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ABSTRACT Gossip algorithms are often considered suitable for wireless sensor networks (WSNs) because
of their simplicity, fault tolerance, and adaptability to network changes. They are based on the idea of
distributed information dissemination, where each node in the network periodically sends its information
to randomly selected neighbors, leading to a rapid spread of information throughout the network. This
approach helps reduce the communication overhead and ensures robustness against node failures. They
have been commonly employed in WSNs owing to their low communication overheads and scalability. The
time required for every node in the network to converge to the average of its initial value is called the
average time. The average time is defined in terms of the second-largest eigenvalue of a stochastic matrix.
Thus, estimating and analyzing the average time required for large-scale WSNs is computationally complex.
This study derives explicit expressions of average time for WSNs and studies the effect of various network
parameters such as communication link failures, topology changes, long-range links, network dimension,
node transmission range, and network size. Our theoretical expressions substantially reduced the compu-
tational complexity of computing the average time to O

(
n−3

)
. Furthermore, numerical results reveal that

the long-range links and node transmission range of WSNs can significantly reduce average time, energy
consumption, and absolute error for gossip algorithms.

INDEX TERMS Gossip algorithms, large-scale WSNs, computational complexity, average time.

I. INTRODUCTION
Wireless sensor networks (WSNs) consist of numerous tiny
nodes with limited computation and communication capabil-
ities due to severe resource constraints [1], [2], [3]. Node
failures and communication link failures are common oc-
currences owing to resource limitations and environmental
issues, leading to frequent changes in network topology
as nodes join or leave during network operation. Despite
these challenges, large-scale WSNs can collaboratively pro-
duce reliable and robust information for measuring physical
phenomena. However, they face severe operational issues
such as the absence of a centralized node for computation,

communication, and time-synchronization, network topol-
ogy changes, node dynamics, and limited computational
energy resources [4], [5]. These challenges drive the need
for simple distributed algorithms, where every node com-
municates with only a few local immediate neighbors at a
time. Research on large-scale WSNs has gained considerable
interest in distributing computation, decentralized estima-
tion, and distributed learning algorithms [6], [7]. Consensus
problems have been extensively examined across various
domains, including distributed inference [8], load balanc-
ing [9], multi-agent collaboration [10], and data fusion [11].
To achieve consensus, the nodes involved in the process
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compute the average of their initial scalar values, which is
commonly referred to as the average consensus [12]. Gossip
algorithms [13], [14] have been predominantly investigated to
address the distributed consensus problems. These algorithms
ensure neighboring nodes exchange data and disseminate
information throughout the entire network, making them
resilient to network topology changes. These approaches use
iterative-based algorithms, allowing nodes to reach a global
consensus with their local one-hop neighbors and converge
to the optimal solution. Gossip algorithms fall into two main
categories: randomized and deterministic algorithms. In ran-
domized gossiping [14], a randomly selected pair of neighbors
exchange their current values in the network until every node
converges to the average of the initial measurements. A ran-
dom pair of nodes is active at every iteration, this scheme is
termed as randomized and asynchronous. In synchronous and
deterministic algorithms [15] nodes update their current mea-
surement values with the average of their values and the values
received from all their neighbors. Asynchronous gossip [16]
is suitable for WSN applications, because synchronization is
a highly challenging task. In asynchronous and randomized
gossip algorithms, the time taken for each node’s value to
converge to the average value is characterized by the average
time [14].

Achieving a global average quickly is a challenging task
in WSNs with a large number of nodes. A fast average time
ensures that the network can rapidly converge to a consensus
that enables timely decision-making, reduces the resources
required to reach consensus, and increases the robustness of
the network against node and link failures. Overall, the aver-
age time of the gossip algorithm plays a pivotal role in the
effectiveness, efficiency, and usability of large-scale WSNs,
making it a crucial consideration in designing and deploying
gossip algorithms for large-scale WSNs. The average time of
the gossip algorithms is defined in terms of the second largest
eigenvalue of a doubly stochastic matrix [14]. Hence, estimat-
ing the average time required for large-scale networks requires
significant computational resources. Moreover, it only pro-
vides limited insights into the impact of various network
parameters on average time. In this study, these challenges
are addressed by deriving explicit formulas for the average
time in terms of the WSN parameters. To derive these ex-
plicit expressions, we utilized the characteristics of the ring
topology while considering the key parameters and conditions
commonly encountered in WSNs.

Our proposed formulas reduce the computational complex-
ity to O(n−3) and provide key insights into the effects of
various WSN parameters on the average time of gossip algo-
rithms. For instance, communication link failures can result
in a network communication delay which leads to a pro-
longed average time. The addition and deletion of nodes lead
to network topology changes that affect the average time.
The incorporation of long-range links can significantly af-
fect the average time because they can provide alternative
communication paths that affect the overall network per-
formance. Similarly, the transmission range of the node is

one of the crucial factors that can significantly influence the
average time as it enables communication with a larger
number of nodes. A larger transmission range can reduce
the average time because it provides more opportunities for
communication with other nodes. Overall, the analytical ex-
pressions derived in this study can provide a comprehensive
understanding of the design and optimization of the perfor-
mance of gossip algorithms for large-scale WSNs based on
specific constraints.

