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ABSTRACT Decision trees offer the benefit of easy interpretation because they allow the classification of in-
put data based on if–then rules. However, as decision trees are constructed by an algorithm that achieves clear
classification with minimum necessary rules, the trees possess the drawback of extracting only minimum
rules, even when various latent rules exist in data. Approaches that construct multiple trees using randomly
selected feature subsets do exist. However, the number of trees that can be constructed remains at the same
scale because the number of feature subsets is a combinatorial explosion. Additionally, when multiple trees
are constructed, numerous rules are generated, of which several are untrustworthy and/or highly similar.
Therefore, we propose “MAABO-MT” and “GS-MRM” algorithms that strategically construct trees with
high estimation performance among all possible trees with small computational complexity and extract only
reliable and non-similar rules, respectively. Experiments are conducted using several open datasets to analyze
the effectiveness of the proposed method. The results confirm that MAABO-MT can discover reliable rules at
a lower computational cost than other methods that rely on randomness. Furthermore, the proposed method is
confirmed to provide deeper insights than single decision trees commonly used in previous studies. Therefore,
MAABO-MT and GS-MRM can efficiently extract rules from combinatorially exploded decision trees.

INDEX TERMS Data mining, decision tree, Bayesian optimization, Aitchison-Aitken kernel.

I. INTRODUCTION
A decision tree is one of the supervised learning methods for
classifying input data [1]. It offers the advantage of easy inter-
pretation by analysts as data classification is based on a simple
if–then rule, making it effective for acquiring knowledge from
data [2] and promoting application to diverse domains [3],
[4], [5]. Decision trees are constructed by optimizing the Gini
index [2], [6] or information gain [1] and acquiring the mini-
mum number of necessary rules for data classification, thereby
proving consistency with the principle of Occam’s Razor [7].
However, only a small fraction of the large number of latent
rules in data can be extracted. For example, the multiple de-
cision trees constructed in previous studies [8], [9], [10] to
predict the survival of passengers on the Titanic differ in their

tree structure, even though the same data set was used. This
is probably due to differences in data preprocessing and/or
the algorithms used to construct the trees. This indicates that
although there are several rules latent in the data, a single
decision tree construction algorithm can only extract a portion
of them. A method to overcome the aforementioned prob-
lem includes multiple decision tree construction. For instance,
multiple decision trees can be constructed using randomly
selected features such as random forest (RF) [11]. Several
studies have analyzed the internal structure of RF [12], [13],
[14] and extracted multiple rules through its application. How-
ever, as the number of combinations of randomly selected
features is enormous, the constructed decision trees can be
inappropriate. Additionally, decision trees with appropriate
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FIGURE 1. Input–output relationship of MAABO-MT. Here, the FCS � = { f 1, . . . , f 10} is constructed by considering three out of five features
F = {f1, . . . , f5}, where f 1 = {f1, f2, f3}, . . . , f 10 = {f3, f4, f5}. Thereafter, only the three decision trees T = {T ( f 1), T ( f 3), T ( f 8)} that are expected to have
high estimation performance are constructed. Notably, if the number of features D is large, the size of the FCS |�| is assumed to explode and the
construction of all trees will not be possible (see (3)). Therefore, MAABO-MT is used to solve this problem.

rules can be overlooked before construction. Therefore, the
strategical construction of multiple decision trees with good
performance using methods with low computational costs is
necessary, and random selection should be avoided. Addi-
tionally, decision trees can adopt meaningless noise features
owing to parameter optimization (Appendix 1 in Supplemen-
tal text, available online). Therefore, extracting rules from
decision trees using randomly selected features is perilous.

This article proposes an algorithm to solve the aforemen-
tioned existing issues. The input–output relationship is shown
in Fig. 1. Three out of five features f1, . . . , f5 are considered
to construct decision trees. Since three out of five give ten
combinations, we define f 1, . . . , f 10. Ten decision trees can
be constructed, but some trees may not perform satisfactorily.
Therefore, the example in Fig. 1 uses only three constructed
decision trees that are expected to perform well. On a small
scale, all ten decision trees can be constructed without search-
ing. However, doing so is impossible when the number of
features exceeds a certain threshold. A set comprising D fea-
tures can be defined as

F = { f1, . . . , fD}, (1)

where fi ∈ F represents a feature identifier such as “age.”
Vectors and matrices did not appear in this study, but they
do exist in several other sets; therefore, bold font is used to
denote sets. Let f be the feature subset obtained by extracting
D′ features from an overall feature set F. Then, the features
combination set (FCS) is defined by

� = { f | f ⊂ F ∧ | f | = D′}, D > D′, (2)

where the element f of � is an unordered set. Particularly,
when D′ = 3, f ∈ � is a feature combination such that f 1 =

{ f1, f2, f3} and f 2 = { f1, f2, f4}. Additionally, { f1, f2, f3}
and { f3, f2, f1} are the same elements and are not treated
separately because f is an unordered set. Therefore, when
(D, D′) = (5, 3), FCS becomes { f 1, . . . , f 10} ∈ �, as shown
in the upper right section of Fig. 1. Since � comprises subsets
obtained by extracting D′ features from D features, its size is
given by

|�| = DCD′ =
D!

D′!(D− D′)!
. (3)

In Fig. 1, the size is |�| = 5!/(5− 3)! = 10 as (D, D′) =
(5, 3). However, when D is large, the construction of all deci-
sion trees become challenging. For example, when (D, D′) =
(100, 5), the size is |�| � 7× 107. Therefore, an efficient
search for feature subsets that yield high-performance deci-
sion trees from � is necessary.

The proposed algorithm uses Bayesian optimization
[15] for searching high-performance solutions using non-
parametric probability distribution. Particularly, Gaussian and
Aitchison-Aitken (AA) kernels are used for solutions com-
prising real numbers and categorical values, respectively [16],
[17]. Nevertheless, since this study focuses feature subset
search, Bayesian optimization cannot be applied using the
aforementioned kernel functions. Therefore, we propose a
framework for direction application of Bayesian optimization
to subset search, by using a new modified function of the AA
kernel “modified AA (MAA).” Thus, the proposed algorithm
is called “MAA function-based Bayesian optimization for
making trees (MAABO-MT).”

At a low computational cost, high-performance decision
trees are constructed using the proposed method; however,
only appropriate rules should be extracted because some leaf
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FIGURE 2. Input–output relationship of GS-MRM. Among the total 12 leaf nodes obtained from the three decision trees shown in Fig. 1, only reliable and
dissimilar rules are extracted.

nodes have small sample sizes, whereas others do not have
clearly separated classes. The number of reliable leaf nodes
is not numerous, some of which are similar, thereby mak-
ing proper academic discussion from all leaf nodes difficult.
Therefore, we propose an algorithm to extract leaf nodes such
that the following conditions are satisfied. 1) The sample
size is sufficient, 2) classes are clearly divided, and 3) leaf
nodes are not similar to the previously extracted ones. The
input–output relationship of this algorithm is shown in Fig. 2.
Herein, four leaf nodes are extracted from a total of 12 leaf
nodes l1, . . . , l12. C0 and C1 represent the class labels and
the numbers in the square boxes represent the sample sizes.
Initially, l7 and l11 are automatically removed owing to their
small sample size. Thereafter, l5 and l10 are automatically
removed as no clearly separated classes exist. Additionally,
for similar rules such as l1 and l9, only one rule can be
adopted. Therefore, the removals result in an output of only
trusted leaf nodes (l1, l4, l6, l8). Since the method combines
Gini index [18] and Simpson coefficient [19], we termed it
as “Gini and Simpson coefficients-based multi-rules mining
algorithm (GS-MRM algorithm).”

