakage-resilient cryp-
tographic primitives based on the traditional public-key set-
tings have been proposed, such as leakage-resilient signa-
ture schemes [15]–[17], leakage-resilient authenticated key
exchange protocols [18]–[20] and leakage-resilient encryption
schemes [21]–[26].

For leakage-resilient cryptography, there are two leakage
models, namely, bounded leakage and continuous leakage
models. In both models, adversaries could gain partial in-
formation of private keys, secret keys or random values in-
volved in computation operations for each invocation of a
cryptographic scheme. In the bounded leakage model [21],
[23], the total amount of leakage information during the life
time of the cryptographic scheme have to be bounded to a
fixed ratio or bit-length. On the other hand, in the continuous
leakage model [22], [26]–[28], adversaries are permitted to
continuously gain partial information of these secret values
for each invocation of the cryptographic scheme while the
whole leakage amount is unbounded during the life time of
the cryptographic scheme. Obviously, the continuous leakage
model has less restrictions and possesses overall unbounded
leakage property.

Indeed, certificate-based encryption (CBE) or certificate-
based key encapsulation (CB-KE) schemes are a class of
important public-key encryption. Up to now, little work ad-
dresses the design of leakage-resilient CBE (LR-CBE) or
leakage-resilient CB-KE (LR-CB-KE) schemes. In this paper,
we aim at the design of the first LR-CB-KE scheme with over-
all unbounded leakage property which permits adversaries to
continuously gain partial information of the system secret key
of the CA, the private key and certificate of users, and random
values.

A. RELATED WORK
In the section, let us briefly review the related work of
leakage-resilient encryption and key encapsulation schemes
based on various kinds of public-key settings that includes
traditional, ID-based and certificate-based public-key settings.

Based on a traditional public-key setting, Akavia et al. [21]
presented the first leakage-resilient encryption (LRE) scheme

and the associated bounded leakage model. Their LRE scheme
is semantically secure against chosen plain-text attacks (CPA).
In their bounded leakage model, adversaries are allowed to
choose a leakage function with taking as input a user’s pri-
vate key and gain partial information of the user’s private
key through the output of the leakage function. By following
Akavia et al.’s bounded leakage model, Naor and Segev [23]
proposed a new LRE scheme which is semantically secure
under adaptive chosen ciphertext attacks (CCA). Furthermore,
they also presented a generic LRE scheme using the universal
hash proofs. In order to improve the performance of Naor
and Segev’s LRE scheme, Li et al. [25] and Liu et al. [24]
respectively proposed an efficient LRE scheme in the bounded
leakage model. In the continual leakage model, Kiltz and
Pietrzak [22] proposed the first LRE scheme. They employ the
generic bilinear group (GBG) model [29] to prove the security
of the proposed LRE scheme. Moreover, in the GBG model
and the continual leakage model, Galindo et al. [26] also
presented an efficient ElGamal-like LRE scheme. These LRE
schemes mentioned above are constructed under traditional
public-key settings.

In 2010, Brakerski et al. [30] proposed the first leakage-
resilient ID-based encryption (LR-IBE) scheme in the contin-
ual leakage model. As mentioned earlier, in ID-based public-
key settings, the PKG uses a system secret key to produce
the private keys of all users. In such a case, adversaries are
allowed to gain partial information of both the system secret
key of the PKG in the key extract phase and the private keys
of users in the decryption phase. However, Brakerski et al.’s
continual leakage model does not allow adversaries to gain
the system secret key of the PKG in the key extract phase.
To remove this restriction, Yuen et al. [31] proposed an im-
provement on Brakerski et al.’s LR-IBE scheme. Based on
composite order groups, Li et al. [32] proposed a new LR-
IBE scheme in the post-challenge continuous auxiliary input
model. Li et al.’s LR-IBE scheme is secure against chosen
plain-text attacks in the standard model.

Based on certificate-based public-key settings, little work
addresses the design of leakage- resilient certificate-based en-
cryption (LR-CBE) or leakage-resilient certificate-based key
encapsulation (LR-CB-KE) schemes. In 2016, the first LR-
CBE scheme was proposed by Yu et al. [33]. In their LR-CBE
scheme, adversaries are allowed to gain partial information of
both the CA’s system secret key in the certificate generation
phase and the user’s private key and certificate in the decryp-
tion phase. However, their LR-CBE scheme is constructed in
the bounded leakage model. In addition, the ratio of leakage
information for these secret values is fixed to 1/3. Based on
the composite order bilinear group assumption, the security of
Yu et al.’s scheme is proved to be secure against CCA attacks
by using the dual system encryption technique. However, the
performance of Yu et al.’s scheme is costly due to the dual sys-
tem encryption technique. In 2018, Guo et al. [34] proposed
an efficient LR-CBE scheme, but it only allows adversaries
to gain partial information of both the user’s private key and
certificate in the bounded leakage model. In the continuous
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leakage model, Li et al. [35] proposed a new LR-CBE scheme.
However, in their scheme, adversaries are allowed to gain only
partial information of the user’s private key and certificate,
but random values involved in decryption phase and the CA’s
system secret key are disallowed to be leaked to adversaries.

B. CONTRIBUTION AND ORGANIZATION
According to the review above, the leakage models of these
existing LR-CBE schemes [33]–[35] have several restrictions
and do not offer complete leakage abilities of adversaries. In
this paper, we first present a new continuous leakage model
of LR-CB-KE schemes. The continuous leakage model is
extended from the models of LR-CBE schemes presented
in [33]–[35]. The continuous leakage model consists of two
kinds of adversaries that include Type I adversary (uncertified
entity) and Type II adversary (honest-but-curious CA). In the
continuous leakage model, adversaries are allowed to con-
tinuously gain partial information of the CA’s system secret
key involved in the certificate generation phase, the user’s
private key and certificate involved in the decryption phase,
and random values used in both phases. In addition, the whole
leakage amount is unbounded during the life time of the
LR-CB-KE scheme, namely, the continuous leakage model
possesses overall unbounded leakage property.

In the new continuous leakage model, the first LR-CB-KE
scheme with overall unbounded leakage property is proposed
in this paper. In our scheme, adversaries are given the com-
plete leakage abilities to continuously gain partial information
of the CA’s system secret key, the user’s private key and
certificate, and random values. The design principle of the
proposed LR-CB-KE scheme is to employ the key refreshing
technique [17], [22], [36] to update the CA’s system secret
key, and each user’s private key and certificate after each invo-
cation. In the key refreshing technique, the CA partitions the
system secret key into two parts and updates the two parts af-
ter each certificate generation procedure. Similarly, each user
respectively partitions her/his private key and certificate into
two parts and updates them after each decryption procedure.
It is worth mentioning that the CA’s system public key and
each user’s public key are still retained unchangeable after
the key refreshing procedure. In such a case, adversaries can
continuously gain partial information about these two current
secret parts, but not the CA’s original system secret key, or
users’ original private keys and certificates. In the generic
bilinear group model [29], formal security analysis is made to
prove that the proposed LR-CB-KE scheme is secure against
the chosen ciphertext attacks for two kinds of adversaries.

The remainder of the paper is organized as follows.
Section II presents several preliminaries. In Section III, the
syntax and security notions of LR-CB-KE schemes are given.
A secure LR-CB-KE scheme resilient to continuous key leak-
age is proposed in Section IV. We analyze the security of the
proposed LR-CB-KE scheme in Section V. Performance anal-
ysis is demonstrated in Section VI. Conclusion are discussed
in Section VII.

II. PRELIMINARIES
In the section, we introduce several preliminaries that include
the concepts of bilinear groups, the notions of generic bilinear
group model and the basics of entropy.