II. RELATED WORK
This section presents relevant literature related to the study of
gossip algorithms for WSNs. The authors in [14] proposed a
framework for the design of gossip algorithms for WSNs and
Internet graphs. They also established a relationship between
the average time of the gossip algorithm and the mixing time
of a random walk. The work therein defined the average time
of the gossip algorithm in terms of the second-largest eigen-
value of the stochastic matrix. We used this expression of the
average time to derive the explicit expressions of the aver-
age time for gossip algorithms. In [19], the authors studied
the average time of gossip algorithms for WSNs. They showed
the agreement between analytic and simulation results for
the average time and proposed an optimization technique to
improve the performance of gossip algorithms. However, this
study did not analyze the effect of WSN parameters on the
average time. The authors of [24] proposed an algorithm for
computing distributed averages for ring, grid, and geographic
networks by exploiting geographic information. They showed
that energy consumption can be improved using geographic
gossip algorithms over standard nearest-neighbor gossip algo-
rithms. However, this work could provide much information
for analyzing the average time required for real-world sys-
tems.

In [20], the authors introduced the greedy gossip algorithm
and demonstrated that adopting greedy updates results in ac-
celerated convergence. They also showed that the convergence
of these algorithms can be easily analyzed for connected net-
work topologies. An algorithm rooted in greedy gossiping
principles was introduced, and it has been demonstrated that
the convergence of this algorithm is ensured for connected
topologies. Greedy gossip with eavesdropping outperforms
randomized gossip algorithms. This could not provide any
insight into the direction of studying the average time of
gossip algorithms for large-scale WSNs. A Support Vector
Machine-based optimal gossip algorithm was proposed in [23]
for WSNs with minimal local communications. A new gossip
algorithm was proposed in [30] for directed graph-modelled
sensor networks. They showed that the proposed algorithm
achieves a better convergence speed and energy savings than
standard gossip algorithms. In [25], the authors presented
an energy consumption model for heterogeneous WSNs and
proposed a distributed gossip-based algorithm to increase net-
work lifetime. They experimentally proved the advantages of
a distributed approach over a centralized approach. Regular
graphs play a prominent role in studying consensus and gossip
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algorithms [31]. In [32], the authors considered the commu-
nication link failures in interconnected networks and studied
the distributed fault diagnosis problem using consensus al-
gorithms. To improve the efficiency of neighbor discovery
in vehicular ad-hoc networks, authors proposed a distributed
algorithm in [33] that utilizes the sensing ability of the radar.
In [34], the authors proposed various neighbor discovery al-
gorithms with successive interference cancellation technology
to unpack multiple collision packets and improve the speed of
wireless ad-hoc networks. By integrating the average gossip
algorithm with a distributed community detection algorithm,
a novel gossip algorithm was proposed in [35].

Furthermore, they verified the efficiency of the proposed
scheme on synthetic and real-world peer-to-peer networks.
The frequent propagation of redundant information in gossip
algorithms renders them inefficient in terms of computa-
tional resources. Sirocchi et al. [36] investigated, the influence
of topological network attributes on the efficiency of gos-
sip protocols, and showed that adjustments in the network
structure can lead to increased convergence rates. Sharing
information with neighboring nodes can raise privacy issues
that lead to security threats in gossip networks. The authors
in [37] derived privacy guarantees for gossip networks in
both synchronous and asynchronous cases. This study derived
differential privacy and prediction uncertainty guarantees in
terms of closed forms for asynchronous settings. Further-
more, we quantify the tradeoff between differential privacy
guarantees and information-spreading efficiency in unreliable
communications. A robust and distributed gossip monitoring
service for a 6 G network architecture was proposed in [38].
They showed that their method provides significant imple-
mentation flexibility in 6 G networks by interconnecting the
data centers of different cloud providers. A fully connected
wireless gossip network was considered in [39] and a dis-
tributed opportunistic gossiping scheme was proposed. In this
scheme, the nodes in the network that have a higher age
remain silent, and only the low-age nodes participate in gos-
sip to increase the total gossip rate. By using gossiping, the
authors proposed communication efficient protocols in [40]
for single-sender broadcast and parallel broadcast under dis-
honest majority settings. Gossip protocols can ensure data
integrity and consistency in large-scale Blockchain networks.
To make gossip protocols more efficient, the authors in [41]
proposed a new method by integrating fail-proof, opportunis-
tic, and checking algorithms. In [42], a gossip-based routing
algorithm was implemented to improve communications in a
LoRaWAN network where all nodes have NLOS conditions.
The authors proposed a novel asynchronous Laplacian in [43]
that was adapted to a network of heterogeneous lattices,
and showed that the resulting gossip algorithm converges
asymptotically. In [44], the authors considered an undirected
network to analyze the gossip-based average consensus algo-
rithm with some initial values. Next, they characterized the
precise conditions of information exchange that guarantee the
privacy of all nodes.