The key contributions of this study are listed below.
� From a set of decision trees that can be constructed in

large numbers, a new algorithm is proposed to construct
only decision trees that possess good rules at a small
computational cost.

� A new algorithm is proposed to extract only reliable and
non-similar leaf nodes from the large number of leaf
nodes of the constructed decision trees.

� These algorithms are shown to be useful in extracting a
large number of rules from a small number of decision
trees.

II. RELATED WORKS ON DECISION TREE
Decision trees are one of the most commonly used data-
mining methods [20], with several proposed algorithms such

as ID3 [1], C4.5 [21], CHAID [22], and CART [23], [24],
which use all features to construct a single decision tree. De-
cision trees can improve the estimation performance through
ensemble learning. For example, the approach of constructing
multiple decision trees using bootstrapping called RF [11] has
been applied in various domains [25], [26], [27]. Additionally,
some studies have analyzed the internal structure of RF [12],
[13], [14].

A gradient boosting decision tree [28], such as XG-
boost [29] and LightGBM [30], has been proposed using
ensemble learning. Compared to random approaches, the
aforementioned methods are more strategic in terms of error
reduction and expected to perform better than RF. Huang
et al. [31] and Joharestani et al. [32] reported a better perfor-
mance of XG-boost relative to RF. Additionally, some studies
reported a superior estimation performance of LightGBM
than that of RF [33], [34].

As aforementioned, decision trees are evolving and the
development of ensemble learning is particularly remarkable.
Since previous studies mainly focused on improving
estimation performance, our study focuses on rule mining and
not on performance estimation. There are several methods for
rule mining, but since this study focuses on tree structures,
we will introduce rule mining with trees. To extract a large
number of tree structured rules that are latent in the data, it
is necessary to construct a large number of decision trees by
limiting the number of features to be used, as described in
Section I. Hence, a method is needed to measure the
importance of the features in order to select them.
The aforementioned method of constructing multiple
trees can be used to measure feature importance (see
RF [35], [36], XG-boost [37], and LightGBM [38]).
Prior studies have used tree-based feature importance
to obtain novel insights in a variety of domains. For
examples, Venkateswarlu et al. [39] analyzed the
relationship between land use factors and water quality
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Algorithm 1: MAABO-MT Algorithm.

Input: Overall features set F, features subset size D′,
initial solution size NI, split coefficient α, iteration of
Bayesian optimization NB, maximum tree’s depth pmax,
distribution degree to mismatches h, damping coefficient
b, extracting single feature size NU, sampling size NE

Output: Trees set T
1: Creating FCS � based on D′ and F
2: Creating U-FCS: F ′ ← �

3: Initializing V-FCS: F ′ ← ∅

4: Initializing trees set: T ← ∅

5: for n = 1 to NI do
6: Randomly selecting a features subset: f ∈ F ′
7: Optimal depth: p∗ ← argmaxp∈{1,...,pmax} S( f , p)
8: Updating trees set: T ← T ∪ {T ( f , p∗)}
9: Updating V-FCS: F ′ ← F ′ ∪ { f }

10: Updating U-FCS: F ′ ← F ′ \ { f }
11: end for
12: for n = 1 to NB do
13: Descended sorting based on validation score F ′
14: Split threshold: Nth ← 
α|F ′|�
15: Creating H-FCS U+ and L-FCS U− with (Nth, F ′)
16: Sampling F ′′ ← H (F ′,U+, NU, NE)
17: Probability: p( f |U i )← K ( f ,U i, h, b), i ∈ {+,−}
18: Next subset: f ∗ ← argmax f∈F ′′ p( f |U+)/p( f |U−)
19: Optimal depth: p∗ = argmaxp∈{1,...,pmax} S( f ∗, p)
20: Updating trees set: T ← T ∪ {T ( f ∗, p∗)}
21: Updating V-FCS: F ′ ← F ′ ∪ { f ∗}
22: Updating U-FCS: F ′ ← F ′ \ { f ∗}
23: end for
24: return Trees set T

using RF feature importance. Jabeur et al. [40] conducted a
factor analysis of corporate bankruptcy using XG-boost
feature importance. Li et al. [41] conducted a factor analysis
of pregnancy outcomes after in vitro fertilization using
LightGBM feature importance.

While these approaches are important, they only measure
the importance of each individual feature and may overlook
features that are more effective in combination. Therefore,
even if decision trees were constructed using the features
selected by the methods described above, it is likely that only a
fraction of the rules would be extracted. To solve this problem,
it is necessary to consider the effects of feature combinations,
but this leads to a significant increase in computational cost.
Therefore, this study proposes an algorithm that can strategi-
cally discover rules by considering feature combinations with
a small computational cost.

III. PROPOSED METHOD
A. MAABO-MT ALGORITHM
The MAABO-MT algorithm shown in Fig. 1 is a partial mod-
ification of Bayesian optimization [15], [16], an algorithm for

extracting feature subsets from FCS � that leads to high per-
formance decision trees. The detailed procedure is presented
in Algorithm 1. In addition, Algorithm 1 and the equations in
this section are fully corresponding.

First, the initialization process shown in lines 1–4 of
Algorithm 1 is explained. Initially, the following sets are de-
fined.
� Unverified features combination set (U-FCS): F ′ = �
� Verified features combination set (V-FCS): F ′ = ∅

� Trees set: T = ∅

Herein, F ′ is a set comprising feature subsets for which esti-
mation performance has not been verified and is initialized by
�, while F ′ represents a set comprising feature subsets where
the estimation performance has been verified and initialized
with the empty set ∅. Since MAABO-MT is an algorithm
that constructs decision trees, the decision tree set is initialized
with an empty set T = ∅.

Next, the initial solution generation process shown in lines
5–11 of Algorithm 1 is described. Initially, we randomly con-
struct NI trees. Based on these validation performances, the
next step involves feature exploration for tree construction.
Therefore, NI denotes the initial solution size. Training data
are used to construct decision trees, validation data are used
to measure and tune the validation performance and hyper-
parameter (maximum depth of trees), respectively, and no
overlap exists between the two datasets.

First, the generation and evaluation of initial solutions are
described. A feature subset f is randomly selected from U-
FCS F ′, using which the maximum tree depth that leads to
maximum verification performance is determined as

p∗ = argmax
p∈{1,...,pmax}

S( f , p), (4)

where S( f , p) is the validation performance of the decision
tree constructed by maximum depth p, feature subset f , and
the CART algorithm [24]. pmax denotes the optimal maximum
depth. The performance index is the macro-ave. F1 score. The
aforementioned process is performed to prevent overfitting.
Using the optimal maximum depth p∗ and a feature subset
f , we construct a decision tree T ( f , p∗) that is added to the
decision tree set as

T = T ∪ {T ( f , p∗)}. (5)

Since the aforementioned procedure validates the feature sub-
set f , V-FCS and U-FCS are updated as

F ′ = F ′ ∪ { f }, F ′ = F ′ \ { f }. (6)

By implementing the procedure NI times, a set T comprising
NI decision trees is constructed. Therefore, the initial solution
is generated following the aforementioned procedure.

