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ABSTRACT Over the years, several frameworks have been proposed in the domain of Explainable AI
(XAI), however their practical applicability and utility need to be clarified. The neighbourhood contexts
are shown to significantly impact the explanations generated by XAI frameworks, thus directly affecting
their utility in addressing specific questions, or “explananda”. This work introduces a methodology that
use a comprehensive range of neighbourhood contexts to evaluate and enhance the utility of specific XAI
techniques, particularly Feature Importance and CounterFactuals. In this evaluation, two explananda are
targeted. The first one examines whether features’ collection should be halted as per the AI model based on
the sufficiency of the current set of information. Here, the information refers to the features present in the data
used to train the AI-based system. The second one explores what is the most effective information (features)
that should be collected next to ensure that the AI outputs the same classification as it would have generated
with all the information present. These questions serve as a platform to demonstrate our methodology’s
ability to assess the impact of customised neighbourhood contexts on the utility of XAI.

INDEX TERMS Explainable AI, healthcare, SHAP, LIME, counterfactuals, DiCE ML, evaluation.

I. INTRODUCTION
In recent years, efforts to demystify the Artificial Intelli-
gence(AI) and Machine Learning(ML) models has led to the
development of Explainable AI(XAI) techniques, such as Fea-
ture Importance(FI) and CounterFactuals(CFs). In XAI, an
“explanation” addresses a specific question called explanan-
dum (plural - explananda) about ML models to enhance our
understanding of them [1]. However, the interpretations of
the provided explanations remain unclear, leading to their po-
tential misapplication or over-extension to other explananda.
There is a pressing need to critically evaluate the precise
applicability of explanations to prevent misinterpretations and
harness their potential effectively [2].

To assess the applicability and reliability of XAI frame-
work, three distinct evaluation strategies are followed
- application-grounded, human-grounded and functionally-

grounded, as proposed by [3]. Application-grounded evalu-
ations have been conducted by researchers [4], [5] to evaluate
the practical applicability of explanations in a given domain
using domain-relevant explananda. Human-grounded eval-
uations have been conducted through user studies in [6],
[7] to assess explananda related to user comprehension.
Functionally-grounded evaluations have also been conducted
in [8], [9] to assess the explanations on the technical ex-
plananda such as robustness, and faithfulness.

However, the explanations generated by XAI technique are
sensitive to the sample distributions in a local neighborhood
that is used for the analysis [10], [11]. These distributions are
referred to as “contexts” in this paper. If an XAI framework
addresses a specific explanandum, changing the neighborhood
context will impact the efficacy of that framework for the
given explanandum [12]. While various evaluation approaches
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have been proposed in the literature, a gap exists in com-
prehensively evaluating the impact of various neighborhood
contexts on the effectiveness of explanations to address a
given explanandum.

In this work, we propose a methodology that provided a
structured approach of facilitating explanandum-based eval-
uations of XAI using neighbourhood contexts. We have
selected two application-grounded explananda as use cases
to demonstrate our methodology. These explananda, while
applicable across multiple domains, are particularly valuable
in enhancing ML-based Clinical Decision Support Systems
(CDSS) based on our review of the literature [13], [14].

To identify suitable explananda, we focused on the chal-
lenges faced in medical diagnostics by CDSS, especially
when relying on tabular data. Typically, these systems assume
access to a complete set of features, but this is often not
feasible in low-resource settings [15]. Based on this chal-
lenge, the first explanandum, termed “early stopping,” is -
whether a medical workflow can be halted early based on
XAI explanations. This is useful when clinicians are con-
fident enough to make a diagnosis without collecting more
information about a patient and want to assess whether the
AI system aligns with this thought process [14]. The second,
“next best feature,” is - what should be the next critical med-
ical information or a feature needed for an accurate diagnosis
by the AI system. Applying standard XAI techniques may
not provide clear answers for these explananda. For exam-
ple, highly-ranked features by FI do not necessarily suggest
that they are the only ones needed for a diagnosis by the AI
system [16].

The importance of this work is two-fold: different neigh-
bourhoods are explored to understand their impact on the util-
ity of the explanations for specific explananda. Additionally, it
provides an enhanced interpretation of XAI explanations gen-
erated using different contexts and brings awareness to their
limitations. The methodology is applicable for tabular datasets
as they have distinct features that can be collected using a
workflow. For evaluation, we considered state-of-the-art XAI
techniques - SHapley Additive exPlanations (SHAP) and Lo-
cally Interpretable Model-agnostic Explanations (LIME), and
DiCE(Diverse Counterfactual Explanations); that are not lim-
ited to explaining gradient-based models and are applicable to
all types of ML models. For “early stopping”, our evaluation
considered SHAP and LIME because these frameworks can
highlight features to indicate whether they are sufficient for
a reliable classification [16]. CFs do not inherently focus on
feature sufficiency and are not included in the evaluation for
this explanandum. However, all three techniques – SHAP,
LIME, and DiCE – are assessed under the explanandum of
“next best feature” as all of them highlight features that can
influence classification. The key contributions of our work are
outlined.
� Formalized definitions of the explananda relevant to the

medical domain are proposed.
� Experimental methodology to evaluate XAI frameworks

with respect to explananda is proposed

� Deriving optimal neighbourhood contexts to achieve
better performance of XAI on the explananda is demon-
strated.