In [27], the authors modeled the WSN as a random geomet-
ric graph and analyzed consensus algorithms for synchronous
and asynchronous cases. Reference [18] proved that the gos-
siping technique can be used to improve the performance of
the angular and spanning tree protocols in WSNs. An energy-
efficient gossiping protocol was presented in [21], where data
routing was performed by choosing the optimal neighbors
using the Chebyshev distance, sink distance, and residual
energy. They demonstrated that the total energy consump-
tion of the network decreased the computational overhead.
However, this study did not discuss the impact of different
network topologies on the performance of gossip algorithms
and did not provide any analytical results. The authors pro-
vided closed-form expressions for various network properties
for consensus algorithms [45]. This study focused on the con-
sensus parameters for m-dimensional prism networks. In our
work, we studied the average time required by randomized
gossip algorithms for m-dimensional prism networks. Power
consumption is one of the important resources in WSNs.

Much of the research could not study the impact of power
or energy consumption on convergence. A recent study [26]
investigated the convergence of the gossip algorithm for
energy-efficient WSNs. They considered the power consump-
tion and second-largest eigenvalue of the average update
matrix to optimize the convergence speed and lifetime of
WSNs. However, this study did not provide an analysis of
network topologies on the convergence speed. The authors
in [22] derived closed-form expressions for the convergence
rate of periodic gossip algorithms for one-dimensional lattice
networks. In this study, the effect of the gossip weight on
the convergence rate of the gossip algorithms was investi-
gated. In Table 1, we present research works that studied
gossip algorithms for WSN scenarios. To the best of our
knowledge, this is the first work to analytically study the
effects of communication link failures, topology changes,
network size, network dimension, node degree, and long-
range links on the average time of gossip algorithms. In
this work, we model the WSN as a ring network [46], [47]
and incorporate the small-world, r-regular ring, random, and
m-dimensional prism networks to develop theoretical tools
for gossip algorithms. Ring networks are extremely useful
for characterizing the geographical properties of WSNs and
deriving theoretical bounds for network parameters. Further-
more, we analytically studied the effect of various significant
network parameters on the average time of gossip algorithms
for WSNs. The main contributions of this study are as follows.

A. CONTRIBUTIONS
� First, we model the WSNs using r-regular, small-world,

random, and m-dimensional prism networks. Subse-
quently, we derive explicit expressions for the average
time to optimize the performance of gossip algorithms
in large-scale WSNs.
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TABLE 1. Summary of Literature Focusing on Gossip Algorithms for WSNs

� Next, we analyze the effect of node transmission ranges,
long-range links, network size, dimension, and commu-
nication link failures on the average time. This analysis
aims to study the performance of gossip algorithms for
large-scale WSNs.

� Furthermore, we investigate the energy consumption and
absolute error aspects associated with gossip algorithms
in WSN scenarios.

� Finally, we conduct extensive simulation experiments
to analyze average time in real-world networks. These
results reveal the performance of gossip algorithms in
the practical applications of WSN.

III. REVIEW OF GOSSIP ALGORITHMS
We begin by considering graph G with vertex V =
{1, 2, 3. . .n}. We consider a nearest neighbor gossip algo-
rithm, in which only direct neighbors exchange observed data
and replace the previous node’s data values with the average
of the current pair of node values. Let each node obtain a
real-valued scalar through observations at time k = 0. The
objective of the gossip algorithm is to compute the average
x̄ = 1

n

∑n
j=1 x j (0) at every node of the graph, where x1(0),

x2(0), ..xn(0) are the initial values observed by n nodes. The
vector of observed values at the kth slot can be expressed as
x(k) = Wx(k − 1). It follows from [14] that the time required
for every node to converge to x̄ is calculated as the average
time T = 1

log 1
λ2(W)

, where λ2 is the second largest eigenvalue

of W. The weight matrix W is defined as follows:

W �= I − 1

2n
D + P + PT

2n
, (1)

where I is an identity matrix and D is a diagonal matrix with
its ith elements

Di =
n∑

j=1

[
Pji + Pi j

]
. (2)

Here, scalar Pi j gives the probability that node i chooses to
average with node j. It takes a value of 0 if |i − j| = 1,
otherwise it is 1/2 [14]. The gossip matrix P is a symmetric
circulant matrix generated by the n-vector

[
0, 1

2 , 0, 0, . . . 1
2

]
[14]. The average time T is defined as the time taken by
each node to converge to the average value. It depends on the
second largest eigenvalue of the weight matrix λ2(W) which
characterizes the speed of the gossip algorithm. Hence, to

FIGURE 1. Regular networks.

study the average time of the gossip algorithms, we need to
compute the second largest eigenvalue of the weight matrix
W [14], [24].