Next, the process by which to construct the high-
performance decision trees, as shown in lines 12–23 of
Algorithm 1, is described. In V-FCS F ′, some feature subsets
have a high validation performance, while others have a low
performance. For clarification, V-FCS F ′ is sorted in descend-
ing order of verification performance, making it an ordered
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FIGURE 3. Relationships between extracting features NU and search space
size NR.

set, such that

F ′ = { f 1, f 2, · · · }∗, f 1 � f 2 � · · · , (7)

where “�” represents an ordered relationship based on verifi-
cation performance and {·}∗ represents an ordered set. Then,
let U+ and U− denote the sets comprising the upper and lower
elements of F ′, respectively, such that

U+ = { f n | n = 1, . . . , Nth},
U− = { f n | n = Nth + 1, . . . , |F ′|},
F ′ = U+ ∪U−, Nth = 
α|F ′|�, α ∈ (0, 1) (8)

where α denotes the split coefficient. U+ and U− are known
as high and low-score feature combination sets (H-FCS and L-
FCS), respectively. Using U+ and U−, the next feature subset
to be validated is searched from U-FCS F ′. However, the size
of U-FCS |F ′| explodes when D and D′ are large, as shown in
(3). Therefore, the search space should be reduced.

The individual features used in each subset within U+ can
contribute to higher performance. Therefore, the number of
individual features f1, . . . , fD ∈ F present in U+ are counted,
and the top NU features that are most frequently used are
extracted. Subsequently, the subsets in U-FCS F ′ using at
least one of the extracted features are chosen as a search
space. Herein, the number of unselected features is denoted
as D− NU. Therefore, the search space is reduced by the
number of feature subsets obtained by extracting D′ features
from D− NU features. Therefore, the reduction in the search
space size is given by D−NUCD′ , and the reduced search space
size is expressed as

NR = |�| − D−NUCD′ . (9)

Since xCy = 0 (x < y), NU ≤ D− D′ is required to reduce the
search space. The relationship between NU and NR is shown in
Fig. 3. The obtained result NR < |�| indicates the reduction in
search space. Particularly, when NU = D/5, the search space
is reduced by approximately half.

Smaller values of NU reduce the search space; however,
extremely small values can result in a localized search. There-
fore, setting NU to an extremely small value is undesirable.
To perform search at a low computational cost when NU is
not too small, we randomly select NE feature subsets from
NR candidates. Then, the next feature subset to be verified is
selected from among the NE subsets. In other words, NU and
NE reduce the search space in this algorithm. Thus, search

space obtained using the aforementioned procedure can be
defined as

F ′′ = H (F ′,U+, NU, NE). (10)

where H is a function that takes the top NU single features that
are frequently present in U+ and randomly selects NE subsets
containing the top features from F ′. The smaller the size of
NE, the lower is the computational cost. However, if NE is too
small, the subset to be adopted depends on random luck.

Next, we consider the feature subset selection from F ′′ to
construct a high-performance decision tree. Assuming two
distributions to estimate the probabilities that f ∈ F ′′ belongs
to U+ and U−, we have

p( f |U+), p( f |U−), f ∈ F ′′. (11)

Here, the features subset f ∈ F ′′ with a larger p( f |U+) and
smaller p( f |U−) should be selected as the next features subset
f ∗ ∈ F ′′, such that

f ∗ = argmax
f∈F ′′

p( f |U+)

p( f |U−)
. (12)

Then, using the feature subset f ∗, 4, 5, and 6 are processed,
while the sets T , F ′, F ′ are updated. When the aforemen-
tioned process is repeated iteratively, high-performance trees
are strategically constructed. If the number of iterations is NB,
the final number of trees constructed is NB + NI, using NI

number of initial solutions. The procedures discussed thus far
form MAABO-MT.

B. PROBABILITY DISTRIBUTION WITH MODIFIED
AITCHISON-AITKEN FUNCTION
This subsection describes the method for constructing prob-
ability distributions p( f |U i ), i ∈ {+,−}. When the search
target is a categorical vector, the AA kernel [42] is used
to construct the probability distribution. However, the AA
kernel cannot be used in our case because f is a set of fea-
tures. Therefore, this article proposes a modified AA function
(MAA).

1) MODIFIED AITCHISON-AITKEN FUNCTION
As indicated in (12), the next f ∗ to be selected should be
similar to H-FCS U+ and dissimilar to L-FCS U−. Therefore,
a function k( f , u) that measures the similarity between the
two feature subsets f and u ∈ U i∈{+,−} should be created.

Since k( f , u) is used to construct the probability distribu-
tions, we aim to satisfy the following constraints:
� (Constraint 1)

∑
f∈� k( f , u) = 1, ∀u ∈ U i∈{+,−}

� (Constraint 2) k( f , u) ∈ [0, 1]
Moreover, as k( f , u) is a function for measuring similarity,

we aim to satisfy the following constraint:
� (Constraint 3) D′ − | f v ∩ u| > D′ − | f w ∩ u| ⇔ k( f v,

u) < k( f w, u), f v, f w ∈ �

Because the feature subsets f and u are sets comprising D′
features, the number of mismatches is given by

m = D′ − | f ∩ u|, m = 0, . . . , D′. (13)
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Therefore, k0, . . . , kD′ are defined as the values of k( f , u)
when the number of mismatches is m = 0, . . . , D′. Next, the
values that should be assigned to k0, . . . , kD′ to satisfy Con-
straints 1, 2, and 3 are considered.

First, k( f , u) based on the number of mismatches m = 0 is
defined as

k0 = 1− h, h ∈ [0, 1]. (14)

As a similarity measure between f and u, k0 must be large
when the number of mismatches m = 0. Thus, k0 = 1 is
not possible from Constraint 1 because values must also be
assigned for cases where the number of mismatches m =
1, . . . , D′. Thus, the distribution amount for m ≥ 1 is h.

Next, the usage of the distributed h is considered depending
on the number of feature subsets with one or more mismatches
in �. Therefore, the number of feature subsets that include
m mismatches is defined as am. From Constraint 1, km must
satisfy

a0k0 + a1k1 + · · · + aD′kD′ = 1. (15)

Here, a0 = 1 because m is zero only when f and u are the
same. Additionally, by substituting (14) into (15), we obtain

a1k1 + · · · + aD′kD′ = h. (16)

Next, to satisfy Constraint 3,

km = bm−1k1, b ∈ (0, 1), m = 1, . . . , D′ (17)

is set up, where b is the damping coefficient. Since km is
the value of k1 damped by bm−1, when b ∈ (0, 1), k1 >

k2 > · · · > kD′ is satisfied. Additionally, if k1 is clarified, the
k2, . . . , kD′ can be determined. Therefore, to clarify k1, (17) is
substituted into (16) to obtain

k1 = h

a1b0 + · · · + aD′bD′−1
. (18)

By substituting the results into (17), we have

km = bm−1h∑D′
i=1 aibi−1

, m = 1, . . . , D′. (19)