II. BACKGROUND INFORMATION
In this section, aligned to the core contribution of the work,
background information on contexts is provided. As we eval-
uated neighborhood contexts for individual XAI frameworks,
we also discuss the mechanism of XAI frameworks and detail
how an input neighborhood context is used by the frameworks
to generate explanations.

A. CONTEXTS
In XAI, explanations are usually categorised as either local
or global [17]. Global explanations provide a broad under-
standing of the ML model, while local explanations focus
on specific model decisions for individual inputs. In this
work, the selected explananda focus on patient-specific med-
ical workflows; therefore, local explanations are considered
for the evaluation. Local explanations often use neighbour-
hoods (here, a set of medical records) around an input sample
(a medical record) to generate the explanation [10]. This
neighbourhood can contain training data samples as well as
perturbed samples by changing feature values in the input
sample using specific criteria.

In XAI, a neighbourhood refers to samples close to an
input, while a “context” c specifies the subset of these samples
selected for analysis based on a criteria [16]. A context is dis-
tinct from the local neighbourhood as it is not just a collection
of locally similar samples, but rather those selected using a
specific criteria, forming a distribution to be used for generat-
ing explanations [18]. This distribution can be characterised
in different ways, such as marginal or conditional distribu-
tions, indicative of how feature values have been perturbed
or intervened upon. A standard context is defined as the dis-
tribution of the training data. The mathematical formulations
of contexts are not the main focus of this paper, we assume
that these contexts are appropriately defined based on their
respective criteria.

Fig. 1 shows two example contexts using dotted blue
curves. The selected samples in the contexts are specifically
colored to distinguish their types: training samples by yellow,
and the perturbed ones by grey. In context c1, the classification
of an input sample (highlighted in red) in the green category is
analysed by using both training (yellow) and perturbed sam-
ples (grey). c1’s criteria is to select neighbourhood samples
that share the same classification as the input sample. The
distribution of c1 can be represented by conditional probabil-
ity based on the likelihood of that the samples are within the
same class. Context c2 generates explanations by selectively
comparing the input to the neighbouring training samples
(yellow) from the opposite class (blue). In c2, the analysis
gives more weight to samples nearer to the input, as shown
by their size, with their distribution defined by a weighted
conditional probability. Various contexts and their criteria are
elaborated in Section IV.

182 VOLUME 5, 2024



FIGURE 1. Contexts c1 and c2 highlighted by dotted blue curves. Yellow
points represent selected training samples and grey points represent the
perturbed samples.

B. XAI FRAMEWORKS
FI and CFs are predominant XAI techniques [17]. FI assigns
scores to features called FI scores with positive or negative
values to denote whether a feature positively or negatively im-
pacts a classification [19]. FI reflects the idea of “sufficiency”
to highlight features that are sufficient in maintaining a classi-
fication [18]. CFs describe minimal feature changes required
to alter a classification [20]. In CFs a feature is deemed highly
important if it is frequently changed to alter the outcome. CFs
align with the concept of “necessity”, where a feature change
could alter a classification [16].

For model-agnostic FI, SHAP1 and LIME2 are state-
of-the-art open-source FI frameworks [21], [22]. Other FI
frameworks such as integrated gradients and layer-wise rele-
vance propagation are specific to neural networks and mainly
used for image datasets [23].

SHAP: To explain an input-output pair (u, f (u)),
SHAP [24] estimates the average marginal contribution
of an individual jth feature considering all possible feature
subsets. The feature subsets are constructed by including
the original value of the features belonging to the subset,
and replacing the values of other features from the training
data samples. Afterwards, the prediction difference by f̂ on
including and excluding the jth feature value in different
feature subsets is analysed. Here, excluding means replacing
that feature value from the ones in the training data [25]. A
kernel function is used to weigh the samples based on the
size of the feature subset used, i.e., how many feature values
are common between the original input and the sample.
The standard context for SHAP for explaining an input
is a constructed set of perturbed samples that contain a
combination of feature values from the original input and
training samples that is inputted to SHAP as a neighborhood
context. These perturbed samples with few or too many

1[Online]. Available: https://github.com/slundberg/shap
2[Online]. Available: https://github.com/marcotcr/lime

TABLE 1. Summary of Methods for Context Construction

common feature values are given higher weights based on the
kernel function.

LIME: To explain an input-output pair (u, f (u)) locally,
LIME [10] estimates the FI scores by generating a local neigh-
bourhood around u and training an interpretable linear model
g on the neighbourhood samples weighted using a distance
metric, and their classifications by f as ground truth. The
coefficients of a linear model that best approximates f pro-
vide the FI scores. Small changes in feature values with large
changes in the model’s prediction cause larger FI scores. The
standard context in LIME uses a local neighbourhood based
on the training samples closer to the input as per the Euclidean
distance.

CF: Wachter et al. [20] introduced a CF framework that
solves an optimization problem to identify instances close
to the original input (as per a distance metric) but classified
differently. To have more diverse CFs, Mothilal et al. [26]
proposed DiCE framework.3 In this work, we evaluate CFs
from DiCE because Wachter framework [20] provide only one
CF explanation, while DiCE [26] provides multiple CFs. Mul-
tiple CFs can be collectively analysed to generate importance
scores for features by counting how many times a feature’s
value changed in the CFs. The context used by CF frameworks
is a local neighborhood usually using the Euclidean distance
but restricted to samples having different classification than
the input sample. If an additional criterion is added to this
context (e.g. not allowing changes in certain features), the se-
lection of a CF explanation will vary. Table 1 summarises the
context construction in the three discussed XAI frameworks.