IV. CLOSED FORM EXPRESSIONS OF λ2(W) FOR WSNs
In this section, we model the WSN as an r-regular ring, small-
world, random, and prism network and derive the closed-form
expressions of the second largest eigenvalue of the stochastic
matrix W .

A. R-REGULAR RING NETWORK
In this subsection, we study the gossip algorithms for r-
regular ring network. A 2-regular ring network and 4-regular
ring network are shown in the Fig. 1(a) and (b) respectively,
for which the gossip matrix P can be written as

P = 1

2
A

(
Rr

n

)
, (3)

where A, r, n, and Rr
n denote the adjacency matrix, degree,

number of nodes, and the r-regular ring network, respectively.
The degree matrix D for r-regular ring network can be

written as

D = 2rI. (4)

In this case, the weight matrix W is a circulant
matrix generated by the vector

[
1 − r

n , 1
2n , . . . ,

1
2n , 0, 0, . . . , 0, 1

2n , . . . , 1
2n

]
.

Theorem 4.1: Let C be a circulant matrix generated by
the vector [c1, c2, c3, . . . , cn]. The eigenvalues of C are given
as [48]

λk = c1 + c2 wk−1 + c3 w2(k−1) + · · · + cnw
(n−1)(k−1), (5)

where w = exp
( 2π

n i
)

and k = 1, 2, . . . , n.
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From the above theorem, the eigenvalues of W are given by

λk (W) = 1 − r

n
− 1

2n
+ 1

2n

sin
(

π (2r+1)k
n

)

sin
(

πk
n

) , (6)

where k = 0, 1, 2, 3, . . . , n − 1. From the above expression,
we observe that the second largest eigenvalues of W are ob-
tained for k = 1. Hence the second largest eigenvalue of W is
given by

λ2(W) = 1 − r

n
− 1

2n
+ 1

2n

sin
(

π (2r+1)
n

)
sin

(
π
n

) . (7)

B. m-DIMENSIONAL PRISM NETWORK WITH BASE GRAPH
Rn:
Next, we consider an m-dimensional prism network with base
graph Rn, denoted by (Rn)m, where m represents the dimen-
sion. The networks for (Rn)1 and (Rn)2 are illustrated in
Fig. 1(c). We see that (Rn)m is a regular graph of regularity
2 + m − 1 = m + 1. Additionally, the number of vertices in
(Rn)m is N = n2m−1. For this purpose, the gossip matrix P is
expressed as

P = 1

2
A((Rn)m). (8)

The degree matrix D is expressed as

D = (m + 1)I. (9)

Since the number of vertices is N , we get

W =
(

1 − m + 1

2N

)
I + 1

N
P

=
(

1 − m + 1

2N

)
I + 1

2N
A((Cn)m)

=
(

1 − m + 1

n2m

)
I + 1

n2m A((Cn)m). (10)

From [45], we get that the second largest eigenvalue of
A((Rn)m) is as m − 1 + 2 cos 2π

n . Hence the second largest
eigenvalue of W is given by

λ2(W) = 1 − m + 1

n2m
+ 1

n2m

(
m − 1 + 2 cos

2π

n

)
. (11)

C. m-DIMENSIONAL PRISM NETWORK WITH BASE GRAPH
Rr

n, (r ≥ 2):
We next consider an m-dimensional prism network with the
base graph Rr

n, and is denoted by
(
Rr

n

)m
. Then

(
Rr

n

)m
is a

regular graph of regularity 2r + m − 1. Also number of ver-
tices in

(
Rr

n

)m
is N = n2m−1. For this, the gossip matrix P is

expressed as

P = 1

2
A

((
Rr

n

)m)
, (12)

FIGURE 2. Network topologies.

where A denotes the adjacency matrix. The degree matrix D
is expressed as

D = (2r + m − 1)I. (13)

As the number of vertices is N , we get

W =
(

1 − 2r + m − 1

2N

)
I + 1

2N
A

((
Rr

n

)m)

=
(

1 − 2r + m − 1

n2m

)
I + 1

n2m
A

((
Rr

n

)m)
. (14)

Because the second largest eigenvalue of A
((

Rr
n

)m)
is given

by 2r + m − 3 for r ≥ 2, the second largest eigenvalue of W
is given by

λ2(W) = 1 − 2r + m − 1

n2m
+ 1

n2m
(2r + m − 3). (15)

D. SMALL-WORLD NETWORKS
Networks with smaller average path length and large cluster-
ing coefficients are called small-world networks [49]. These
networks are designed to optimize the graphs between regular
and random cases. In these networks, nodes establish a few
long-range links each time with a small-world probability ε

[50], as shown in Fig. 2(a). Let us assume that the nodes form
long-range links with a probability ε ∝ n−β , where n is the
network size and β is a natural number. The (i, j)th element
Pi j in the gossip matrix is given by

Pi j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 i = j,
1
2 |i − j| =1,
1
2 (i, j) = (1, n) or (i, j) = (n, 1),

ε otherwise.