As h and b are hyper-parameters, the unknown variable is
only ai. Since ai is the total number of feature subsets with
i mismatches between u and f ∈ �, its values is obtained by
multiplying the following two terms,
� (1) the number of combinations obtained by selecting

D′ − i features from among the features contained in u
� (2) the number of combinations obtained by selecting i

features from the features not included in u
As u comprises D′ features, term (1) is D′CD′−i. Since the

number of features not included in u is D− D′, term (2) is
denoted as D−D′Ci. Therefore, ai is obtained as

ai = (D′CD′−i )(D−D′Ci ), (20)

where xC0 = 1 and xCy = 0, (x < y). Upon substituting into
(19), we obtain

km = bm−1h∑D′
i=1(D′CD′−i )(D−D′Ci )bi−1

, m = 1, . . . , D′. (21)

Thus, the specific values of k0, . . . , kD′ are determined.
Based on (13), (14), and (21), we propose

k( f , u, h, b) =⎧⎪⎨
⎪⎩

1− h, if D′ − | f ∩ u| = 0
bD′−| f∩u|−1

∑D′
i=1(D′CD′−i )(D−D′Ci )bi−1

h, if D′ − | f ∩ u| > 0
,

h ∈ [0, 1], b ∈ (0, 1), (22)

as the similarity function between feature subsets f and u. The
function is designed satisfy the Constraints 1, 2, and 3 and
is therefore applicable as a discrete probability distribution.
k( f , u, h, b) is a proposed function called MAA. The design
for distributing 1− h in the case of a match, and h in the
case of a mismatch also appears in the AA kernel [42]. The
relationships between k( f , u, h, b), m, am are discussed in
Appendix 2 (Supplemental text, available online).

2) PROBABILITY DISTRIBUTION
This subsection describes the process of formulating the prob-
ability p( f |U i ), where a feature subset f ∈ � belongs to U i,
using MAA function k( f , u, h, b).

As the MAA function is calculated for a single u ∈ U i,
k( f , u) is calculated for all u ∈ U i and averaged as

K ( f ,U i, h, b) = 1

|U i|
∑
u∈U i

k( f , u, h, b), (23)

where, i ∈ {+,−}. The MAA function satisfies the definition
of probability distribution for the input f ∈ � because the
probability of occurrence of all events is 1, such that

P(�) =
∑
f∈�

K ( f ,U i )

= 1

|U i|
∑
u∈U i

∑
f∈�

k( f , u)

= 1, ∵
∑
f∈�

k( f , u) = 1. (24)

Additionally,

K ( f ,U i ) ∈ [0, 1], ∀ f , ∵ k( f , u) ∈ [0, 1] (25)

is satisfied. Therefore, K ( f ,U i ) denotes a discrete probabil-
ity distribution. Based on the aforementioned discussion, we
adopt K ( f ,U i, h, b) as p( f |U i ), such that

p( f |U i ) = K ( f ,U i, h, b), i ∈ {+,−}. (26)

Consequently, (12) can be calculated, and MAABO-MT can
be performed.
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C. GS-MRM ALGORITHM
The MAABO-MT algorithm can be used to construct NI + NB

decision trees that are expected to exhibit a high verifica-
tion performance. However, when considering a rule-mining
algorithm, returning all leaf nodes as output to the user is
inappropriate because only a limited number of leaf nodes
belonging to the decision tree are reliable and some of the
multiple leaf nodes are similar to each other. Therefore, we
propose the GS-MRM algorithm as a method for extracting
reliable and non-similar leaf nodes from a large number of
leaf nodes of NI + NB decision trees.

Initially, the set L comprising NL leaf nodes in NI + NB

decision trees and the set L′ comprising the leaf nodes that
are provided as outputs to the users are defined as

L = {ln | n = 1, . . . , NL}, L′ = ∅. (27)

Herein, L′ is initialized with an empty set because the leaf
nodes to be returned have not yet been determined. The
method for moving leaf nodes in L to L′ is defined as
GS-MRM. In this study, the moving target leaf node l∗ is
determined as

l∗ = argmin
l∈L

(
g(l )+max

l ′∈L′
v(l, l ′)

)
,

s.t., g(l ) < γ gmax, n(l ) ≥ β, max
l ′∈L′

v(l, l ′) < δ,

γ ∈ (0, 1], δ ∈ (0, 1], (28)

where g(l ) is the Gini index of leaf node l and gmax is the
maximum Gini index when the classes are evenly mixed.
The rule with a lower Gini index is adopted in preference to
other rules because a leaf node with a lower Gini index is a
more reliable rule. Furthermore, only the leaf nodes below the
threshold are adopted following the constraint g(l ) < γ gmax.
If the total sample size of a leaf node is N , the sample size of
class ci is Ni, and the number of class labels is C, then, the
Gini index is defined as

g= 1−
C∑

i=1

(
Ni

N

)2

. (29)

The same expression has been expressed in (1) of [18]. When
the Gini index is close to zero, data are clearly classified; if
the index is large, the classes are mixed. Since Ni = N/C,∀i
is the most mixed state, by substituting its value into (29), we
obtain

gmax = 1− 1

C
. (30)

In the constraint, γ is a parameter used to adjust the threshold
of the Gini index. Thus, by setting γ close to zero, only leaf
nodes with clearly classified data are extracted. The constraint
does not work properly with unbalanced class data; therefore,
a weighted Gini index must be used, which is calculated by
giving “balanced” option to the class weight argument of
DecisionTreeClassifier [43] in scikit-learn. Alternatively, the

Algorithm 2: GS-MRM Algorithm.
Input: Trees set T , threshold of leaf node samples β,
threshold of Gini coefficient γ , threshold of Simpson
coefficient δ, class label size C

Output: Rules set L′
1: Creating leaf nodes set L based on the trees set T
2: Initializing rules set: L′ ← ∅

3: Initial leaf node size: NL ← |L|
4: for i = 1 to NL do
5: if g(li ) ≥ γ

(
1− 1

C

)
or n(li ) < βthen

6: Removing leaf node: L← L \ {li}
7: end if
8: end for
9: while L �= ∅ do

10: if L′ = ∅ then
11: Opt. leaf node: l∗ ← argminl∈L g(l )
12: else
13: Opt. leaf node:

l∗ ← argminl∈L(g(l )+maxl ′∈L′ v(l, l ′))
14: end if
15: if maxl ′∈L′ v(l∗, l ′) < δ then
16: Updating rules set: L′ ← L′ ∪ {l∗}
17: end if
18: Updating leaf nodes set: L← L \ {l∗}
19: end while
20: return L′

data can be converted into balanced data through over or under
sampling [44].

The sample size of the leaf node l denoted as n(l ). Since
leaf nodes comprising small samples are not reliable, we
set the constraint that if the sample size is not greater than
or equal to the threshold β, it cannot be adopted as a rule.
v(l, l ′) represents the similarity between the leaf node l ∈ L
and the previously extracted leaf node l ′ ∈ L′. Owing to the
presence of multiple extracted leaf nodes, the maximum sim-
ilarity is calculated, and leaf nodes with smaller similarities
are prioritized. Additionally, the rules with high similarity to
previously extracted ones should not be adopted. Therefore,
the constraint maxl ′∈L′ v(l, l ′) < δ, where δ is a parame-
ter, is considered. The details of v(l, l ′) are presented in
Section III-D.