III. FORMALIZED EXPLANANDA
The sections below detail the explanandum-based evaluation
using feature rankings by XAI and their applications. These
explananda are used as examples from the medical domain
to demonstrate application-based evaluation by simulating
scenarios in a domain and evaluating utility of XAI. The
explananda are discussed with respect to the medical domain
but can be extended to other domains as well.

1) EARLY STOPPING
This evaluation assesses the utility of feature rankings us-
ing a given context in enabling an ‘early stop’ in medical

3[Online]. Available: https://github.com/interpretml/DiCE
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FIGURE 2. Workflow depicted by the arrows will be stopped based on the
average rankings of present features - A, B, and C (in green), and missing
features - D, E, and G (in red).

workflows. An ‘early stop’ signifies that sufficient data has
been collected, and additional data is unlikely to change the
classification. This decision is crucial in medical settings,
where unnecessary tests can cause undue patient stress and
increased healthcare costs. The utility of this explanandum
could be extended to other domains as well. For example, in
autonomous driving, the decision to brake can be taken early
if an obstacle is detected using some sensors’ inputs, without
waiting for further sensors’ inputs.

The explanandum is represented using an example as
shown in Fig. 2. The evaluation process involves comparing
the average feature rankings of collected or “present” features
(A, B, C) and the “missing” features (D, E, G). These feature
rankings are generated by XAI frameworks for each input
sample in which missing features are imputed using mean
values. The FI scores generated will reflect the importance of
the imputed mean values and will not consider other possible
values of the missing features. The proposed methodology
aims to use these specific FI scores for the evaluation such
that an optimal context can be derived. This optimal context
can be specifically used to generate feature rankings in mean-
imputed samples such that early stopping can be predicted
based on average rank comparison. We used mean imputa-
tion for its generic applicability, and straightforwardness [27],
[28], [29]. The imputation is done because we aim to assess
the direct utility of XAI at a specific stage of a medical work-
flow with missing features and evaluate the utility of feature
ranking in an imputed input sample.

This evaluation examines whether the rankings generated
using a given neighborhood context reflect features’ suffi-
ciency. In Fig. 2, as shown by the importance bar-plots of
present and missing features (in green, and red respectively),
clinicians can observe that the already collected features are
sufficiently informative to the AI to consider an early stop in
the workflow, based on their higher average rank compared
to the missing features. For comparison, the average rankings
of present and missing features are used to have a holistic
view of relative importance, unlike percentile methods that
lack depth by only comparing ith percentile features [30].
As detailed in Section IV, the comparison involves the av-
erage rank of k missing features and the average rank of
top-k present features ensuring that our focus remains on the
most influential present features and avoiding dilution of the

FIGURE 3. The next best feature D is selected to arrive to the final
decision based on the importance rankings.

average rank from lower-ranked ones. In [31], we gathered the
workflow information for the heart disease diagnosis based
on the medical literature for demonstrating a specific utility
of XAI. However, in this work, we used random multiple
sets of present/missing features for the evaluation due to the
lack of workflow information with respect to other datasets
- Cervical Cancer, and Diabetes. Our analysis is generic and
further validation with respect to a specific workflow will be
considered in future work.

2) NEXT BEST FEATURE
This evaluation assesses the utility of feature rankings in
identifying the necessary “next best” feature to collect. If
additional data is required for a diagnosis, feature rankings
can then be utilised to recommend the specific feature value
that would be most informative. This can enable clinicians
to validate an ML model’s alignment with respect to the
medical diagnosis of a patient that will lead to faster, and
accurate diagnosis. In this explanandum, that the order of
feature collection is arbitrary and is not tied to a specific
medical workflow, allowing for broader applicability of this
explanandum. For example, in digital marketing, if the initial
data about a user (e.g. browsing history) doesn’t provide a
clear profile, the system can identify the next piece of data
(e.g. survey responses, purchase history) to better target ads.

Similar to the early stopping, evaluation is done by gener-
ating feature rankings of input samples such that the original
values are used for present features, and the mean values for
missing features as we don’t have their original values at a
given stage. The selection of the next best feature is based
on the highest ranked missing feature by an XAI framework.
This methodology assumes that the feature rankings reflect
their information content towards generating a classification
and that the features don’t need to be collected in a particular
sequence.

This explanandum is shown in Fig. 3, where feature D is
chosen as the next best feature among missing features D, E,
and G. The evaluation uses random combinations of present
and missing features.

IV. METHODOLOGY
This section presents our methodology for evaluating XAI
frameworks – SHAP, LIME, and DiCE – across different
contexts, to identify the optimal context for each framework
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TABLE 2. Datasets Information and Accuracy Scores

FIGURE 4. Proposed methodology for evaluating XAI.

in each explanandum. We specifically chose three medical
datasets – Cervical Cancer, Heart Disease, and Diabetes –
primarily because they comprise of individual features that
can be gathered sequentially in medical workflows as rep-
resented in the explananda’s descriptions. For example, a
cholesterol test is performed after initial patient information
for heart disease diagnosis.