(16)

For this case, the degree matrix D is expressed as

D = (2 + 2(n − 3)ε)I. (17)

The weight matrix W is a circulant matrix generated by

the vector
[
1 − 1

n − (n−3)
n , 1

2n , ε
n , ε

n , . . . , ε
n , 1

2n

]
. Then, by the

Theorem 4.1, the eigenvalues of W for k = 1, 2, 3, . . . , n are
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given by

λk=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1 − 1

n − (n−3)ε
n

)
+ 1

n cos
(

2π (k−1)
n

)

+ 2ε
n

∑ n−1
2

j=2 cos
(

2π (k−1) j
n

)
, when n is odd

(
1 − 1

n − (n−3)ε
n

)
+ 1

n cos
(

2π (k−1)
n

)
+ ε

n cos(π (k − 1))

+ 2ε
n

∑ n−2
2

j=2 cos
(

2π (k−1) j
n

)
, when n is even.

(18)

We observe that the second largest eigenvalue of W is ob-
tained for k = n+1

2 when n is odd, and for k = n+2
2 when n is

even. Using these k values, the second largest eigenvalue of
W is

λ2(W)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1 − 1

n − (n−3)ε
n

)
+ 1

n cos
(

π (n−1)
n

)

+ 2ε
n

∑ n−1
2

j=2 cos
(

π (n−1) j
n

)
, when n is odd

(
1 − 1

n − (n−3)ε
n

)
− 1

n + ε
n cos

( nπ
2

)
+ 2ε

n

∑ n−2
2

j=2 cos(π j), when n is even.

(19)

By using Dirichlet kernel 1 + 2
∑r

j=1 cos( jx) = sin
(

r+ 1
2

)
x

sin x
2

,

the above expression can be further simplified as

λ2(W)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1 − 1

n − (n−3)ε
n

)
+ 1

n cos
(

π (n−1)
n

)
− 2ε

n

(
cos (n−1)π

n

)
+ 1, when n is odd

(
1 − 1

n − (n−3)ε
n

)
− 1

n + ε
n cos

( nπ
2

)
+ ε

n

(
sin (n−1)π

n + 1
)

, when n is even.

(20)

E. RANDOM GRAPHS
In this subsection, we derive the second largest eigenvalue
of weight matrix W for random graphs. A random graph is
shown in Fig. 2(b). This figure was generated by randomly
adding links to the ring network. We studied the effects of
adding random communication links, communication link
failures, and topology changes in WSNs.

1) RANDOM COMMUNICATION LINKS
Let a communication link exist between the two nodes with
probability q. The gossip matrix P is expressed as follows:

P = q

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1
2 1 · · · 1

2
1
2 0 1

2 · · · 1

1 1
2 0 · · · 1

...
...

...
. . .

...
1
2 1 1 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎦

. (21)

Next, the degree matrix D is expressed as

D = 2q(n − 2)I. (22)

The corresponding weight matrix W is expressed as

W =
(

1 − q + 2q

n

)
I + 1

n
P. (23)

The weight matrix W is a circulant matrix generated by the
vector

[
1 − q + 2q

n ,
q
2n ,

q
n ,

q
n , . . . ,

q
n ,

q
2n

]
. Using the Theorem

4.1, the eigenvalues of W, for k = 1, 2, 3, . . . , n, are given by

λk =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 − q + 2q
n + q

n cos
(

2π (k−1)
n

)

+ 2q
n

∑ n−1
2

j=2 cos
(

2π (k−1) j
n

)
, for n is odd

1 − q + 2q
n + q

n cos
(

2π (k−1)
n

)
+ q

n cos(π (k − 1))

+ 2q
n

∑ n−2
2

j=2 cos
(

2π (k−1) j
n

)
, for n is even,

(24)

We observe that the second largest eigenvalue of W is ob-
tained for k = n+1

2 when n is odd, and for k = n+2
2 , for n is

even. Consequently, the second largest eigenvalue of W is

λ2(W) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 − q + 2q
n + q

n cos
(

π (n−1)
n

)

+ 2q
n

∑ n−1
2

j=2 cos
(

π (n−1) j
n

)
, for n is odd

1 − q + 2q
n − q

n + q
n cos

( nπ
2

)
+ 2q

n

∑ n−2
2

j=2 cos(π j), for n is even.

(25)
Using the Dirichlet kernel, we can further simplify the above
expression as

λ2(W) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 − q + 2q
n + q

n cos π (n−1)
n

+ 2q
n

(
2 cos (n−1)π

n + 1
)

, for n is odd

1 − q + 2q
n − q

n + q
n cos πn

2

+ 2q
n

(
sin (n−1)π

n + 1
)

, for n is even.

(26)

2) COMMUNICATION LINK FAILURES
In this section, we derive closed-form expressions of λ2(W)
for a ring network by considering the effects of communi-
cation link failures and topology changes. The expression
is subsequently used to study the effect of link failures and
topology changes on average time. We begin by studying the
effect of communication link failures on the average time
of the gossip algorithm. Let a communication link in a ring
network fail with a probability p [50]. Thus, the elements of
gossip matrix P are obtained as

Pi j =

⎧⎪⎨
⎪⎩

1−p
2 |i − j| =1

1−p
2 (i, j) = (1, n) or (i, j) = (n, 1)

0 otherwise.