The sets of L′ and L are updated at the leaf node selected
using (28), such that

L′ = L′ ∪ {l∗}, L = L \ {l∗}. (31)

Only reliable and dissimilar rules are extracted by repeat-
ing (28) and (31). The details of GS-MRM are presented as
Algorithm 2.
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TABLE 1. Feature Labels of Titanic Dataset

D. SIMILARITY BETWEEN LEAF NODES
To solve (28), we must design a function v(l, l ′) that measures
the similarity between two leaf nodes l and l ′. The represen-
tation of leaf node l in the decision tree is given by

l : x( fi1) > � ∧ x( fi2) ≤ � ∧ x( fi3) > � ∧ · · · , (32)

where the value of feature fi is x( fi ). In this study, a set
comprising the smallest units of logic is defined as

Rl = { fi1 : large, fi2 : small, fi3 : large, · · · }. (33)

Cases where the same logic appears in a leaf node do exist.
In such cases, the logics are combined into a single logic
for simplification. First, we construct Rl ′ for the leaf node
l ′. Thereafter, the similarity of the two sets Rl and Rl ′ is
measured by Simpson coefficient [19], such that

v(l, l ′) = |Rl ∩ Rl ′ |
min{|Rl |, |Rl ′ |}

. (34)

The output of aforementioned function is 1 and 0 for the most
and least similarity between the sets. Thus, solutions to the
optimization problem expressed in (28) are possible.

IV. EXPERIMENT 1: EFFECTIVENESS OF MAABO-MT ON
EXTRACTING RULES
A. OBJECTIVE AND OUTLINE
To verify the effectiveness of the proposed method, GS-MRM
was applied to decision trees constructed using MAABO-MT
for rule extraction. The Titanic dataset often used to evaluate
machine-learning performance was adopted [45], [46], [47].
The data consisted of 1309 passenger details aboard Titanic,
with class labels of dead (809 samples) and alive (500 sam-
ples). The features included in this dataset were f1, . . . , f9, as
listed in Table 1. Notably, noise features are also included in
Table 1, but were not used in Experiment 1. They were used
in Experiment 2 or later. In Experiment 1, the overall feature
set was F = { f1, . . . , f9}. A feature subset size of D′ = 3 was
adopted to perform MAABO-MT, implying the selection of
three features from the overall feature set comprising nine fea-
tures to construct the FCS �. Herein, the number of decision
trees that could be constructed was equal to the size of �; thus,
9C3 = 84 from (3).

FIGURE 4. Number of extracted rules from decision trees constructed
using (A)–(D) approaches. Each value is an average, and error bar
represents 0.5 std. calculated from the results of 50 random seeds.

To verify the effectiveness of MAABO-MT, decision trees
were constructed using the following four approaches: (A)
“All trees”: creating all 84 trees with all 84 features subsets
in �. (B) “MAABO-MT”: limited number of trees with fea-
tures subset selected by MAABO-MT in �. (C) “Randomized
trees”: limited number of trees with features subset selected at
random in �. (D) “Single tree”: a single tree by using all 9 fea-
tures. (A) involved the construction of all decision trees and
ample computational resources were considered available. (B)
involved the construction of a limited number of decision
trees using MAABO-MT, an efficient search algorithm. (C)
involved the construction of a limited number of decision
trees using randomly selected feature subsets. (D) involved
the construction of a single decision tree using all prepared
features. Usually, (D) is used for the the academic discussion
based on the rules obtained by a single decision tree. In this
study, (D) was prepared because a single decision tree was
assumed to be insufficient for extracting a sufficient number
of rules.

The number of decision trees constructed using (B)
MAABO-MT, as indicated in Algorithm 1 was NI + NB.
We set NI = 10 as the initial solution size and NB ∈
{0, 10, . . . , 70} as the iterations of Bayesian optimization. To
investigate the relationship between the number of decision
trees and performance in MAABO-MT, we set various values
for NB. For comparison under equal conditions, the number of
decision trees constructed using (C) was the same as in (B).
For other parameters of MAABO-MT, we adopted split coef-
ficient α = 0.25, maximum tree depth pmax = 5, distribution
degree of mismatches h = 0.5, damping coefficient b = 0.5,
extracting a single feature size NU = D, and sampling size
NE ←∞.

All decision trees constructed in this study used the CART
algorithm [48]. To avoid overfitting, we adopted maximum
depth yielding maximized the F-score macro-average of the
validation dataset. Data from 1309 samples were randomly
split in a 7:3 ratio and assigned as training and validation
data. To eliminate the effects of randomness, data were split
and each method was performed using 50 random seeds.
GS-MRM was used for rules extraction of the decision trees
obtained using (A)–(D). To detect reliable rules, (β, γ , δ) =
(50, 0.3, 0.7) was adopted.
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TABLE 2. Leaf Nodes and Extracted Rules Size (100 Runs Ave. ± Std., and
the Bold Numbers Represent Highest Values.)

B. RESULT AND DISCUSSION
The obtained results are presented in Fig. 4. Approximately
six rules were extracted in the case of (A), while approxi-
mately one rule was extracted in the case of (D). Thus, we
confirmed that the traditional approach using all features to
construct a single decision tree could only extract a fraction
of the trusted rules that were latent in the data. Contrarily, the
results obtained on using (A) succeeded in extracting more
rules, but ample computing resources were consumed. This
study was aimed at discovering appropriate rules without con-
structing all trees, as was done in (A). Therefore, the algorithm
that satisfied our requirements was (B) MAABO-MT.

In the case of (B) MAABO-MT, almost all rules were
found by constructing only half of all the decision trees.
Since this result was superior to that of (C) randomized
trees, MAABO-MT could extract numerous reliable rules in a
shorter computation time. The details of the extracted rules are
presented in Section VI and Table 3. Additional information
are presented in Appendix 3 (Supplemental text, available
online).

V. EXPERIMENT 2: ROBUSTNESS AGAINST NOISE
FEATURES
A. OBJECTIVE AND OUTLINE
When analyzing real-world data, the dataset often contains
noisy features (meaningless numerical information) without
the knowledge of an analyst. Therefore, evaluation of ro-
bustness against meaningless noise features is important.
Approaches that used all features to construct a single tree
tended to adopt noisy features (Appendix 1 in Supplemental
text, available online). Contrarily, MAABO-MT was expected
to avoid the adoption of noisy features because it constructed
trees by exploring feature subsets. This section describes the
results of the analysis.

Noise features generated by uniform random numbers in
the Titanic dataset were added. After f10, · · · the features
listed in Table 1 are the noise features, of which the num-
ber of features adopted for the experiment included Nnoise ∈

FIGURE 5. Effect on MAABO-MT search performance of noise features.
Each value represents the average, and error bar represents 0.5 std.
calculated from the results of 50 random seeds.

{1, . . . , 20}. Adding noise features to the nine proper features
f1, . . . , f9 included in the Titanic dataset, the total number
of features D ranged from 10 to 29. The size of the FCS
|�| obtained by extracting the three features (D′ = 3) ranged
between 120 and 3,654, from (3).