We used a Support Vector Machine (SVM) with a lin-
ear kernel for classification. Since our evaluation focuses
model-agnostic on XAI frameworks rather than the classi-
fier’s performance, we have discussed the results using SVM
classifier. To demonstrate the model-agnostic nature of evalu-
ation results, additional results using using the Random Forest
(RF) classifier are provided in the supplementary material
(Appendix A). Table 2 summarises the dataset details and
classifiers’ accuracy scores.

The proposed methodology can be used in any domain and
on any tabular dataset where features are sequentially col-
lected using workflows. Fig. 4 illustrates our methodology: we
select a dataset, preprocess it, and train a classifier. The evalu-
ation begins with selecting input samples and modifying their
feature values to simulate scenarios for early stopping and
next best feature for XAI utility assessment. Missing features
p′ are imputed with mean values to mimic data unavailability.
A chosen context type is then used to create a local neighbour-
hood around the modified input sample. The modified sample,
along with its neighbourhood and the classifier, are input to
the XAI frameworks to produce explanations.

Explanations are then standardised to have consistent evalu-
ation. We used the magnitude of importance scores (FI scores)
from XAI to generate feature rankings. While SHAP and
LIME provide FI scores directly, in DiCE, the scores are
inferred from how often a feature is suggested for change,

with more frequently changed features receiving higher FI
scores and thus top rankings [16].

Finally, the standardised outputs from XAI frameworks are
evaluated against the formalized explananda. In Fig. 4, the
standard output is the feature rankings that include red bars
showing missing features’ FI scores (p′) and green for present
ones (p). The ranking feeds into the two evaluations: (1) early
stopping - where the average rankings of the missing and
present features (p′, p(top − k)) are compared; (2) next best
feature - where the highest-ranked missing feature is evalu-
ated.

A. CONTEXTS
As mentioned in Section II, XAI frameworks craft their own
neighborhoods from a given input context. We evaluated var-
ious contexts with XAI frameworks to test their effectiveness
on our chosen explananda. This includes contexts existing in
XAI literature [12], [16] as well as newly proposed probabilis-
tic and range-based contexts. The taxonomy of contexts used
is described below:

1) Standard: This uses samples only from the training set,
reflecting training data distribution [24].

2) Generic: This includes both - samples from training
data and those generated through perturbations [11].

3) Distance metric based (dist): This includes samples
close to the input, determined using Mahalonobis dis-
tance. The Mahalonobis distance is calculated using a
covariance matrix based on the training data, ensuring
that it reflects the feature relationships and variations
seen during the model’s training [10].

4) Restricted Outside (outside): This has samples with
classifications different from the input sample [35].

5) Restricted Inside (inside): This has samples that share
the same classification as the input sample [36].

6) Probabilistic (prob): In this, samples with continuous
feature values near the input sample are given higher
likelihood based on a linear function of their proximity.
For example, if the input sample has an age value of 25,
then ages 24 and 26 are more likely to be included than
ages 20 or 30. This method allows for the inclusion of
samples further from the input but with progressively
lesser weight, distinguishing it from strictly distance-
based methods. Probabilities for categorical/binary data
are uniform. There is no inter-feature relationship con-
sidered in this context. This context is proposed to
analyse the model’s behaviour across various samples
that are closely clustered around feature values similar
to the input.

7) Range based (range): This context defines specific
ranges for feature values, using narrow intervals like
[x-value, x+value] for continuous features. The size of
these intervals, typically small values like 3 or 5, may
be informed by domain expertise or other criteria [37].
Categorical/binary features are uniformly distributed.
This approach also treats each feature independently
and analyses the model’s behaviour among samples
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with feature values evenly spread within a set range,
allowing for an analysis of feature sensitivity.

Using our taxonomy, we can construct complex contexts.
For instance, a “prob_range” hybrid context combines the
“prob” and “range” contexts. In “prob_range”, a sample x1
is more likely to be included in the context than x2 if x1 is
nearer to input u, provided both x1 and x2 fall within a spec-
ified feature value range. Samples outside this range are not
considered. Merging different neighbourhood contexts allows
for a more comprehensive evaluation, leveraging the distinct
advantages of each to provide a more detailed analysis.

B. APPLICATION OF CONTEXTS
While multiple contexts can be constructed, not all contexts
can be applied to every technique as the methodology to gen-
erate scores for features differs. LIME won’t function with
any restricted contexts (inside/outside) as they require sam-
ples from both classes to train their interpretable classifier.
SHAP, on the other hand, is more flexible and can be used
with restricted contexts as well. Finally, DiCE CFs require
restricted contexts outside the decision boundary. Hence,
combinations of contexts with an “outside” restriction are
used with DiCE.

C. EVALUATION OF EXPLANANDA
This section detail the procedure for each evaluation. The
dataset is divided into the training and testing data. The clas-
sifier is trained using the training data. Each test sample from
the test data x is analysed using XAI frameworks using dif-
ferent context. A modified sample x′ with missing features
(imputed by their mean values from the training data) repre-
sents the scenario with missing information.