(27)

The corresponding degree matrix D is expressed as

D = 2(1 − p)I, (28)
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and the weight matrix W is expressed as

W =
(

1 − 1 − p

n

)
I + 1

n
P. (29)

The circulant matrix W is generated by the vectors
[
1 −

1−p
n ,

1−p
2n , 0, 0, . . . , 0,

1−p
2n

]
. By using Theorem 4.1. The

eigenvalues of W are given by:

λk (W) = 1 − 1 − p

n
+ 1 − p

n
cos

2π (k − 1)

n
, (30)

where k = 1, 2, 3, . . . , n. We observe that the second largest
eigenvalue of W is obtained for k = 2, and is given as

λ2(W) = 1 − 1 − p

n
+ 1 − p

n
cos

2π

n
. (31)

3) TOPOLOGY CHANGES
We now study the effect of topology changes on the aver-
age time of gossip algorithms. Here, nodes randomly choose
neighbors and exchange information with only two neigh-
bors [50]. In this case, the gossip matrix P can be written as

P =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1
n−1

2
n−1 · · · 1

n−1
1

n−1 0 1
n−1 · · · 2

n−1
2

n−1
1

n−1 0 · · · 2
n−1

...
...

...
. . .

...
1

n−1
2

n−1
1

n−1 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎦

, (32)

and the degree matrix D is expressed as

D = 4(n − 2)

n − 1
I. (33)

The weight matrix W is expressed as

W =
(

(n2 − 3n + 4)

n(n − 1)

)
I + 1

n
P. (34)

The circulant matrix W is generated by the vector[
n2−3n+4

n(n−1) , 1
n(n−1) ,

2
n(n−1) ,

2
n(n−1) , . . . ,

2
n(n−1) ,

1
n(n−1)

]
. From

Theorem 1, the eigenvalues of W are given by

λk =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n2−3n+4
n(n−1) + 2

n(n−1) cos
(

2π (k−1)
n

)

+ 4
n(n−1)

∑ n−1
2

j=2 cos
(

2π (k−1) j
n

)
, when n is odd

n2−3n+4
n(n−1) + 2

n(n−1) cos
(

2π (k−1)
n

)
+ 2

n(n−1) cos(π (k − 1))

+ 4
n(n−1)

∑ n−2
2

j=2 cos
(

2π (k−1) j
n

)
, when n is even,

(35)
where k = 1, 2, 3, . . . , n. The second largest eigenvalue of W
is obtained for k = n+1

2 when n is odd, and for k = n+2
2 when

FIGURE 3. Average time versus n for small-world networks.

FIGURE 4. Effect of topology changes on average time.

n is even. Hence, we get

λ2(W) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n2−3n+4
n(n−1) + 2

n(n−1) cos
(

π (n−1)
n

)

+ 4
n(n−1)

∑ n−1
2

j=2 cos
(

π (n−1) j
n

)
,

when n is odd

n2−3n+4
n(n−1) − 2

n(n−1) + 2
n(n−1) cos

( nπ
2

)
+ 4

n(n−1)

∑ n−2
2

j=2 cos(π j),

when n is even.

(36)

Using the Dirichlet kernel, we get

λ2(W) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n2−3n+4
n(n−1) + 2

n(n−1) cos π (n−1)
n

− 2
n(n−1)

(
2 cos (n−1)π

n + 1
)

,

when n is odd
n2−3n+4

n(n−1) − 2
n(n−1) + 2

n(n−1) cos nπ
2

+ 2
n(n−1)

(
sin (n−1)π

n + 1
)

,

when n is even.

(37)

V. RESULTS AND DISCUSSION
This section presents the numerical results to examine the
effect of communication link failures, topology changes, long-
range links, network dimension, node transmission range,
and network size on the average time of gossip algorithms.
We substituted the derived explicit values of λ2(W) in T =

1
log 1

λ2(W)
to plot Figs. 3 to 20.

Fig. 3 shows the average time of small-world networks as a
function of the number of nodes. Here, we see that the average
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FIGURE 5. Average time versus n for random networks.

FIGURE 6. Average time versus n for r-regular ring networks.

FIGURE 7. Effect of communication link failures on average time.

FIGURE 8. Average time versus n for m-dimensional prism networks.

time decreases with ε. For ε>0.5, the average time was inde-
pendent of network size. This is because of the establishment
of the long-range links between non-adjacency nodes which
results in fast information exchange between nodes. This is
an interesting phenomenon that provides a trade-off between
energy consumption and average time. Fig. 4 shows the effect
of topology changes on the average time as a function of
number of nodes. We observed that the average time linearly

FIGURE 9. Average consensus difference versus iterations for regular
networks.

FIGURE 10. Average consensus difference versus iterations for small
world networks.