A. BILINEAR PAIRINGS
Let G = < g > and GT be two multiplicative cyclic groups
of the same prime order p. Let ê : G ×G→ GT

1) Bilinearity: ê(gx, gy) = ê(g, g)xy, for x, y ∈ Z∗p.
2) Non-degeneracy: ê(g, g) �= 1.
3) Computability: ê(u, v) is efficiently computable, for all

u, v ∈ G.
For the bilinear map ê, G is the base group and GT denotes

the target group. It is worth mentioning that ê(g, g) is viewed
as a generator of GT . For the detailed properties and imple-
mentations of both bilinear groups and bilinear maps, please
refer to [4], [6], [37], [38].

B. GENERIC BILINEAR GROUP MODEL
In 1997, Shoup [39] presented the concepts of the generic
group model, which is viewed as a security model for cryp-
tographic schemes. In the generic group model, each group
element is encoded to a unique string randomly chosen by a
challenger. For executing a group operation, adversaries must
issue a group query (oracle) to obtain the result. Namely,
when an adversary sends two group elements to the challenger
to perform the group operation, the challenger produces the
resulting group element, and sends it to the adversary while
recording it in a list maintained by the challenger. If an ad-
versary can efficiently find a collision encoding of a group
operation, we say that the adversary solves the computational
hardness assumption, namely, the discrete logarithm problem
of the group [40].

By extending the generic group model mentioned above,
Boneh et al. [29] presented the generic bilinear group model.
In this model, there are two groups G and GT and each
element of G and GT is encoded by a distinct bit-string. To do
so, the elements of G and GT are encoded to bit- strings by
two random injective maps ξ : Zp→ � and ξT : Zp→ �T ,
where � and �T are the sets of bit-strings such that � ∩�T =
φ and |�| = |�T | = p. In the generic bilinear group model,
there exist three group queries that include the multiplication
query QG on G, the multiplication query QT on GT and
the bilinear pairing query Qp from G ×G to GT . For any
x, y ∈ Z∗p, three group queries respectively have the following
properties.

– QG(ξ (x), ξ (y))→ ξ (x + y mod p).
– QT (ξT (x), ξT (y))→ ξT (x + y mod p).
– Qp(ξ (x), ξ (y))→ ξT (xy mod p).
It is worth mentioning that ξ (1) = g and ê(g, g) = ξT (1) =

gT are respectively the generators of G and GT .

C. ENTROPY
The meaning of entropy in statistics is the measure of un-
certainty. Let Y and Z be two finite random variables while
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Pr[Y=y] and Pr[Z=z] are the associated probability distribu-
tions. A min-entropy is used to represent the worst-case pre-
dictability of a random variable. Two kinds of min- entropies
are defined as below:

1) H∞(Y ) = − log2(maxy Pr[Y = y]) represents the min-
entropy of Y .

2) H̃∞(Y |Z ) = − log2(Ez←Z [maxy Pr[Y = y|Z = z]])
represents the average conditional min-entropy of Y
under Z .

In 2008, Dodis et al. [41] presented the min-entropy of
a finite random variable Y with the leakage information in
Lemma 1. Galindo and Vivek [17] proved the probability
distribution of a polynomial under the leakage information in
Lemma 2.

Lemma 1. Let f : Y → {0, 1}λ be a leakage function on a
random variable Y and f (Y ) denotes the leakage information.
We have H̃∞(Y | f (Y )) � H∞(Y )− λ.

Lemma 2. Let F ∈ Zp[Y1,Y2, . . . ,Yn] represent a non-zero
polynomial of degree at most d . Pi (for i = 1, 2, . . . , n) are the
associated probability distributions on Yi such that 0 � λ �
log p and H∞(Pi ) � log p− λ. If all yi

Pi←− Zp are mutually
independent, we have the probability Pr[F (y1, y2, . . . , yn) =
0] � d

p 2λ. In addition, Pr[F (y1, y2, . . . , yn) = 0] is negligible
if λ < log p− ω(log log p).

III. SYNTAX AND SECURITY NOTIONS
In a LR-CBE or LR-CB-KE scheme, there are two roles that
include users (senders and receivers) and a certificate author-
ity (CA). The user first chooses a private key and produces the
corresponding public key. The user then sends her/his identity
and public key to the CA. By the user’s identity and public
key, the CA uses a system secret key to compute and send the
associated certificate to the user. It is worth mentioning that
a user must employ both her/his private key and certificate
to decrypt a ciphertext. A LR-CBE scheme consists of five
algorithms, namely, Setup, User key generation, Certificate
generation, Encrypt and Decrypt algorithms. As the syntax of
the LR-CBE scheme, in a LR-CB-KE scheme, the Encrypt
and Decrypt algorithms may be remained or replaced with the
Encapsulation and Decapsulation algorithms, respectively.

The design principle of the proposed LR-CB-KE scheme
resistant to continual leakage is to employ the key refreshing
technique [17], [22], [36] to update the CA’s system secret
key, and each user’s private key and certificate after each invo-
cation. In the key refreshing technique, the CA partitions the
system secret key into two parts and updates the two parts af-
ter each certificate generation procedure. Similarly, each user
respectively partitions her/his private key and certificate into
two parts and updates them after each decryption procedure.
For precisely describing the key refreshing procedure of Cer-
tificate generation and Decrypt algorithms, the initial system
secret key SSK is divided into two parts (SSK0,1, SSK0,2).
In addition, a user’s initial private key USK and certifi-
cate CSK are divided into two parts (USK0,1,USK0,2) and
(CSK0,1,CSK0,2), respectively. Moreover, in order to model

the adversary’s leakage capacity for i-th Certificate genera-
tion invocation, the current system secret key (SSKi,1, SSKi,2)
must be updated according to the previous system secret key
(SSKi−1,1, SSKi−1,2). For the same reason, in order to model
the adversary’s leakage capacity for j-th Decrypt invocation,
the user’s current private key (USKj,1, USKj,2) and certificate
(CSKj,1, CSKj,2) are computed from the previous private key
(USKj−1,1, USKj−1,2) and certificate (CSKj−1,1, CSKj−1,2),
respectively.

In the following, the syntax and security notions of LR-CB-
KE schemes resistant to continual key leakage are defined.
It is worth mentioning that the presented syntax and secu-
rity notions of LR-CB-KE schemes resistant to continual key
leakage have two differences with the aforementioned LR-
CBE schemes [33], [34] and is similar to the aforementioned
LR-CBE scheme [35]. Two differences are the key refreshing
procedures of the system secret key SSK and a user’s private
key USK and certificate CSK .

A. SYNTAX OF LR-CB-KE SCHEME
Here, we define the syntax of LR-CB-KE schemes resistant to
continual key leakage.

Definition 1: A LR-CB-KE scheme consists of five algo-
rithms as below:

– Setup: The CA takes a security parameter as input and
performs this algorithm to produce the initial system
secret key SSK = (SSK0,1, SSK0,2) and set public pa-
rameters PP. The CA chooses a symmetric encryption
function E () and the associated symmetric decryption
function D(). Finally, the CA keeps (SSK0,1, SSK0,2) in
secret and publishes PP.

– User key generation: A user performs this algorithm to
produce her/his private key USK = (USK0,1,USK0,2)
and the first partial public key UPK .

– Certificate generation: For the i-th round of Cer-
tificate generation algorithm, the CA takes as in-
put a user’s identity and partial public key UPK to
perform this algorithm to produce the user’s certifi-
cate CSK and the corresponding partial public key
CPK . Meanwhile, the CA must update the current
system secret key (SSKi,1, SSKi,2) computed from
(SSKi−1,1, SSKi−1,2). In addition, CSK and CPK are
sent to the user. Afterwards, the user sets the initial
certificate CSK = (CSK0,1,CSK0,2) and the complete
public key (UPK,CPK ).

– Encrypt (Encapsulation): By taking as input a plain-
text m and a receiver’s identity ID and public key
(UPK,CPK ), a sender performs this algorithm to pro-
duce an encryption key EK , a public value C and CT =
EEK (m), where E () is the employed symmetric encryp-
tion function. Finally, this algorithm returns the cipher-
text (C,CT ).