For each specified proportion of missing features, i.e.,
missing_proport ion – 20%, 30%,40%,50%,60% or 70% – 50
trials are conducted to ensure variety in the selection of miss-
ing features. The number of missing features is varied as per
the percentage of features in datasets because a single feature
in diabetes (with less features) can contribute much more than
a single feature in cervical cancer (with more features) where
as 20% of features in diabetes might be equivalent to the 20%
of features in the cervical cancer dataset. As different datasets
have different feature types, the complex interaction of fea-
tures will lead to variation in success rates across datasets.
This is discussed further in the results Section V. The code to
reproduce results using the proposed methodology is available
on Github.4

1) EARLY STOPPING
This evaluation examines whether the “present” features are
sufficient to maintain the classification, which is a key aspect
of FI frameworks. Hence, SHAP and LIME are assessed,
while CFs, which do not address sufficiency directly, are not
included in this evaluation. For each context and FI framework

4Link to the code - https://github.com/UrjaPawar/XAI_Evaluation

pair, we calculate FI scores for modified samples (x′) and
derive feature rankings.

If the average rank of top-k present features is more than
that of k missing features, it is interpreted that the critical
features have already been gathered, and workflow can be
stopped. Successful attempts NES are recorded by measuring
identified cases of early stop that indeed already have a same
classification as that of original i.e, NES is incremented if
the classification with mean-imputed missing features f (x′)
matches the original f (x), implying further data collection
is unnecessary. ES_Trials represent the condition of early
stopping by counting the total number of trials where the
classification with the imputed values in missing features has
been the same as the original classification ( f (x′) == f (x)).

Success rates are calculated as the proportion of successful
attempts (NES) to the total number of trials (ES_Trials). This
rate indicates the likelihood of successfully predicting early
stopping based by comparing FI scores of present and missing
features. We evaluate this rate for various contexts to derive
an optimal context that will define the sample distribution
needed to produce the most useful FI scores for this explanan-
dum. Section V provides this derivation after presenting our
results. Statistical significance is determined via a binomial
test comparing NES against ES_Trials, with the hypothesised
success probabilities of 50% and a p-value cutoff of 0.005 for
significance.

2) NEXT BEST FEATURE
This explanandum evaluates the most important missing fea-
ture highlighted by SHAP, LIME and DiCE. CFs from DiCE
are included in the evaluation, as they pinpoint features that
could alter the classification outcome, specifically toward the
accurate classification.

For each combination of context and XAI framework, the
next best feature is selected in three distinct ways:

1) General FI scores (FI ′): The top-ranked missing feature
(TopF ) is chosen from the rankings generated using
contexts.

2) Custom contexts (FI_Cus): FI scores are recalculated
using context c′. In c′, the values of the present features
are fixed to their original values while varying the ‘miss-
ing’ feature values based on the rules of the specific
context. The top-ranked missing feature is then selected
(TopFcus).

3) Random selection: A feature is arbitrarily chosen from
the missing set (RandF ).

When a feature is selected using one of the above-
mentioned ways, a successful attempt is noted when restoring
the original value of the selected feature - TopF , TopFcus,
and RandF− results in a switch to the original classification
(with all values present). The successful attempts using three
types of feature selection are noted separately - NNBS_Gen,
NNBS_Cus, and NNBS_Rand . The total number of trials where
this explanandum is applicable ( f (x′) �= f (x)) are denoted by
NBS_Trials.
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FIGURE 5. Success rates for ‘early stopping’ using FI frameworks with unrestricted contexts.

FIGURE 6. Success rates for ‘early stopping’ using SHAP with restricted contexts.

The success rate in this explanandum is the ratio successful
attempts (e.g. NNBS) and NBS_Trials. This rate represents
the likelihood of successfully identifying the next best feature
based on FI scores of missing features. An optimal context
is derived by comparing success rates of various contexts to
select samples to generate most useful FI scores. Binomial
tests are performed considering the successful attempts and
NBS_Trials. The results are considered valid if the success
rate is more than 50%. A p-value threshold of 0.005 is used.

V. RESULTS AND DISCUSSIONS
The evaluation assesses how SHAP, LIME, and DiCE perform
with different contexts to identify the optimal contexts that
suit the selected explananda.

Success rates are visualised using heatmaps: the y-axis dis-
plays the XAI framework-context pairs (e.g., SHAP-range),
and the x-axis represents percentages of missing features. The
colour intensity of each cell indicates the success rate for that
particular framework-context pair and dataset, with darker
colours denoting higher rates.

A. EARLY STOPPING
This evaluation assesses of FI frameworks in predicting an
“early stop”. DiCE is not a part of this evaluation.

Fig. 5 shows the success rates of LIME and SHAP on SVM-
Linear using various unrestricted contexts, and Fig. 6 shows
SHAP’s performance in restricted contexts as LIME cannot
use these. For the cervical cancer dataset, both SHAP and
LIME showed similar effectiveness, but in the heart disease

datasets, SHAP outperformed LIME by 50%. In the diabetes
dataset, SHAP performed well only in certain contexts. This
variation in absolute values of success rates can be attributed
to the different numbers and types of missing features in
datasets across various missing percentages, indicating that
the absolute success rates of XAI frameworks is dependent
on the dataset and the missing percentage of features. With
increasing percentage of missing features, contexts can gen-
erate lesser representative neighborhoods for an input sample
with more features imputed. Based on the criterion used for a
specific context, the neighborhoods generated will be distinct
with each missing percentages that lead to variation in suc-
cess rates. However, in relative terms, the standard , generic
and contexts based on prob in SHAP outperformed others on
average across all datasets. The broader sample diversity in
these contexts without feature value restrictions enabled cap-
turing the sufficiency of present features. With range contexts,
SHAP’s perturbations failed to create a varied enough sample
set for sufficiency analysis.