As the setting parameters of MAABO-MT, the initial so-
lution size NI was set to 10 and the number of iterations
of Bayesian optimization was NB = 100. Thus, 110 decision
trees were constructed. The other parameters were the same
as those used in Experiment 1. The randomized tree approach
described in Experiment 1 was adopted for comparison. The
number of decision trees constructed using the randomized
trees was also 110. GS-MRM was used for rule extraction,
and the adoption parameters were the same as those used in
Experiment 1. Additionally, an analysis was conducted using
50 random seeds to eliminate the effects of randomness.

B. RESULT AND DISCUSSION
The results obtained from the aforementioned procedure are
shown in Fig. 5 (1), which presents the number of rules
extracted by the GS-MRM. In the case of randomized tree
approach, we confirmed that the larger the number of noise
features, the smaller the number of extracted reliable leaf
nodes. However, MAABO-MT confirmed that a certain num-
ber of reliable leaf nodes could be extracted even when the
noise features increased. Nonetheless, cases in which noisy
features were included in the extracted rules could exist.
Therefore, we calculated the noise content rate of the ex-
tracted rules, and the results are presented in Fig. 5 (2). Thus,
the noise content in the extracted rules was confirmed to
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TABLE 3. Extracted Rules by MAABO-MT and Single Tree (Titanic, Boston Housing, and Diabetes Datasets)

increase with an increase in noise features. Herein, MAABO-
MT tended to have a slightly lower noise content than the
randomized tree. Although the difference was slight, the ran-
domized tree could only extract a small number of rules when
the noise features were large (Fig. 5(1)). When there were
more than 15 noise features, only one rule was extracted from
the randomized trees.

Therefore, MAABO-MT could extract a certain number
of reliable rules even when the number of noise features in-
creased. The approach based on randomized trees was unable
to extract rules when the number of noise features increased.

VI. EXPERIMENT 3: DETAILS OF RULES EXTRACTED BY
MAABO-MT AND GS-MRM ALGORITHM
A. OBJECTIVE AND OUTLINE
This section presents the specific rules detected using
MAABO-MT and GS-MRM. The datasets used included Ti-
tanic, Boston housing [49], [50], and diabetes [51]. Boston
Housing is a dataset that is used to estimate home prices
based on environmental factors and other attributes. Dia-
betes is a dataset used to estimate disease progression based
on personality and blood components. Both datasets have
been used to evaluate the performance of machine-learning
algorithms [52], [53], [54], [55], [56]. The features and
class labels included in each dataset are described in Ap-
pendix 4. The conditions for running MAABO-MT included
the number of initial solutions NI = 10 and the number of
trees to be constructed is NI + NB = |�|/2, it means half
of |�|. The number of Bayesian optimization iteration is
NB = |�|/2− NI. Other parameters were the same as those
used in Experiment 1.

B. EXISTING METHODS
To verify the relative effectiveness of MAABO-MT, tree
structure rule mining was also conducted using other methods.

First, we adopted a single decision tree via CART, i.e., a tradi-
tional analysis method (“Single tree”). The second method is
the random forest (“RF”), which constructs multiple decision
trees via bootstrap sampling.

Note that the proposed MAABO-MT constructs multiple
trees based on feature selection. Other existing methods of
constructing feature selection-based decision trees were also
explored. The first existing method based on feature selection
is RF-based features selection (“RF-FS”). RF can measure
feature importance via the impurities of the many branches in
multiple trees [57]. This information is used to construct fea-
ture subsets and multiple decision trees. Specifically, first, the
importance of the feature fi is pi. When this sum is normalized
to

∑
pi = 1, a multinomial distribution emerges. According

to this distribution, a specified number of features are sam-
pled to construct multiple feature subsets (the same features
are not adopted). Multiple decision trees are then constructed
using the selected feature subsets. XG-boost and LightGBM,
proposed after RF, can also measure feature importance [37],
[38]. For this reason, we also adopted the methods of con-
structing multiple decision trees using feature importance
by XG-boost and LightGBM (“XGB-FS” and “LGBM-FS”).
Evaluating feature importance via RF, XG-boost, and Light-
GBM is popular, and these methods have been used in various
studies [39], [40], [41].

In order to make comparisons under equal conditions,
the numbers and maximum depths of the decision trees
constructed via RF, RF-FS, XGB-FS, and LGBM-FS were
identical to those constructed in MAABO-MT. The other hy-
perparameters were set to their default values [37], [38], [57].
Note that scikit-learn (ver. 1.4.1) [57] was used for RF and
RF-FS, xgboost (ver. 2.0.3) [37] was used for XGB-FS, and
LightGBM (ver. 4.3.0) [38] was used for LGBM-FS. Rules
were extracted by applying GS-MRM to the multiple decision
trees constructed using each method. To remove the effect of
randomness, all methods were run 100 times with different
random seeds.
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C. RESULTS AND DISCUSSION
The total number of leaf nodes in the constructed decision
trees is represented by |L|, and |L′| denotes the total number
of rules extracted by GS-MRM, as listed in Table 2. We can
confirm that MAABO-MT succeeded in extracting the most
rules. Note that although the LGBM-FS leaf node size |L| in
the Titanic dataset is large, the extracted rule size |L′| is small.
This means that many of the rules were similar. In the single
tree case, which is the most classical method, the extracted
rule size |L′| was small and insufficient for rule mining. In
summary, MAABO-MT was the best approach.

Table 3 shows the rules obtained from the results of one
seed, focusing on MAABO-MT, which succeeded in extract-
ing the most rules, and single tree, which extracted only a few
rules.

For the Titanic dataset and single tree, the rules for survival
and death were limited. For example, S1 and S2 showed that
elderly males and females were more likely to die and survive,
respectively. However, the rules extracted by MAABO-MT
confirmed that females were more likely to survive (P2 and
P3) regardless of age. Thus, males were more likely to die
regardless of age (P5). If the results of only a single decision
tree were considered for discussion, misunderstandings such
as the age being older could arise. Such issues were eliminated
by using MAABO-MT. Additionally, MAABO-MT identified
“low ParCh (P3)” as a survival condition, which was not iden-
tified in a single tree. As males were more likely to die, the
entire family was not in a position to escape. Therefore, single
individuals were considered more likely to escape and survive.

In the case of Boston, a single tree extracted the rule (S1)
“lower housing prices when there are more students per
teacher and more low-income families.” Additionally, in the
case of MAABO-MT, a different rule (P1) was extracted
along with S1, such that “If the house is old and the air is
dirty, the house price is low.” In the case of a single tree, the
rule (S2) that stated “areas with fewer low-income residents
and more rooms have higher housing prices” was extracted.
Conversely, in the case of MAABO-MT, rules such as “areas
with low crime rates have higher housing prices” and “areas
with clean air have higher housing prices” (P3 and P5) were
extracted in addition to S2.

In Diabetes and single tree case, only the rule “low age, low
BMI and low LTG, then, low progression of diabetes” was
extracted (S1). Conversely, in the case of MAABO-MT, rules
that could not be found in the single tree case, such as “if HDL
is high, diabetes is low progression” (P1, P3, and P5) were ex-
tracted. The results were valid because patients with diabetes
had low HDL [58]. Furthermore, MAABO-MT also extracted
rules with high progression of diabetes that were not extracted
in a single tree case (P4). Therefore, MAABO-MT provided
deeper insights than a single tree for all the datasets tested.