– Decrypt (Decapsulation): For the j-th Decrypt round
of a user with private key (USKj−1,1,USKj−1,2) and
certificate (CSKj−1,1,CSKj−1,2)), upon receiving the ci-
phertext (C,CT ), the user adopts the ciphertext C to
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obtain the symmetric encryption key EK and then de-
crypts CT to obtain the plain-text m. Meanwhile, the user
updates the current private key (USKj,1, USKj,2) and
certificate (CSKj,1,CSKj,2) computed from (USKj−1,1,

USKj−1,2) and (CSKj−1,1, CSKj−1,2), respectively.

B. SECURITY NOTIONS OF LR-CB-KE SCHEME
In the presence of the continual key leakage, adversaries can
gain partial information of secret values involved in computa-
tion operations of a LR-CB-KE scheme, namely, adversaries
are allowed to continuously gain partial information of the
CA’s system secret key and random values involved in the
Certificate generation phase, and the user’s private key, cer-
tificate and random values involved in the Decrypt phase. For
representing the leaked partial information gained by adver-
saries, two leakage functions fCG,i and hCG,i are defined to
model the abilities of adversaries for the i-th round of Certifi-
cate generation algorithm. Meanwhile, two leakage functions
fD, j and hD, j are defined to model the abilities of adversaries
for the j-th Decrypt round of a user. The output bit-length of
each leakage function is bounded to λ, namely, | fCG,i|, |hCG,i|,
| fD, j |, |hD, j | ≤ λ, where λ denotes the leakage parameter. The
outputs of four leakage functions are defined as below:

– � fCG,i = fCG,i (SSKi−1,1, random values).
– �hCG,i = hCG,i (SSKi−1,2, random values).
– � fD, j = fD, j (USKj−1,1,CSKj−1,1, random values).
– �hD, j = hD, j (USKj−1,2,CSKj−1,2, random values).
It is worth mentioning that the EK denotes the symmetric

encryption key EK used in the j-th Decrypt round of the user.
In the following, we present a new continuous leakage

model (adversary model) of LR-CB-KE schemes. The contin-
uous leakage model is extended from the models of LR-CBE
schemes defined in [33]–[35]. In this model, adversaries are
allowed to continuously gain partial information of the CA’s
system secret key involved in the certificate generation phase,
the user’s private key and certificate involved in the decryption
phase, and random values used in both phases. In addition,
the whole leakage amount is unbounded during the life time
of the LR-CB-KE scheme, namely, the continuous leakage
model possesses overall unbounded leakage property. The
continuous leakage model consists of two kinds of adversaries
that include Type I adversary (uncertified entity) and Type II
adversary (honest-but-curious CA).

– Type I adversary simulates the role of an uncertified
entity (outsider) who may gain the private key of any
entity by replacing the public key of the entity, but cannot
know the entity’s certificate and the CA’s system secret
key.

– Type II adversary simulates the role of the honest-but-
curious CA who possesses the system secret key and
certificates of all users. But, it is disallowed to gain the
private key of any entity by replacing the public key of
the entity.

Next, a security game GLR−CB−KE is presented to define
the abilities of adversaries for the LR-CB-KE schemes in the
continual leakage model.

Definition 2 (GLR−CB−KE ): The security game
GLR−CB−KE defines the interactions between an adversary A
and a challenger B in a LR-CB-KE scheme. If no probabilistic
polynomial-time (PPT) adversary A (including Types I and
II adversaries) with a non-negligible advantage wins the
security game GLR−CB−KE , we say that the LR-CB-KE
scheme is semantically secure against chosen ciphertext
attacks in the continual leakage model.

– Setup phase: B takes as input a security parameter τ

and performs the Setup algorithm to produce the CA’s
initial system secret key SSK = (SSK0,1, SSK0,2) and
set public parameters PP. If A is of Type I adversary, B
keeps SSK = (SSK0,1, SSK0,2) in secret. If A is of Type
II adversary, B sends SSK = (SSK0,1, SSK0,2) to A. In
addition, PP is published and sent to A.

– Query phase: A can issue numerous queries adaptively
as follows:
� User key generation query (ID): Upon receiving the

request with ID, B performs the User key generation
algorithm to produce the user’s initial private key
USK = (USK0,1,USK0,2) and the first partial public
key UPK .

� Private key query (ID): Upon receiving the request
with ID, B sends the user’s initial private key USK =
(USK0,1,USK0,2) to A. It is worth mentioning that
this query is disallowed if the Public key replace
query (ID) has ever been issued.

� Certificate generation query (ID, UPK): Upon re-
ceiving the request with identity ID and the first
partial public key UPK , B returns the user’s initial
certificate CSK = (CSK0,1,CSK0,2) and the second
partial public key CPK .

� Certificate generation leak query (i, fCG,i, hCG,i):
Upon receiving the request with the i-th Certifi-
cate generation query and two leakage functions
fCG,i, hCG,i, B responds the leakage information
(� fCG,i,�hCG,i ) to A, where (� fCG,i,�hCG,i ) de-
notes the leakage information of the CA’s current
system secret key SSK = (SSKi−1,1, SSKi−1,2).

� Public key retrieve query (ID): Upon receiving the
request with ID, B responds the associated public key
(UPK,CPK ).

� Public key replace query (ID, (UPK ′, CPK ′)): Upon
receiving the request with ID and the new public key
(UPK,′CPK ′), B keeps track of the replacement.

� Decrypt (Decapsulation) query (ID, (C,CT )): Upon
receiving the request with identity ID and the cipher-
text (C,CT ), B uses the associated private key USK
and certificate CSK to produce the encryption key EK
and decrypt the message m = DEK (CT ). B sends m
and EK to A.

� Decrypt (Decapsulation) leak query (ID, j,
fD, j, hD, j): Upon receiving the request with
the j-th Decrypt query of identity ID and two
leakage functions fD, j, hD, j , B responds the
leakage information (� fD, j,�hD, j ) to A. If A
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is of Type I adversary, (� fD, j,�hD, j ) denotes
partial information of the user’s current certificate
CSK = (CSKj−1,1,CSKj−1,2). If A is of Type
II adversary, (� fD, j,�hD, j ) denotes partial
information of the user’s current private key
USK = (USKj−1,1,USKj−1,2).

– Challenge phase: A sends a plain-text pair (m∗0, m∗1 ) and
a target identity ID∗ to B. B selects a random unbi-
ased bit b ∈ {0, 1} and performs the Encrypt algorithm
with (PP, ID∗, m∗b , (UPK∗,CPK∗)) to generate C∗ and
EK∗, where (UPK∗,CPK∗) is the associated public
key of the user with identity ID∗. Finally, B generates
CT ∗ = EEK∗ (m∗b ), where E () is the employed symmet-
ric encryption function. Finally, B returns the ciphertext
(C∗,CT ∗) to A. In addition, two conditions must be
satisfied.
1) If A is of Type I adversary, the Certificate generation

query (ID∗,UPK∗) has never been issued.
2) If A is of Type II adversary, both the Private key query

(ID∗) and Public key replace query (ID∗) have never
been issued.

– Guess phase: A outputs a bit b′ ∈ {0, 1} and wins the
security game GLR−CB−KE if b′ = b. The advantage of
A is defined by AdvA(τ ) = |Pr[b′ = b]− 1/2|.