FIGURE 11. Comparison of regular and small world networks for average
consensus difference.

FIGURE 12. Energy consumption versus nodes for regular and small world
networks.
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FIGURE 13. Comparison of theoretical (T) and simulation results (S).

FIGURE 14. Comparison of theoretical (T) and simulation results (S) for
regular networks.

FIGURE 15. Average time versus node degree for random geometric
graphs.

FIGURE 16. Average time versus node range for random geometric graphs.

TABLE 2. Energy Dissipation Values for Radio Model

FIGURE 17. Average time versus number of nodes for random geometric
graphs.

FIGURE 18. Graph visualization for real-world autonomous systems.

FIGURE 19. Average time versus node degree for real-world autonomous
systems.

FIGURE 20. Average time versus e/n for real world autonomous systems.

increased with network size. This occurs because an increase
in n leads to slow convergence in the gossip process. This
result reveals a delay in information gathering in large-scale
networks. Fig. 5 shows the average time of the random net-
works as a function of the number of nodes. As shown, the
average time reduces with network size with an increase in
q value and it becomes independent of the network size n.
Here, q represents the probability that a link exists. Here, the
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TABLE 3. Effect of WSN Parameters on Average Time for Graph Structures and Applications

TABLE 4. Brief Comparison With the Recent Works

probability of the existence of communication links improves
the network connectivity, which naturally reduces the average
time due to more gossiping among the nodes. Fig. 6 shows
the average time of r-regular ring networks as a function of the
number of nodes. To verify the normal case (ring network), we
have considered r = 1. The average time increases exponen-
tially with the network size. However, an increase in r value
was reduced. This occurs because the increase in r-values
improves the network connectivity, which naturally decreases
the convergence time. This r can also model the node’s
transmission range or node overhead in WSNs. Fig. 7 shows
the effect of link failures on the average time of the ring
network. We observe that the average time increases expo-
nentially with network size. The average time increased with
the increase in p. Here p represents the probability of a link
failure. Communication link failures are the most common
phenomenon in WSNs. If p increases, the communication
among nodes is affected, which delays the convergence pro-
cess. For p = 0, a ring network can be observed. Fig. 8
shows the average time of an m-dimensional Prism Network
as a function of the number of nodes. Here, the average time
increased with n and m. As m increased, the number of nodes
also increased, which eventually increased the average time.

To understand the accuracy of the gossip algorithm, we
defined the absolute error as the difference between the cur-
rent values of the nodes and the average value of the initial
values. Figs. 9 and 10 show the variation in the absolute error
concerning the number of iterations (N) for regular graphs
and small-world networks respectively. It is observed that the
absolute error exponentially decreases with the number of
iterations, and convergence is reached at approximately 5800
iterations and 2000 iterations for regular graphs and small-
world graphs respectively. The number of iterations required
to achieve consensus is drastically reduced in small-world
graphs due to the long-range connections. In Fig. 11, we
plot the absolute error versus the number of iterations for
the small-world graph, ring network (2-regular ring graph),

and r-regular graphs. Here, we can observe that the absolute
error exponentially decreases in the small-world and r-regular
graphs in comparison with the ring network (2-regular graph).

Next, we study the energy consumed by the nodes in the
gossip algorithm. For this study, we considered the radio
model in [56] and the energy consumption values, as shown
in Table 1. According to this model, the node’s transmit en-
ergy consumption is ET x(d ) = Eelec ∗ k + εamp ∗ k ∗ d2 and
the received energy consumption is ERx (k) = Eelec ∗ k. Here,
Eelec and εamp represent the energy consumption of the elec-
tronics and amplifiers respectively as shown in Table 2. The
parameters k and d denote the number of bits and the distance
between sensor nodes respectively. The energy consumed by
the gossip algorithm for k = 8 and d = 10 is shown in Fig. 12.
We observe that the total energy consumption E required to
reach consensus linearly increases with the number of nodes
for both small world and regular graphs. Here, the energy con-
sumption also increases with an increase in r values. However,
we observed that small-world graphs consume less energy
than the r-regular graphs. Figs. 13 and 14 validate the accu-
racy of the theoretical results derived in this study. We see
that in both figures, the theoretical values of the average time
match perfectly with the simulated counterparts.

A. RANDOM GEOMETRIC GRAPH
In this subsection, we study the average time of the gossip
algorithms for random geometric graphs (RGG). As shown in
Figs. 15 and 16, we plot the average time with respect to the
degree for n = 100 and node range for n = 1000 respectively.
As shown, we observed that the average time exponentially
decreased with both the degree and range. Network connec-
tivity increases with node degree and communication range.
These parameters help the nodes to participate in the gossip
process and achieve a fast consensus. Fig. 17 depicts the
effect of the number of nodes on the average time for the
range=0.2. We observed that the average time increased ex-
ponentially with the number of nodes.