In LIME, no single context performed well across differ-
ent missing percentages. However, as the missing percentage
increased, on average, contexts based on range, such as
prob_range, generally showed higher success rates across the
datasets. With a limited range of values in features, LIME
assigns importance as per the model’s sensitivity to small
changes in feature values. As the number of missing features
increased, sensitivity-based feature ranking became more
dominant and captured the importance of sensitive missing
features. The context prob and prob_dist also performed well

VOLUME 5, 2024 187



PAWAR ET AL.: OPTIMAL NEIGHBORHOOD CONTEXTS IN XAI: AN EXPLANANDUM-BASED EVALUATION

FIGURE 7. Success rates for ‘early stopping’ using LIME & SHAP with standard and derived contexts.

due to LIME’s weighting scheme, which prioritizes samples
based on their distance from the original input, and the prob
context provides more locally similar samples, making im-
portance rankings more reliable. Both generic and standard
contexts provided diverse sets of samples and showed similar
success rates across different missing percentages.

The performance of restricted contexts with SHAP is shown
in Fig. 6. In the cervical cancer and heart disease dataset, there
is no single context that performed best across the missing
percentages. In cervical cancer, this is due to a relatively
higher number of features in the cervical cancer dataset, it is a
difficult to identify a context that addresses both - sufficiency
of present features and sensitivity of missing features. In
the heart disease dataset, SHAP showed comparable success
rates using contexts based on inside (averaging 80%) and
outside (averaging 75%). As there is no classification change
in an inside context, SHAP assesses feature’s importance by
analysing difference in original prediction score and the obvi-
ous increased score for the current classification that enables
sufficiency-based importance ranking. outside contexts also
performed well as they contain samples of a different class,
enabling SHAP to identify sensitive features by measuring
how feature alterations can change classification. In the di-
abetes dataset, as the number of missing features increased
to 5 (70% of 7 available features), the outside contexts with
range such as range_outside, achieved very high performance
with SHAP, averaging 95%. In these contexts, SHAP captures
the significance of features based on their sensitivity because
all samples belong to the opposite class (outside), and have
a limited variation in the features’ values. As the number
of missing features increases, sensitivity-based feature rank-
ing becomes dominant in capturing highly sensitive missing
features. The optimal choice between “inside” and “outside”
varies by dataset and depends on the specific goal: either
to confirm the sufficiency of existing features or to identify
sensitive missing features.

As discussed, the sufficiency of present features is captured
by assessing the impact of present features’ values in strength-
ening the classification, compared to other values in the data
(standard or generic context). The sensitivity of missing
features is best captured in a limited range-based context.
With this understanding, an optimal context is derived where
present features’ values are randomly chosen, and missing
features are limited to a range. These samples are sorted using
the Mahalonobis distance metric, ensuring alignment with
training data and the locality. Fig. 7 compares the success rate
of this derived context with the standard context of SHAP and

TABLE 3. Success Rates for Using RF

LIME. As shown in the figure, the derived context positively
affected the performance of both SHAP and LIME, making it
useful for this explanandum. The performance gains using the
derived contexts over the standard contexts is also validated
using RF classifier in Table 3.

A binomial test is used to assess the significance of the
derived context in SHAP and LIME with the hypothesised
success probability of 50%. While standard SHAP showed p-
values lower than 0.005, the standard LIME did not achieve
statistically significant success rates, with p-values exceeding
0.005. The p-values for derived contexts in LIME and SHAP
were significantly lower than 0.005. The detailed results for
RF classifier are provided in the supplementary material (Ap-
pendix A). We have further validated the results using median
data imputation and the results are included in the supplemen-
tary material (Appendix B). In summary, a context defined by
a distribution that allows for random values for the present
features and only a narrow range of values in imputed missing
features is effective in capturing the significance of both sets
of features by LIME and SHAP such that their feature ranking
can enable the decision of early stopping.

B. NEXT BEST FEATURES
Here, the primary objective is to evaluate how well SHAP,
LIME, and DiCE identify the “next best feature” in a work-
flow, assuming no feature inter-dependency. Success rates are
presented using discussed contexts (represented by general)
and their customised versions with fixed values of present
features (represented by custom). These results are also com-
pared to rates achieved by random selection.

Figs. 8 and 9 show FI frameworks’ performance in general
and custom contexts respectively. Similar to the previous ex-
planandum, the results indicate that the success rate is not
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FIGURE 8. Success rates for ‘next best feature’ using FI frameworks with general unrestricted contexts.

FIGURE 9. Success rates for ‘next best feature’ using FI frameworks with custom unrestricted contexts.

strongly linked to the percentage of features that are missing.
Instead, it depends on the datasets. This is intuitive as the
relative rankings among missing features are affected by the
total number and type of missing features rather than their
proportion to present features.

Fig. 8 displays success rates for LIME and SHAP within
general contexts. For cervical cancer, SHAP achieved an
80% average success rate, compared to LIME’s 25%. In the
heart disease dataset, LIME scored better with a 57% aver-
age, surpassing SHAP’s 40%. In the diabetes dataset, both
frameworks had similar performance, averaging around 50%.
Notably, success rates are very high when only 20% of fea-
tures are missing, particularly in the diabetes dataset, where
the inclusion of the only one missing feature will result in
the accurate classification. This performance variation across
datasets can be attributed to various factors such as the number
and types of features. However, to derive an optimal context,
the relative performances of contexts across the datasets will
be analysed. The standard context was the only one that
consistently performed well by providing samples from the
training data that were aligned with the distribution of the test
data samples used in the evaluation.