IV. THE PROPOSED LR-CB-KE SCHEME
Here, we propose the first LR-CB-KE scheme with over-
all unbounded leakage property. As the syntax of Defini-
tion 1, the LR-CB-KE scheme consists of five algorithms as
below:

– Setup: The CA takes a security parameter τ as input, and
selects two groups G, GT of a large prime order p and
the associated bilinear map ê : G ×G→ GT as pre-
sented in Section 2.1. The CA then chooses a generator g
of G. The CA also chooses a symmetric encryption func-
tion E () and the associated symmetric decryption func-
tion D(). In addition, the CA sets the public parameters
PP and the initial system secret key (SSK0,1, SSK0,2) by
performing the following steps:
1) Pick a random integer s ∈ Z∗p, and compute the sys-

tem secret key SSK = gs and the associated system
public key SPK = ê(gs, g).

2) Pick a random integer a ∈ Z∗p and set the initial sys-
tem secret key (SSK0,1, SSK0,2)= (ga, SSK · g−a). It
is obvious that SK = SSK0,1 · SSK0,2.

3) Pick two random integers μ, ν ∈ Z∗p, and compute
U = gμ and V = gν .

4) Set and publish PP = (G, GT , p, g, ê, SPK,

U,V, E , D).
– User Key generation: Without loss of generality, a user

with identity ID randomly selects t , b ∈ Z∗p, and com-
putes the associated private key USK = gt and the
first partial public key UPK = ê(gt , g). Finally, the
user sets her/his initial private key (USK0,1,USK0,2) =
(g−b, gt+b), where USK0,1 ·USK0,2 =USK .

– Certi f icate generation: For the i-th round of Certificate
generation algorithm, the CA with the current system
secret key (SSKi−1,1, SSKi−1,2) takes as input a user’s
identity ID and partial public key UPK , and produces
the user’s certificate CSK and second partial public key
CPK by performing the following steps.
1) Randomly choose c, d ∈ Z∗p, set the bit-string BX =

ID||UPK and compute X = BX mod p, where BX is
viewed as the corresponding integer of the bit-string.

2) Compute the user’s second partial public key CPK =
gd , a temporary value T ICG = SSKi−1,1 · (U ·V X )d

and the user’s certificate CSK = SSKi−1,2 · T ICG.
3) Update the current system secret key (SSKi,1 =

SSKi−1,1 · gc, SSKi,2 = SSKi−1,2 · g−c).
4) Return the user’s second partial public key CPK and

certificate CSK .
Upon receiving the second partial public key CPK and
certificate CSK , the user sets her/his initial certificate as
below:
1) Randomly choose h ∈ Z∗p and set the user’s initial

certificate (CSK0,1,CSK0,2) = (gh,CSK · g−h).
2) Set the user’s public key (UPK,CPK ).

– Encrypt (Encapsulation): Taking as input a plain-text
m, and a receiver’s identity and associated public key
(UPK,CPK ), a sender performs the following steps to
produce the ciphertext (C,CT ).
1) Choose a random integer r ∈ Z∗p, set the bit-string

BX = ID||UPK and compute X = BX mod p, where
BX is viewed as the corresponding integer of the
bit-string.

2) Compute C = gr , EK1 = (UPK )r = ê(gt , g)r and
EK2 = (SPK · ê(CPK,U ·V X ))r .

3) Generate the encryption key EK = EK1 ⊕ EK2 and
CT = EEK (m).

Finally, the sender returns the ciphertext (C,CT ) to the
receiver.

– Decrypt (Decapsulation): For the j-th Decrypt round
of a user with private key (USKj−1,1,USKj−1,2) and
certificate (CSKj−1,1,CSKj−1,2)), upon receiving the ci-
phertext (C,CT ), the user adopts the ciphertext C to
compute the symmetric encryption key EK which is
used to decrypt CT to obtain the plain-text m by per-
forming the following steps.
1) Compute EKI1 = ê(C,USKj−1,1) and EKI2 =

ê(C,CSKj−1,1).
2) Compute EK ′1 = EKI1 · ê(C,USKj−1,2) and EK ′2 =

EKI2 · ê(C,CSKj−1,2).
3) Set the encryption key EK ′ = EK ′1 ⊕ EK ′2 and de-

crypt the plain-text m = DEK (CT ).
4) Choose a random integer k ∈ Z∗p, and update the

user’s current private key (USKj,1 = USKj−1,1 · gk ,
USKj,2 = USKj−1,2 · g−k ) and current certificate
(CSKj,1 =CSKj−1,1 · gk ,CSKj,2 =CSKj−1,2 · g−k ).

By USK = USK0,1 ·USK0,2 = · · · = USKj−1,1 ·
USKj−1,2 =USKj,1 ·USKj,2 and CSK = CSK0,1 ·CSK0,2 =
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· · · = CSKj−1,1 ·CSKj−1,2 = CSKj,1 ·CSKj,2, we show the
correctness of recovering the encryption key as follows.

EK = EK1 ⊕ EK2

= (UPK )r ⊕ (SPK · ê(CPK,U ·V X ))r

= ê(gt , g)r ⊕ (ê(gs, g) · ê(gd ,U ·V X ))r

= ê(gr, gt )⊕ (ê(g, gs) · ê(g,U ·V X )d )r

= ê(gr,USK )⊕ ê(gr, SSK · (U ·V X )d )

= ê(C,USK )⊕ ê(C,CSK )

= ê(C,USK0,1 ·USK0,2)

⊕ ê(C,CSK0,1 ·CSK0,2)

= ê(C,USK0,1) · ê(C,USK0,2)

⊕ ê(C,CSK0,1) · ê(C,CSK0,2)

= EK ′.

V. SECURITY ANALYSIS
By the security game GLR−CB−KE of Definition 2 mentioned
in Section 3.2, there are two types of adversaries, namely,
Type I adversary (uncertified entity) and Type II adversary
(honest-but-curious CA). By the Certificate generation extract
leak query, Type I adversary can gain partial information of
the CA’s system secret key and random values in the Certifi-
cate generation phase. Since Type II adversary has possessed
the CA’s system secret key, it does not need to issue the
Certificate generation extract leak query. On the other hand,
by the Decrypt leak query, both adversaries can gain partial
information of the user’s private key, certificate and random
values in the Decrypt phase. Theorems 1 and 2, respectively,
demonstrate that our LR-CB-KE scheme is semantically se-
cure against chosen ciphertext attacks of both Types I and II
adversaries in the continual leakage model.

Theorem 1: In generic bilinear group model, the proposed
LR-CL-KE scheme is semantically secure against chosen ci-
phertext attacks of Type I adversary (AI , uncertified entity) in
the continual leakage model.

Proof: The generic bilinear group model introduced in
Section 2.2 is used in the security game GLR−CB−KE of the
proposed LR-CL-KE scheme. In this model, there are two
groups G and GT and each element of G and GT is encoded
by a distinct bit-string. In addition, three group queries are
provided that include the group query QG on G, the group
query QT on GT and a bilinear map query Qp from G ×G
to GT . In such a case, three queries QG, QT and Qp must
be added in the security game GLR−CB−KE played by a chal-
lenger B and an adversary AI . It is worth mentioning that the
challenger B is responsible to encode each element of G and
GT by a distinct bit-string.

– Initial Setup: In the phase, B takes as input a secu-
rity parameter τ and performs the Setup algorithm to
produce the CA’s system secret key SSK and public
parameters PP = (G, GT , p, g, ê, SPK = SSK ·

g,U,V, E , D). In addition, several lists are constructed
to record the queries issued by AI .
� B constructs two lists LG and LT to record all elements

of G and GT , respectively.
1) LG records all elements of G with the form

(
Gm,n,r , �Gm,n,r ). 
Gm,n,r denotes an ele-
ment of G represented by a multivariate polyno-
mial with coefficients in Zp and variates in G.
�Gm,n,r ) denotes the corresponding encoded
bit-string of 
Gm,n,r . The indices m, n and r,
respectively, represent the type of query, the n-
th query, and the r-th element. Initially, four el-
ements (g, �GI,1,1), (U, �GI,1,2), (V, �GI,1,3)
and (SSK, �GI,1,4) are added in LG.