VII. CONCLUSION
In this study, we highlight the disadvantages of rule ex-
traction using a single decision tree, which is a traditional
approach that can only discover a small fraction of the mul-
tiple rules latent in data. Therefore, we propose multi-rule

mining algorithms MAABO-MT and GS-MRM to solve ex-
isting problems. We propose an MAA function that is required
to solve the feature subset search problem with Bayesian op-
timization.

Several experimental results show that the proposed method
has the following effects. Experiment 1: Of all the decision
trees, MAABO-MT succeeded in discovering all the rules
by constructing approximately half of them. Experiment 2:
Robustness to noise features was observed. Experiment 3:
MAABO-MT was able to extract a larger number of rules than
were previously developed methods.

The proposed method includes several hyperparameters.
Sensitivity analysis is performed on some of the parameters,
while others are not fully analyzed. In the future, we plan to
analyze all parameters to determine the recommended values
for each hyperparameter.

REFERENCES
[1] J. R. Quinlan, “Induction of decision trees,” Mach. Learn., vol. 1,

pp. 81–106, 1986.
[2] S. S. Sundhari, “A knowledge discovery using decision tree by

gini coefficient,” in Proc. Int. Conf. Bus., Eng. Ind. Appl., 2011,
pp. 232–235.

[3] D. Y. Yeh, C. H. Cheng, and S. C. Hsiao, “Classification knowledge
discovery in mold tooling test using decision tree algorithm,” J. Intell.
Manuf., vol. 22, pp. 585–595, 2011.

[4] Z. Wen and Y. Tao, “Building a rule-based machine-vision system for
defect inspection on apple sorting and packing lines,” Expert Syst. Appl.,
vol. 16, pp. 307–313, 1999.

[5] H. Hamsa, S. Indiradevi, and J. J. Kizhakkethottam, “Student academic
performance prediction model using decision tree and fuzzy genetic
algorithm,” Procedia Technol., vol. 25, pp. 326–332, 2016.

[6] S. Tangirala, “Evaluating the impact of Gini index and information gain
on classification using decision tree classifier algorithm,” Int. J. Adv.
Comput. Sci. Appl., vol. 11, pp. 612–619, 2020.

[7] C. Bessiere, E. Hebrard, and B. O’Sullivan, “Minimising decision
tree size as combinatorial optimisation,” Lecture Notes Comput. Sci.,
vol. 5732 LNCS, pp. 173–187, 2009.

[8] N. Kokash and L. Makhnist, “Using decision trees for interpretable
supervised clustering,” SN Comput. Sci., vol. 5, pp. 1–11, 2024.

[9] A. Singh, S. Saraswat, and N. Faujdar, “Analyzing Titanic disaster
using machine learning algorithms,” in Proc. IEEE Int. Conf. Comput.,
Commun. Automat., 2017, pp. 406–411.

[10] J. Sherlock, M. Muniswamaiah, L. Clarke, and S. Cicoria, “Classifica-
tion of Titanic passenger data and chances of surviving the disaster,”
2018, arXiv:1810.09851v1.

[11] L. Breiman, “Random forests,” Mach. Learn., vol. 45, pp. 5–32, 2001.
[12] D. Petkovic, R. Altman, M. Wong, and A. Vigil, “Improving the ex-

plainability of random forest classifier – user centered approach,” in
Proc. Pacific Symp. Biocomputing, 2018, vol. 23, pp. 204–215.

[13] M. P. Neto and F. V. Paulovich, “Explainable matrix - visualization for
global and local interpretability of random forest classification ensem-
bles,” IEEE Trans. Vis. Comput. Graph., vol. 27, no. 2, pp. 1427–1437,
Feb. 2021.

[14] F. Gossen and B. A. Steffen, “Algebraic aggregation of random forests:
Towards explainability and rapid evaluation,” Int. J. Softw. Tools Tech-
nol. Transfer, vol. 25, pp. 267–285, 2023.

[15] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, “Algorithms for hyper-
parameter optimization,” in Proc. Adv. Neural Inf. Process. Syst., 2011,
vol. 24, pp. 2546–2554.

[16] S. Watanabe, “Tree-structured parzen estimator: Understanding its al-
gorithm components and their roles for better empirical performance,”
2023, arXiv:2304.11127v3.

[17] A. Agnesina et al., “AutoDMP: Automated dreamplace-based macro
placement,” in Proc. Int. Symp. Phys. Des., 2023, pp. 149–157.

[18] L. E. Raileanu and K. Stoffel, “Theoretical comparison between the
Gini index and information gain criteria,” Ann. Math. Artif. Intell.,
vol. 41, pp. 77–93, 2004.

VOLUME 5, 2024 225



OMAE ET AL.: MULTI-RULES MINING ALGORITHM FOR COMBINATORIALLY EXPLODED DECISION TREES

[19] L. Antonioli et al., “Convolutional neural networks cascade for auto-
matic pupil and iris detection in ocular proton therapy,” Sensors, vol. 21,
no. 13, 2021, Art. no. 4400.

[20] X. Wu et al., “Top 10 algorithms in data mining,” Knowl. Inf. Syst.,
vol. 14, pp. 1–37, 2008.

[21] A. Cherfi, K. Nouira, and A. Ferchichi, “Very fast c4.5 decision tree
algorithm,” Appl. Artif. Intell., vol. 32, pp. 119–137, 2018.

[22] M. Milanovic and M. Stamenkovic, “Chaid decision tree: Methodolog-
ical frame and application,” Econ. Themes, vol. 54, pp. 563–586, 2016.

[23] L. Rutkowski, M. Jaworski, L. Pietruczuk, and P. Duda, “The cart
decision tree for mining data streams,” Inf. Sci., vol. 266, pp. 1–15,
2014.

[24] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classifica-
tion and Regression Trees. Boca Raton, FL, USA: CRC, 2017.

[25] A. L. Boulesteix, S. Janitza, J. Kruppa, and I. R. Konig, “Overview
of random forest methodology and practical guidance with emphasis on
computational biology and bioinformatics,” Wiley Interdiscipl. Reviews:
Data Mining Knowl. Discov., vol. 2, pp. 493–507, 2012.

[26] Y. Qi, “Random forest for bioinformatics,” in Ensemble Machine Learn-
ing, C. Zhang, and Y.Q. Ma, Eds., USA: Springer, 2012, pp. 307–323,
doi: 10.1007/978-1-4419-9326-7_11.

[27] M. Belgiu and L. Dragu, “Random forest in remote sensing: A review of
applications and future directions,” ISPRS J. Photogrammetry Remote
Sens., vol. 114, pp. 24–31, 2016.

[28] J. H. Friedman, “Greedy function approximation: A gradient boosting
machine,” Ann. Statist., vol. 29, pp. 1189–1232, 2001.

[29] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,”
in Proc. 22nd ACM Int. Conf. Knowl. Discov. Data Mining, 2016,
pp. 785–794.

[30] G. Ke et al., “LightGBM: A highly efficient gradient boosting decision
tree,” in Proc. Adv. Neural Inf. Process. Syst., 2017, vol. 30, pp. 3149–
3157.

[31] L. Huang et al., “Combining random forest and XGBoost methods in
detecting early and mid-term winter wheat stripe rust using canopy level
hyperspectral measurements,” Agriculture, vol. 12, pp. 74, 2022.