For LIME, there isn’t a specific context that proves effective
across all datasets. This is because LIME analyses multiple
samples with respect to each other, rather than analysing them
with respect to the specific input. This is also influenced by
the interactions between the missing features’ values and the
present feature values in other samples. A missing feature

that impacts classification in samples with different values
of present features, doesn’t necessarily indicate the next best
feature. Its importance should be evaluated in relation to the
current values of the present features. The most insightful
context here should enable LIME to analyse classification
changes with respect to the missing features.

Fig. 9 shows success rates using customised contexts with
fixed values of present features. These contexts significantly
improved LIME’s performance across datasets. Specifically,
there was a 100% improvement in the cervical cancer dataset,
7% in the heart disease dataset, and 20% in the diabetes
dataset. Contexts range and dist_range performed consis-
tently by highlighting the sensitivity of missing features
within a range. However, these results have limited statistical
significance due to the less number of trials. This is because
with limited range of values in missing features and fixed
values of present features, there are fewer scenarios where
samples from both classes are present for LIME to func-
tion. SHAP’s performance with custom contexts remained
largely the same for the diabetes and heart disease datasets but
dropped by 12% in the cervical cancer dataset. This means
that apart from standard context, SHAP’s rankings using
general as well as custom unrestricted contexts are not useful
for this explanandum.

Fig. 10 shows the results when general restricted con-
texts are used with SHAP and DiCE. For DiCE, no context
performed well across all datasets. In CFs, multiple fea-
ture changes make it challenging to identify truly impactful
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FIGURE 10. Success rates for ‘next best feature’ using SHAP & DICE with general restricted contexts.

FIGURE 11. Success rates for ‘next best feature’ using SHAP & DICE with custom restricted contexts.

features. This leads to complicated interactions and makes
DiCE CFs ineffective for this explanandum even with custom
contexts, as shown in Fig. 11.

With general restricted contexts(Fig. 10), SHAP’s results
varied by dataset with no performance patterns related to the
inside or outside contexts. However, when custom restricted
contexts are used (Fig. 11), a clear demarcation of perfor-
mance by outside is observed in cervical cancer and diabetes
datasets. Heart disease showed lower success rates because
more than one feature might be necessary to reach the correct
classification. This is validated by observing the cumulative
performance of top-2 next best features in heart disease using
the custom restricted contexts with SHAP in Fig. 12. It indi-
cates that the outside context outperformed the inside context
by 50% on average. The outside context contains samples
only from the opposite class, making the importance rankings
more reflective of key features that could change the classifi-
cation. This is especially effective with custom contexts where
fixed present features are used.

The custom outside contexts with SHAP did not perform
as well as the standard , as shown in Fig. 8. For optimal
performance, a custom context is derived using training data
samples by 1) fixing values of present features to be same as
that in the input sample and 2) selecting only those samples
that have a different classification than the input sample. This
derived context is hybrid of the standard and custom outside
contexts. The success rates using the derived context in
SHAP are shown in Fig. 13; on average, SHAP’s performance
increased by 12% compared to the standard context. LIME is
not used with this context as it is restricted to one class. The

FIGURE 12. Success rates of SHAP using top-2 ranked features with
custom restricted contexts.

binomial tests were conducted with the hypothesised success
rate of 50%. The statistical significance of the success rates of
derived contexts with SHAP was high, with p-values signifi-
cantly lower than 0.005.

To demonstrate the efficacy of FI rankings in this explanan-
dum, the success rates using general and custom contexts were
compared to random feature selection as shown in Fig. 14. The
three plots correspond to each dataset, with the y-axis showing
the average success rate across all the contexts and the x-axis
showing the XAI frameworks. The general contexts, cus-
tom contexts, and random selection are represented by blue,
green, and brown colours, respectively. Darker colours show
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FIGURE 13. Success rates for ‘next best feature’ using SHAP with the standard and derived contexts.

FIGURE 14. Average success rates for ‘next best features’ using XAI with 1) general, 2) custom, and 3) random contexts.

TABLE 4. Success Rates Using RF

success rates when the top-ranked feature is selected, and
lighter colours show cumulative gains in success rates when
the top-2 features are selected. The plots show that using
FI rankings with general/custom contexts are more effective
than random selection. In diabetes, random selection also per-
formed well due to the lesser number of features. Overall, FI
rankings are more effective than random selection, and using
SHAP with the derived context has proven to be particularly
effective for this explanandum.

The performance gains using the derived optimal contexts
using RF classifier is shown in Table 4. The detailed re-
sults are included in supplementary material (Appendix A).
The derived context was successfully validated using me-
dian data imputation as well and the results are included
in Appendix B. In summary, while custom contexts im-
proved LIME’s performance, the success rates were not
always more than 50%. DiCE didn’t perform well with any
context due to feature interactions. For SHAP, a custom con-
text from training data that is restricted to the samples of
different class than the input is effective in generating fea-
ture ranking that enables the identification of the next best
feature.

VI. RELATED WORK
This section provides an overview of the related work around
the significance of explananda and the impact of neighbour-
hood contexts on the explanations.