2) LT records all elements of GT with the form
(
Tm,n,r, �Tm,n,r ). (
Tm,n,r denotes an ele-
ment of G represented by a multivariate poly-
nomial with coefficients in Zp and variates in
G/GT . �Tm,n,r denotes the corresponding en-
coded bit-string of (
Tm,n,r . Three indices m, n
and r are the same as those in LG. Initially, an
element (SPK, �TI,1,1) is added in LT .

Upon receiving the related queries issued by AI in the
Query phase described later, B employs two rules to
maintain LG and LT as below.

1) When B receives the transformation request of a
multivariate polynomial 
Gm,n,r/
Tm,n,r , B re-
turns the associated bit-string �Gm,n,r/�Tm,n,r

if 
Gm,n,r/
Tm,n,r has been recorded in
LG/LT . Otherwise, B chooses a distinct
and random bit-string �Gm,n,r/�Tm,n,r and
records (
Gm,n,r, �Gm,n,r )/(
Tm,n,r, �Tm,n,r )
in LG/LT . Also, B returns the bit-string
�Gm,n,r/�Tm,n,r .

2) When B receives the transformation request
of a bit-string �Gm,n,r/�Tm,n,r , B responds
the corresponding multivariate polynomial

Gm,n,r/
Tm,n,r in LG/LT .

� B constructs a list LK of tuples with form (IDi,
replace, 
USKi, 
UPKi, 
CSKi, 
CKPi ) to
record the private key USKi, certificate CSKi and
the public key (UPKi,CPKi ) of the user Ui with
identity IDi, where IDi is in Z∗p, and 
USKi,

UPKi, 
CSKi, 
CKPi are multivariate polynomi-
als recorded in LG or LT . The field of the replace
denotes the status of public key replacement and is
initially set to “false”. Whenever AI issues the Public
key replace query (IDi ), B sets the field of the replace
for IDi to be “true ”.

� Finally, B sends the corresponding bit-strings of sev-
eral public parameters {g,U,V, SPK} to AI .

– Query: In the phase, AI may adaptively issue the fol-
lowing queries at most q times. Note that the challenger
B is responsible to encode the corresponding relations
between multivariate polynomials and bit-strings in
LG or LT . Therefore, when B received a bit-string that
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does not exist in LG or LT , B responses the failure of
the game.
� Group query QG(�GQ,i,1, �GQ,i,2, OP): Upon

receiving the i-th request with two bit-strings
(�GQ,i,1, �GQ,i,2) in LG and an OP (multiplica-
tion/division) operation, B performs the following
steps to send the resulting bit-string �GQ,i,3.

1) Transform �GQ,i,1 and �GQ,i,2 respectively
to obtain the corresponding multivariate
polynomials 
GQ,i,1 and 
GQ,i,2 in LG.

2) If OP is the multiplication operation, compute
the polynomial 
GQ,i,3 = 
GQ,i,1 + 
GQ,i,2.
If OP is the division operation, compute

GQ,i,3 = 
GQ,i,1 - 
GQ,i,2.

3) Transform the resulting polynomial 
GQ,i,3

and return the corresponding bit-string �GQ,i,3.
� Group query QT (�TQ,i,1, �TQ,i,2, OP): Upon

receiving the i-th request with two bit-strings
(�TQ,i,1, �TQ,i,2) in LT and an OP (multiplication
or division) operation, B performs similar steps
mentioned in the Group query QG and return the
corresponding bit-string �TQ,i,3.

� Pairing query QP(�GP,i,1, �GP,i,2): Upon receiving
the i-th request with two bit-strings (�GP,i,1, �GP,i,2)
in LG, B performs the following steps:

1) Transform �GP,i,1 and �GP,i,2 respectively to
obtain the corresponding polynomials 
GP,i,1

and 
GP,i,2.
2) Compute the polynomial 
TP,i,1 = 
GP,i,1 ·


GP,i,2.
3) Transform 
TP,i,1 in LT and return the

corresponding bit-string �TP,i,1.
� Private key query (IDi): Upon receiving this request

with identity IDi, if IDi has been recorded in LK and
the replace field is “false,” B first obtains the polyno-
mial 
USKi of the user’s private key and transforms
it to return the corresponding bit-string �USKi to AI .
If IDi has been not recorded in LK , B issues the User
key generation query (IDi ) to return �USKi to AI .

� Certificate generation query (IDi,UPKi): Upon
receiving the i-th request with identity IDi and
the first partial public key UPKi, B performs the
following steps:

1) Choose a new variate T GCG,i,1 in G to
represent the certificate CPKi, and set the
polynomial 
CPKi = T GCG,i,1.

2) Transform UPKi to get the corresponding
bit-string �UPKi and set the bit-string X =
ID||�UPKi.

3) Choose a new variate T GCG,i,2 in G and
compute the second partial public key 
CSKi

= SSK + T GCG,i,2 · (U + X ·V ) while
updating (IDi, f alse, 
USKi, 
UPKi,


CPKi, 
CSKi) in LK .
4) Record 
CPKi and 
CSKi in LG to return the

corresponding bit-strings �CPKi and �CSKi

to AI .

� Certificate generation leak query (i, fCG,i, hCG,i ):
For the i-th Certificate generation query, AI can
issue the Certificate generation leak query only
once by providing two leakage functions fCG,i

and hCG,i such that | fCG,i| ≤ λ and |hCG,i| ≤ λ.
Upon receiving this request, B computes and sends
the leakage information (� fCG,i,�hCG, i) to AI ,
where � fCG,i = fCG,i(SSKi−1,1, c, d ) and �hCG,i =
hCG,i(SSKi−1,2, c, T ICG).

� Public key retrieve query (IDi): Upon receiving the
request with identity IDi, B searches the list LK to
gain the user’s public key (UPKi,CPKi ) and send
the corresponding bit-strings (�UPKi, �CPKi) to
AI .

� Public key replace query (IDi, (�UPKi,
′ �CPK ′i )):

Upon receiving the request with identity IDi and
her/his new public key (�UPKi,

′ �CPK ′i ), B first
transforms (�UPKi,

′ �CPK ′i ) to obtain the corre-
sponding polynomials (
UPKi,

′ 
CPK ′i ) and up-
dates (IDi, true, null, 
UPKi, null, 
CKPi ) in LK .

� Decrypt (Decapsulation) query (ID, (C,CT )): Upon
receiving the request with identity ID and the
ciphertext (C,CT ), B performs the following steps to
gain the encryption key EK and the plain-text m:

1) B uses ID to find the user’s private key
(
USK,
CSK ) in LK .

2) B transforms the ciphertext C to the polynomial

C in LG and computes two polynomials

EK1 = 
USK ·
C and 
EK2 =

CSK ·
C. Moreover, B transforms 
EK1

and 
EK2 to bit-strings �EK1 and �EK2,
respectively. Hence, B can gain the encryption
key EK = �EK1 ⊕�EK2. Finally, B returns
the encryption key EK and the plain-text m =
DEK (CT ) to AI .

� Decrypt (Decapsulation) leak query
(ID, j, fD, j, hD, j): Upon receiving the request
with the j-th Decrypt query of identity ID and
two leakage functions fD, j, hD, j , B computes the
leakage information (� fD, j,�hD, j ) and returns it
to AI , where � fD, j = fD, j (USKj−1,1, CSKj−1,1, k)
and �hD, j = hD, j (USKj−1,2, CSKj−1,2, k, EKI1,

EKI2, EK ). It is worth mentioning that for the j-th
Decrypt query, AI can issue the Decrypt leak query
only once.