[32] M. Z. Joharestani, C. Cao, X. Ni, B. Bashir, and S. Talebiesfandarani,
“Pm2.5 prediction based on random forest, XGboost, and deep learning
using multisource remote sensing data,” Atmosphere, vol. 10, 2019,
Art. no. 373.

[33] P. Tao, H. Shen, Y. Zhang, P. Ren, J. Zhao, and Y. Jia, “Status
forecast and fault classification of smart meters using LightGBM algo-
rithm improved by random forest,” Wireless Commun. Mobile Comput.,
vol. 2022, 2022, Art. no. 3846637.

[34] D. N. Wang, L. Li, and D. Zhao, “Corporate finance risk prediction
based on LightGBM,” Inf. Sci., vol. 602, pp. 259–268, 2022.

[35] M. Loecher, “Unbiased variable importance for random forests,” Com-
mun. Statist. - Theory Methods, vol. 51, pp. 1413–1425, 2020.

[36] R. Yao, J. Li, M. Hui, L. Bai, and Q. Wu, “Feature selection based on
random forest for partial discharges characteristic set,” IEEE Access,
vol. 8, pp. 159151–159161, 2020.

[37] “Python API reference, XGBoost (ver. 2.0.3).” Accessed: Mar.
6, 2024. [Online]. Available: https://xgboost.readthedocs.io/en/stable/
python/python_api.html

[38] “Parameters, LightGBM (ver. 4.3.0).” Accessed: Mar. 6, 2024. [Online].
Available: https://lightgbm.readthedocs.io/en/latest/Parameters.html

[39] T. Venkateswarlu and J. Anmala, “Importance of land use factors in
the prediction of water quality of the Upper Green River watershed,
Kentucky, USA, using random forest,” Environ., Develop. Sustain.,
pp. 1–24, 2023.

[40] S. B. Jabeur, N. Stef, and P. Carmona, “Bankruptcy prediction using
the XGBoost algorithm and variable importance feature engineering,”
Comput. Econ., vol. 61, pp. 715–741, 2023.

[41] L. Li, X. Cui, J. Yang, X. Wu, and G. Zhao, “Using feature opti-
mization and LightGBM algorithm to predict the clinical pregnancy
outcomes after in vitro fertilization,” Front. Endocrinol., vol. 14, 2023,
Art. no. 1305473.

[42] J. Aitchison and C. G. Aitken, “Multivariate binary discrimination by
the kernel method,” Biometrika, vol. 63, pp. 413–420, 1976.

[43] “Sklearn.tree.decisiontreeclassifier–scikit-learn 1.3.0 documentation.”
[Online]. Available: https://scikit-learn.org/stable/modules/classes.html

[44] R. Mohammed, J. Rawashdeh, and M. Abdullah, “Machine learning
with oversampling and undersampling techniques: Overview study and
experimental results,” in Proc. IEEE 11th Int. Conf. Inf. Commun. Syst.,
2020, pp. 243–248.

[45] K. Singh, R. Nagpal, and R. Sehgal, “Exploratory data analysis and
machine learning on Titanic disaster dataset,” in Proc. Confluence - 10th
Int. Conf. Cloud Comput., Data Sci. Eng., 2020, pp. 320–326.

[46] A. Singh, S. Saraswat, and N. Faujdar, “Analyzing Titanic disaster
using machine learning algorithms,” in Proc. IEEE Int. Conf. Comput.,
Commun. Automat., 2017, pp. 406–411.

[47] N. Farag and G. Hassan, “Predicting the survivors of the Titanic -
Kaggle, machine learning from disaster,” in Proc. 7th Int. Conf. Softw.
Inf. Eng., 2018, pp. 32–37.

[48] S. Singh and M. Giri, “Comparative study ID3, cart and C4.5 deci-
sion tree algorithm: A survey,” Int. J. Adv. Inf. Sci. Technol., vol. 3,
pp. 47–52, 2014.

[49] “The boston house-price data.” [Online]. Available: http://lib.stat.cmu.
edu/datasets/boston

[50] D. Harrison Jr and D. L. Rubinfeld, “Hedonic housing prices and
the demand for clean air,” J. Environ. Econ. Manage., vol. 5, no. 1,
pp. 81–102, 1978.

[51] “Toy datasets (7.1.2. diabetes dataset) - scikit-learn 1.4.dev0 doc-
umentation,” [Online]. Available: https://scikit-learn.org/dev/datasets/
toy_dataset.html#diabetes-dataset

[52] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani, “Least angle regres-
sion,” Ann. Statist., vol. 32, pp. 407–499, 2004.

[53] A. Honda, M. Itabashi, and S. James, “A neural network based on the
inclusion-exclusion integral and its application to data analysis,” Inf.
Sci., vol. 648, 2023, Art. no. 119549.

[54] S. Oh, “Feature interaction in terms of prediction performance,” Appl.
Sci., vol. 9, 2019, Art. no. 5191.

[55] Y. Chen and Y. Yang, “The one standard error rule for model selection:
Does it work?,” Stats, vol. 4, pp. 868–892, 2021.

[56] X. Peng, “TSVR: An efficient twin support vector machine for regres-
sion,” Neural Netw., vol. 23, pp. 365–372, 2010.

[57] “RandomForestClassifier, scikit-learn (ver. 1.4.1).” Accessed: Mar.
6, 2024. [Online]. Available: https://scikit-learn.org/stable/modules/
generated/sklearn.ensemble.RandomForestClassifier.html

[58] M. F. Lopes-Virella, P. G. Stone, and J. A. Colwell, “Serum high density
lipoprotein in diabetic patients,” Diabetologia, vol. 13, pp. 285–291,
1977.

YUTO OMAE received the Ph.D. degree in en-
gineering from the Nagaoka University of Tech-
nology, Niigata, Japan, in 2016. He is currently
a Lecturer with the Department of Industrial En-
gineering and Management and the vice Director
with the Artificial Intelligence Research Center,
College of Industrial Technology, Nihon Univer-
sity, Tokyo, Japan. His research interests include
theories of machine learning and Bayesian opti-
mization.

MASAYA MORI received the master’s degree in
engineering from the Nagaoka University of Tech-
nology, Niigata, Japan, in 2022. He is currently a
Researcher with College of Industrial Technology,
Nihon University. His research interests include
intelligent informatics and machine learning.

YOHEI KAKIMOTO received the Ph.D. degree in
engineering from Nihon University, Tokyo, Japan
in 2023. He is currently an Assistant Professor with
the College of Industrial Technology, Nihon Uni-
versity. His research interests include operations
research and social simulation.

226 VOLUME 5, 2024

https://dx.doi.org/10.1007/978-1-4419-9326-7_11
https://xgboost.readthedocs.io/en/stable/python/python_api.html
https://xgboost.readthedocs.io/en/stable/python/python_api.html
https://lightgbm.readthedocs.io/en/latest/Parameters.html
https://scikit-learn.org/stable/modules/classes.html
http://lib.stat.cmu.edu/datasets/boston
http://lib.stat.cmu.edu/datasets/boston
https://scikit-learn.org/dev/datasets/toy_dataset.html#diabetes-dataset
https://scikit-learn.org/dev/datasets/toy_dataset.html#diabetes-dataset
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