B. REAL-WORLD AUTONOMOUS SYSTEMS
To examine a real-world scenario, we used a dataset that con-
sists of routers organized into sub-networks called consensus
systems (AS) [57]. Each AS exchanges traffic with some of
its peers, as shown in Fig. 18, which was constructed from
Border Gateway Protocol (BGP) logs by extracting who-talks-
to-whom data. Data were collected from the University of
Oregon. It contains 733 daily instances spanning an interval of
785 days from November 8, 1997, to January 2, 2000. During
this time, new nodes were added, and some previous nodes
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were deleted. In addition to a few exceptions, the number of
nodes varied from 3015 to 6474. To investigate the average
time in the real world, we used real-world consensus systems.
In Figs. 19 and 20, the average time of the real-world systems
decreases with the node degree and e/n respectively. We have
observed a similar trend in the results of the r-nearest ring and
small-world networks’ when we increase r or ε. In Table 3,
we have shown the effect of WSN parameters on the average
time for various graph models studied in this work. Here, n,
r, m, q, p, ε, d , e/n denote the number of nodes, degree,
network dimension, probability of link exists, probability of
link failures, probability of long-range links, node’s range,
edges to number of nodes ratio respectively.

C. COMPARISON OF COMPUTATIONAL COMPLEXITY
Computing the average time T = 1

log 1
λ2(W)

is a computation-

ally challenging task with a time complexity of O
(
n3

)
. As

shown in Table 4, there are very few studies in the literature
that focus on studying computationally efficient gossip algo-
rithms for large-scale WSNs. In particular, the works in [24]
and [20] exhibit lower computational complexity, but offer
limited insights in terms of network parameters. The remain-
ing studies mentioned in the table exhibit high computational
complexity. As shown in Table 4, their work could not pro-
vide more insights into gossip algorithms in terms of WSN
parameters. To fill this gap in the literature, the theoretical
results developed in this study address this issue. The com-
plexity required to calculate the cos

( 2π
n

)
is O

(
n−2

)
. Hence,

the complexity of (7) is O
(
n−2

)
. Similarly, we can compute

the complexities of (11), (20), (25), (26), and (31) as O
(
n−3

)
.

The complexities of (15) and (37) are as O(1) and O
(
n−1

)
respectively. For large-scale networks, this complexity asymp-
totically converges to O(1).

D. APPLICATIONS
We present a summary of the applications of the network
models and gossip algorithms in Table 4, in which wire-
less mesh networks can be theoretically analyzed using
the framework of ring graphs [51]. Further exploration can
be performed by leveraging regular graphs [52] to increase
the applicability of ring networks to investigate the network
overhead and node transmission radius in intermittently con-
nected networks. Prism graph modeling offers great insight
into characterizing high-dimensional and robust networks,
thereby facilitating scale-free properties [45]. For WSNs, ran-
dom graph models are often employed because of uncertainty
inherent in wireless communication links [53]. The utilization
of small-world graph modeling is anticipated to be exten-
sive for enhancing communication speeds in wireless ad-hoc
networks [54]. Among the existing graph models, Random
Geometric Graph (RGG) is the most suitable graph model for
capturing geographical proximity in WSNs [55].

E. ADVANTAGES
Gossip algorithms have shown widespread advantages in
large-scale WSNs for aggregating and disseminating informa-
tion [58]. These algorithms operate in a decentralized manner,
eliminating the need for a centralized fusion center. They are
specifically well-suited for networks with nodes that have
limited computational resources and are prone to failures.
Gossip algorithms demonstrate resilience to dynamic topol-
ogy changes that are typical of mobile WSNs. They operate
in asynchronous communication scenarios and are effective
in distributed computations. However, while these algorithms
excel in rapidly routing information, achieving global conver-
gence can be time-consuming, specifically in large-scale and
sparse WSNs. The proposed theoretical tools play a major
role in controlling and optimizing the convergence times in
large-scale WSNs.

VI. CONCLUSION
In this study, we exploited the properties of regular, small-
world, and scale-free networks to derive explicit expressions
of average time in WSNs. Next, we analytically study the
effect of communication link failures, topology changes, long-
range links, network dimension, node transmission range,
and network size on average time. Our numerical results
reveal that the average time of the gossip algorithms can
be significantly reduced by the node’s transmission range and
long-range communication links. We also demonstrated that
the increase in the average time for scale-free WSNs is at-
tributed to their structure, which can be effectively controlled
by the node’s transmission range values.

VII. FUTURE WORK
In this study, we exploited the properties of ring networks
to derive explicit expressions of convergence time for gossip
algorithms. However, the exploration of random geometric
graphs as a tool for investigating the spatial characteristics
of WSNs can provide further valuable insights. A promising
future research direction involves modeling WSNs as directed
ring graphs and studying the effect of asymmetric modeling
on the convergence time. Additionally, employing expander
graphs, such as Ramanujan graphs can significantly reduce the
convergence time of gossip algorithms. Furthermore, scale-
free modeling techniques can improve our understanding of
the performance of gossip algorithms in large-scale WSNs
and their robustness to future challenges.
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