– Challenge phase : The adversary AI chooses and sends a
target identity ID∗ with public key (UPK∗,CPK∗) and
a plain-text pair (m∗0, m∗1 ) to the challenger B. The Cer-
tificate generation query (ID∗,UPK∗) is disallowed to
be issued in the Query phase. B performs the following
steps.
1) B uses ID∗ to find the public key (UPK∗,CPK∗)

in LK . If UPK∗ is not recorded in LK , B issues the
User key generation query (ID∗). Moreover, if CPK∗
is not recorded in LK , B also issues the Certificate
generation query (ID∗,UPK∗). In any case, B can
gain the public key (UPK∗,CPK∗) of ID∗ in LK .

138 VOLUME 1, 2020



2) B randomly chooses a new variate T GCh,i,1 in G and
sets 
C∗ = T GCh,i,1. B then gains the bit-string �C∗
by transforming 
C∗ in LG.

3) B transforms UPK∗ to gain the bit-string �UPK∗
and sets X = ID∗||�UPK∗.

4) B computes 
EK1 = T GCh,i,1 · 
UPK∗ and 
EK2

= T GCh,i,1 · (SPK +CPK∗ · (U + X ·V )).
5) B transforms 
EK∗1 and 
EK∗2 to the bit-strings

�EK∗1 and �EK∗2 , respectively. B then computes the
encryption key EK∗ = �EK∗1 ⊕�EK∗2 .

6) B chooses a random bit b ∈ {0, 1} and computes CT ∗
= EEK∗ (m∗b ). Finally, B sends (C∗,CT ∗) to AI .

– Guess phase. AI outputs a bit b′ ∈ {0, 1} and wins the
security game GLR−CB−KE if b′ = b.

In the following, the advantage that AI wins the security
game GLR−CB−KE is evaluated. Let us first evaluate the num-
bers of elements and the maximal degrees of polynomials in
LG and LT .

1) In the Query phase, AI may issue queries at most q times
and six kinds of queries might add elements in LG and
LT .
� Initially, 4 elements and 1 element are respectively

stored in LG and LT .
� For each QG, QT and QP query, at most 3 elements

are added in LG or LT .
� For each User key generation query, at most 1 ele-

ment is respectively added in LG and LT .
� For each Certificate generation query, at most 3 ele-

ments are added in LG.
� For each Decrypt query, at most 3 and 2 elements are

respectively added in LG and LT . Let qO denote the
total number of QG, QT and QP queries issued by AI

and B. Let qUKG, qCG and qD, respectively, denote
the numbers of issuing User key generation query,
Certificate generation query and Decrypt query. Let
|LG| and |LT |, respectively, denote the numbers of
elements in LG and LT . Thus, we have |LG| + |LT | �
5+ 3qO + 2qUKG + 3qCG + 5qD � 5q.

2) The maximal degree of multivariate polynomials in LG

is at most 2 and discussed as below.
� 
USK , 
CPK and all new variates, have degree 1.
� The private key 
CSK has degree 2.
� In the group query QG, because of 
GQ,i,3 =


GQ,i,1 + 
GQ,i,2, the degree of polynomial

GQ,i,3 is the maximal degree of 
GQ,i,1 or

GQ,i,2.

3) The maximal degree of multivariate polynomials in LT

is at most 4 and discussed as below.
� All new variates have degree 1.
� The public key 
SPK has degree 2.
� In the group query QP, the resulting polynomial in

LT has degree at most 4 because it is computed by
two polynomials of degree 2 in LG.

� In the User key generation query, 
UPK has degree
2.

� In the Decrypt query, 
EK1 = 
USK · 
C has
degree 3, and 
EK2 = 
CSK ·
C has degree 4.

� In the group query QT , because of 
TQ,i,3 =
TQ,i,1

+ 
TQ,i,2, the degree of 
TQ,i,3 is the maximal de-
gree of 
TQ,i,1 or 
TQ,i,2.

For judging the collision of two polynomials in LG and
LT , each variable in LG and LT must be assigned a value.
We say that the collision happens if resulting values of
two polynomials with inputting these variable values
are equal. Without loss of generality, let n be the total
number of variables in LG and LT . B selects a random
value in Z∗p for each variable in LG and LT , denoted by
v1, v2, . . . , vn. It is said that AI wins the security game
GLR−CB−KE if one of the following two cases occurs:
– Case 1: AI can find a collision element in LG or LT .

Namely, AI finds two polynomials 
Gi and 
G j

in LG such that the equality 
Gi(v1, v2, . . . , vn) =

G j (v1, v2, . . . , vn), or two polynomials 
Ti and

Tj in LT such that the equality 
Ti(v1, v2, . . . , vn)
= 
Tj (v1, v2, . . . , vn).

– Case 2: AI can output a correct bit b′ = b in the
Guess query.

In the following, let’s evaluate the advantage of AI in
the security game GLR−CB−KE . We first discuss AI ’s success
probability in the security game GLR−CB−KE without issuing
Certificate generation leak query and Decrypt leak query.
Afterward, the success probability of the situation with issuing
Certificate generation leak query and Decrypt leak query is
measured.
� Without issuing Certi f icate generational leak query

and Decrypt leak query: Assume that AI is disallowed
to issue the Certificate generation leak query or Decrypt
leak query. The success probability of AI wins the secu-
rity game GLR−CB−KE consists of two cases as below.
– Case 1: This case denotes the success probability that

AI can find a collision in LG or LT . Let 
Gi and 
G j

be two distinct polynomials in LG. The success proba-
bility of finding a collision in LG is equal to the prob-
ability that 
GC =
Gi −
G j is a zero polynomial,
i.e. 
GC (v1, v2, . . . , vn) = 0. By Lemma 2, since the
maximal degree of the polynomials in LG is at most
2 and the leakage bit-length λ = 0, the probability
of 
GC (v1, v2, . . . , vn) = 0 is at most 2/p. In such
a case, the success probability of finding a collision
in LG is at most (2/p)

(|LG|
2

)
because there are

(|LG|
2

)

distinct pairs (
Gi,
G j ) in LG. By the similar way,
the success probability of finding a collision in LT

is at most (4/p)
(|LT |

2

)
because the maximal degree of

polynomials in LT is at most 4. In addition, we have
|LG| + |LT | � 5+ 3qO + 2qUKG + 3qCG + 5qD � 5q.
Therefore, the success probability that Case 1 occurs,
denoted by Pr[Case 1], satisfies the inequality

Pr[Case1] � (2/p)
(|LG|

2

)+ (4/p)
(|LT |

2

)

� (4/p)(|LG| + |LT |)2

� 100q2/p.

– Case 2: If Case 1 does not occur, AI gain no useful in-
formation about guessing a correct bit b in the Guess
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phase. Hence, the success probability of outputting
the correct bit b′ = b is 1/2. Therefore, the success
probability that Case 2 occurs, denoted by Pr[Case
2], satisfies the inequality Pr[Case 2]�1/2.

By Cases 1 and 2, the success probability that AI wins
GLR−CB−KE without issuing Certificate generation leak
query and Decrypt leak query, denoted by PrA−I−NL ,
satisfies the inequality

PrA−I−NL � Pr[Case 1]+ Pr[Case 2]

� 100q2/p+ (1/2).

Therefore, the advantage of AI wins GLR−CB−KE without
issuing Certificate generation leak query and Decrypt
leak query, denoted by AdvA−I−NL , satisfies the inequal-
ity

AdvA−I−NL � |100q2/p+ (1/2)− (1/2)|
= 100q2/p = O(q2/p).

If q = poly(log p), AdvA−I−NL is negligible.
� With issuing Certi f icate generation leak query and

Decrypt leak query: Here, AI is allowed to issue the Cer-
tificate generation leak query and Decrypt leak query.
In the Certificate generation leak query, two leakage
functions fCG,i and hCG,i are used in the i-th Certifi-
cate generation leak query while � fCG,i and �hCG,i

denote the corresponding leakage outputs, respectively.
In the Decrypt leak query, two leakage functions fD, j

and hD, j are used in the j-th Decrypt leak query
while � fD, j and �hD, j denote the corresponding out-
puts, respectively. The output bit-lengths of four leak-
age functions are bounded by λ. The leaked informa-
tion about � fCG,i = fCG,i(SSKi−1,1, c, d ) and �hCG,i

= hCG,i(SSKi−1,2, c, T ICG) is discussed as follows. It
is worth mentioning that for the same identity, AI is
allowed to issue the Certificate generation leak query
only once.

� c: c is randomly chosen for each user’s identity and used
to update the CA’s current system secret key. At most
2λ bits of c is helpless to gain the current system secret
key SSK for AI .

� (SSKi−1,1, SSKi−1,2): By the multiplicative blinding
technique [17], [22], [36], the CA’s system secret key
SSK satisfies the equality SSK = SSKi−1,1 · SSKi−1,2

= SSKi,1 · SSKi,2. Note that the leaked information
of both SSKi−1,1 and SSKi−1,2 is independent of that
of both SSKi,1 and SSKi,2. Hence, at most λ bits of
SSKi−1,1 and SSKi−1,2 are leaked to AI .

� d: d is randomly chosen for each user’s identity and used
to produce the user’s certificate CSK . Thus, AI can
leak at most λ bits of CSK .

� T ICG: The temporary value T ICG is used to compute the
certificate CSK . Also, AI can leak at most λ bits of
CSK .

The leaked information about fD, j (USKj−1,1,

CSKj−1,1, k) and hD, j (USKj−1,2, CSKj−1,2, k, EKI1,

EKI2, EK ) is discussed as below:

� k: k is randomly chosen for each Decrypt query and used
to update the user’s private key USK and certificate
CSK . At most 2λ bits of k is helpless to gain the
complete private key USK and certificate CSK for AI .

� (USKj−1,1,USKj−1,2): Since AI may issue the Private
key query with identity ID∗, it possesses the user’s
complete private key USK . Hence, the leakage infor-
mation is useless to AI .

� (CSKj−1,1,CSKj−1,2): The user’s certificate CSK sat-
isfies the equality CSK = CSKj−1,1 ·CSKj−1,2 =
CSKj,1 ·CSKj,2. Note that the leaked information of
both CSKj−1,1 and CSKj−1,2 is independent of that
of both CSKj,1 and CSKj,2. Hence, at most λ bits of
CSKj−1,1 and CSKj−1,2 are leaked to AI , namely, at
most λ bits of CSK are leaked to AI .

� (EKI1, EKI2, EK ): Since these keys are randomly cho-
sen for each encryption. Hence, at most λ bits about
the encryption key EK are leaked to AI .

Now, let us discuss the success probability that AI wins
the game GLR−CB−KE with issuing the Certificate gen-
eration leak query and Decrypt leak query, denoted by
PrA−I . Since AI can replace the public key by the Public
key replace query, it may know the target user’s pri-
vate key USK completely. The useful information of
outputting a correct bit b’ is determined by the leakage
information about the target user’s certificate CSK and
the CA’s system secret key SSK . For convenience, three
events of PrA−I are defined as follows.
1) The event ECSK denotes that AI may gain the user’s

certificate key CSK completely from the leakage in-
formation � fD, j and �hD, j . In addition, denotes the
complement event of ECSK .

2) The event ESSK denotes that AI may gain the CA’s
system secret key SSK completely from the leakage
information � fCG,i and �hCG,i. In addition, denotes
the complement event of ESSK .

3) The event EB denotes that AI may output a correct
b’.

The success probability PrA−I with issuing Certificate
generation leak query and Decrypt leak query satisfies
the inequality

PrA−I = Pr[EB]

= Pr[EB ∧ (ECSK ∨ ESSK )]
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+ Pr[EB ∧ (ECSK ∧ ESSK )]

� Pr[ECSK ∨ ESSK]

+ Pr[EB ∧ (ECSK ∧ ESSK )].

Under the condition ECSK ∧ ESSK , the helpful infor-
mation to output a correct bit is at most λ bits of the
encryption key EK . Since AI have 1/2 probability to
guess the correct bit, Pr[EB|(ECSK ∧ ESSK )] is still
1/2 on average. Thus, we have

PrA−I � Pr[ECSK ∨ ESSK]+ 1/2.

Hence, the advantage of AI with issuing Certificate gen-
eration leak query and Decrypt leak query, denoted by
AdvA−I , satisfies the inequality

AdvA−I � |PrA−I − 1/2| = Pr[ECSK ∨ ESSK].

In the situation without issuing Certificate generation
leak query and Decrypt leak query, AI ’s advantage has
the inequality AdvA−NL � 100q2/p = O(q2/p). Since
AI can learn at most 2λ bits of the user’s certificate CSK ,
the CA’s system secret key SSK or the encryption key
EK , we have

AdvA−I � AdvA−NL · 22λ � O((q2/p) · 22λ).

By Lemma 2, if λ < log p− ω(log log p), AdvA−I is
negligible.

�
Theorem 2. In generic bilinear group model, the proposed

LR-CL-KE scheme is semantically secure against chosen ci-
phertext attacks of Type II adversary (AII , honest-but-curious
CA) in the continual leakage model.

Proof: Let AII be of Type II adversary who simulates an
honest-but-curious CA. Thus, AII knows the CA’s system se-
cret key and does not need to issue the Certificate generation
query and Certificate generation leak query to the challenger
B in the security game GLR−CB−KE

– Setup Phase: As the Setup phase in the proof of Theo-
rem 1, B takes as input a security parameter τ and per-
forms the Setup algorithm to produce the CA’s system
secret key SSK and public parameters PP = (G, GT ,

p, g, ê, SPK = SSK · g, U,V, E , D) of the proposed
LR-CL-KE scheme. Also, three lists LG, LT and LK

are constructed to record the queries issued by AII . Fi-
nally, B sends the corresponding bit-strings of several
public parameters g,U,V, SPK to AII . Since AII is an
honest-but-curious CA, B also sends the corresponding
bit-strings of the CA’s system secret key SSK to AII .

– Query phase: Since AII knows the CA’s system secret
key, it does not need to issue the Certificate generation
query and Certificate generation leak query to B. In this
phase, AII can adaptively issue the following queries at
most q times.
� QG, QT , QP, User key generation query, Private key

query, Public key replace query: These queries are

identical to those queries presented in the proof of
Theorem 1.

� Public key retrieve query (IDi ): Upon receiv-
ing the request with identity IDi, B uses IDi to
search the list LK to gain the user’s public key
(UPKi,CPKi ), and returns the corresponding bit-
strings (�UPKi, �CPKi ) to AII . It is worth mention-
ing that since AII is of Type II adversary, AII possesses
the CA’s system secret key SSK . In this case, B uses
the queries QG,QT and QP to gain the corresponding
polynomials of CPKi and CSKi of identity IDi while
updating the record of IDi in the list LK .

� Decrypt (Decapsulation) query (ID, (C,CT )): Upon
receiving the request with identity ID and the cipher-
text (C,CT ), B performs the following steps to gain
the encryption key EK and the plain-text m:

1) B uses ID to find the user’s private key
(
USK,
CSK ) in LK . If the user’s private key

USK is not recorded in LK , B issues the User
key generation query (ID). Moreover, if the cer-
tificate 
CSK is not recorded in LK , B uses the
records of the queries QG, QT and QP to gain
the corresponding polynomials of 
CPK and

CSK of identity ID.

2) B transforms the ciphertext C to the polyno-
mial 
C in LG, and computes two polynomials

EK1 = 
USK ·
C and 
EK2 = 
CSK ·

C. Moreover, B transforms 
EK1 and 
EK2

to obtain the corresponding bit-strings �EK1

and �EK2, respectively. Hence, B can gain the
encryption key EK = �EK1 ⊕�EK2. Finally,
B returns the encryption key EK and the plain-
text m = DEK (CT ) to AII .

� Decrypt (Decapsulation) leak query
(ID, j, fD, j, hD, j ): Upon receiving the request
with the j-th Decrypt query for identity ID and two
leakage functions fD, j, hD, j , B computes and returns
the leakage information (� fD, j,�hD, j ) to AII , where
� fD, j = fD, j (USKj−1,1, CSKj−1,1, k) and �hD, j =
hD, j (USKj−1,2, CSKj−1,2, k, EKI1, EKI2, EK ). It is
worth mentioning that for the j-th Decrypt query, AII

can issue the Decrypt leak query only once.
– Challenge phase: This phase is similar to the Challenge

phase described in the proof of Theorem 1. The only
difference is that ID∗ is disallowed to be issued in the
Private key query and Public key replace query in the
Query phase since AII is an honest-but-curious CA.

– Guess phase: The adversary AII outputs b′ ∈ {0, 1}. If
b′ = b, we say that AII wins the game GLR−CB−KE .

By similar arguments in the proof of Theorem 1, the total
number of elements in both LG and LT satisfies the inequality
|LG| + |LT | � 5+ 3qO + 2qUKG + 4qD � 4q. The maximal
degrees of multivariate polynomials in LG and LT are at most
2 and 4, respectively.
� Without issuing Decrypt leak query: By similar ar-

guments in the proof of Theorem 1, we have Pr[Case
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1] � (2/p)(2|LG| ) + (4/p)(2|LT | ) � (4/p)(|LG| + |LT |)2 �
64q2/p and Pr[Case 2] � 1/2. The success probability
that AII wins GLR−CB−KE without issuing Decrypt leak
query, denoted by PrA−II−NL , satisfies the inequality

PrA−II−NL � Pr[Case 1]+ Pr[Case 2]

� 64q2/p+ (1/2).

Therefore, the advantage of AII wins GLR−CB−KE with-
out issuing Decrypt leak query, denoted by AdvA−II−NL ,
satisfies the inequality

AdvA−II−NL � |64q2/p+ (1/2)− (1/2)|
= 64q2/p = O(q2/p).

If q = poly(log p), AdvA−II−NL is negligible.
� With issuing Decrypt leak query: AII is allowed to

issue the Decrypt leak query. By � fD, j and �hD, j , the
leakage information about fD, j (USKj−1,1, CSKj−1,1, k)
and hD, j (USKj−1,2, CSKj−1,2, k, EKI1, EKI2, EK ) are
discussed as follows:

� (CSKj−1,1,CSKj−1,2): Since AII knows the user’s com-
plete certificate CSK , it does not need to obtain the
leakage information of CSK .

� k: k is randomly chosen for each Decrypt query and is
used to update the user’s private key USK . At most 2λ

bits of the user’s complete private key USK is leaked
to AII .

� (USKj−1,1,USKj−1,2): The user’s private key USK sat-
isfies the equality USK = USKj−1,1 ·USKj−1,2 =
USKj,1 ·USKj,2. Note that the leaked information of
both USKj−1,1 and USKj−1,2 is independent of that
of both USKj,1 and USKj,2. Hence, at most λ bits of
USKj−1,1 and USKj−1,2 are leaked to AII , namely, at
most λ bits of USK are leaked to AII .

� (EKI1, EKI2, EK ): At most λ bits of the encryption key
EK are leaked to AII .

Now, let us evaluate the success probability that AII

wins the game GLR−CB−KE with issuing the Decrypt leak
query, denoted by PrA−II . Since AII simulates the role of
CA who owns the complete system secret key SSK , it
may know the target user’s certificate CSK completely.
The useful information of outputting a correct bit b′ is
determined by the leakage information about the target
user’s private key USK . For convenience, two events of
PrA−II are defined as follows.
1) The event EUSK denotes that AII may gain the user’s

private key USK completely from the leakage infor-
mation � fD, j and �hD, j . In addition, denotes the
complement event of EUSK .

2) The event EB denotes that AII may output a correct
b’.

TABLE I Executing Time of Two Operations on Mobile Device and PC

The success probability PrA−II with issuing the Decrypt
leak query satisfies the inequality

PrA−II = Pr[EB]

= Pr[EB ∧ EUSK]+ Pr[EB ∧ EUSK]

� Pr[EUSK]+ Pr[EB ∧ EUSK].

Under the condition EUSK , the helpful information to
output a correct bit is at most λ bits of the encryption key
EK . Since AII have 1/2 probability to guess the correct
bit, Pr[EB ∧ EUSK] is still 1/2 on average. Thus, we
have

PrA−II � Pr[EUSK]+ 1/2.

Hence, the advantage of AII with issuing the Decrypt
leak query, denoted by AdvA−II , satisfies the inequality

AdvA−II � |PrA−II − 1/2| = Pr[EUSK].

In the situation without issuing Decrypt leak query, AII ’s
advantage has the inequality AdvA−II−NL � 64q2/p =
O(q2/p). Since AII can learn at most 2λ bits of the user’s
certificate USK or the encryption key EK , we have

AdvA−II � AdvA−II−NL · 22λ � O((q2/p) · 22λ).

By Lemma 2, if λ < log p− ω(log log p), AdvA−II is
negligible. �

VI. PERFORMANCE ANALYSIS
In this section, we demonstrate the performance analysis of
the proposed LR-CB-KE scheme. Two notations are defined
to represent the computation costs of two operations.
� Tbp: The computation cost of performing a bilinear pair-

ing operation ê : G ×G→ GT .
� Tex: The computation cost of performing an exponentia-

tion or inverse operation on G or GT .
The computation cost of performing a multiplication op-

eration on G or GT is negligible because it is smaller than
both Tbp and Tex [37], [38]. Table I lists the simulation results
(executing time, in milliseconds) of two operations on both
mobile device and PC platforms [42]. The security option of
the bilinear group order is equal to the security level of 1024-
bit RSA. In addition, the mobile device platform is a Linux-
based personal digital assistant equipped with a 624-MHz
PXA270 processor. The PC platform is a Microsoft-window-
based desktop equipped with a 3-GHz Pentium processor. Ta-
ble II demonstrates the comparisons between the previously
proposed LR-CBE schemes [33]–[35] and our LR-CB-KE
scheme in terms of security properties, the computation costs
and executing time (in milliseconds) of the encryption and
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TABLE II Comparisons Between the Previously Proposed LR-CBE Schemes and Our LR-CB-KE Scheme

decryption phases. Although the performance of our scheme
is worse than the existing LR-CBE schemes, our scheme can
be efficiently implemented on both mobile device and PC
platforms. The executing time of both phases implemented
on the mobile device is less than 0.5 second while that im-
plemented on the PC is less than 0.1 second. However, the
leakage models of these existing LR-CBE schemes [33]–[35]
have several restrictions and do not offer complete leakage
abilities of adversaries as mentioned in earlier section. The
point is that our LR-CB-KE scheme with overall unbounded
leakage property which permits adversaries to continuously
gain partial information of the system secret key of a trusted
certificate authority (CA), the private keys and certificates of
users, and random values.

VII. CONCLUSION
In the past, the leakage models of the existing LR-CBE or
LR-CB-KE schemes have several restrictions and do not offer
complete leakage abilities of adversaries. In this article, a new
continuous leakage model of LR-CB-KE scheme has been
defined. The new model allows adversaries to continuously
gain partial information of a user’s private key and certificate,
the CA’s system secret key, and random values. In the new
continuous leakage model, the first LR-CB-KE scheme with
overall unbounded leakage property has been proposed. In
the generic bilinear group model, we formally demonstrated
that the proposed LR-CB-KE scheme is semantically secure
against chosen ciphertext attacks (CCA1) of both adversaries.
Finally, performance analysis is given to demonstrate that the
proposed LR-CB-KE scheme can be efficiently implemented
on bothmobile device and PC platforms.
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