Doshi-Velez & Kim [3] categorised XAI evaluations into
three types - application-grounded, human-grounded, and
functionally-grounded. Our study is an application-grounded
evaluation where the focus is to assess the practical impact
of explanations in specific use cases of real-world settings.
We assess whether provided explanations enable early stop-
ping and identify next best feature. These evaluations involve
end-users but can be done without them if the explananda
can be simulated and analysed statistically as indicated in [2].
The human-grounded approach evaluates user comprehension
and trust in AI through user studies. Within this approach,
various frameworks were discussed to tailor the explanations
based on the requirements of the audience, such as by using
well-defined user studies as proposed in [6], or by evaluating
properties such as actionability, and complexity as proposed
in [7].

The functionally-grounded evaluation involves a more tech-
nical analysis of AI interpretability through metrics such as
assessing the faithfulness of explanations to the black-box
model, and their granularity (local/global) [3]. For example,
ablation studies have been utilised in [8] to observe variation
in the model’s performance based on the perturbation of fea-
tures highlighted as “important” by XAI. It was concluded
that a decline in performance does not necessarily indicate that
the perturbed features are indeed important, as this depends
on the perturbation technique and the dataset characteristics.
In [9], perturbations were intentionally designed to “trigger”
the model into producing incorrect classifications to examine
if the influential features according to XAI, were the correct
“triggers”. While our work is also related to ablation studies,
it distinctively focuses on application-grounded evaluation ex-
amining neighbourhood contexts to enhance the utility of XAI
frameworks.

Designing application-grounded evaluations with a spe-
cific explanandum is essential to avoid user misunderstand-
ings. Chromik et al. [4] illustrated this with a study where
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participants were asked to self-rate their understanding of an
AI system after receiving SHAP explanations and then testing
them on mimicking the AI for a set of inputs (the explanan-
dum). The self-ratings decreased significantly, suggesting an
illusion of understanding created by the explanations. Sim-
ilarly, Wang et al. revealed that people’s interpretations of
explanations to understand the ML model’s uncertainty (the
explanandum) vary based on their domain expertise [5]. Both
studies, however, did not explore how underlying neighbour-
hood contexts affect the utility of XAI for their explanandum.

A study of explanatory requirements in the medical do-
main [38] found that clinicians expect explanations to provide
them with parsimonious and actionable steps to work effi-
ciently with CDSS. In [14], it is emphasised that CDSS should
mimic the clinical decision-making process based on opti-
mising workflows, especially in low-resource settings. While
theoretical methodologies for evaluating XAI techniques are
discussed in [39], [40], they have not demonstrated potential
applicability using experimental evaluations.

Monteath et al. [41] proposed a decision tree-based ap-
proach to generate confidence scores while classifying medi-
cal records based on available information. These confidence
scores were calculated using the incremental information
gains achieved as more medical data was added. Notably, the
work addressed the two explananda: measuring confidence in
the current diagnosis and recommending the next best diag-
nostic test for individual diagnosis. However, its applicability
remained limited to decision tree-based models.

Neighbourhood context plays a critical role in generating
local explanations [12], [16]. Ribeiro et al.’s LIME framework
demonstrates the impact of modifying samples near the input
to better approximate a model’s local decision-making [10].
XAI frameworks can also be “fooled” into producing certain
explanations through neighbourhood manipulation, illustrat-
ing how context selection influences the quality and utility of
explanations [11].

VII. LIMITATIONS AND FUTURE WORK
This work introduced a methodology to emphasise the need
for explanandum-based evaluations and the impact of neigh-
bourhood contexts. However, it has some limitations. Firstly,
there was an assumption of using mean (and median) values
to account for missing features instead of considering all pos-
sible values in missing features. This also directly impacted
the context to be based on imputed values. As we wanted to
demonstrate the impact of specific contexts on the utility of
FI scores, generating local FI scores for the input samples
required the use of imputation for direct applicability at a
given stage in a workflow. There was also a lack of specific
conditions related to medical workflows for early stopping
and the next best feature. This would require an extensive
review of medical literature, which is beyond the scope of this
work. The method for comparing feature rankings could also
be refined. Further, the study didn’t explore more complex
neighbourhood contexts.

In future work, we will develop methodologies to account
for all values in missing features or use specific baseline

values as per the medical literature. We will conduct further
validation with respect to specific medical workflows in the
two explananda for the evaluation. The evaluation will be
extended to higher-dimensional datasets and consider more
complex variables to draft an explanandum. It will investi-
gate alternative methodologies for comparing feature rankings
and use feature-specific scoring mechanisms for generating FI
scores using CFs. A broader range of neighbourhood contexts
will be explored to refine the effectiveness of XAI for an ex-
planandum. We will also explore optimisation techniques that
can be used with XAI frameworks for generating explanations
faster [42].

VIII. CONCLUSION
This study presents a methodology to evaluate XAI by for-
malising two healthcare domain-specific tasks as explananda:
‘early stopping’ and ‘next best feature’. We conducted a
rigorous evaluation with various numbers and selections of
missing features representing scenarios of each explanandum
across different datasets and classifiers. We employed various
contexts with popular XAI frameworks - SHAP, LIME, and
DiCE, to investigate their utility in addressing the explananda
and highlight the impact of neighbourhood contexts on XAI’s
success rates in each explanandum.

The results obtained revealed interesting insights. Notably,
the standard SHAP outperformed the standard versions of
LIME and DiCE for both explananda. However, SHAP’s per-
formance was improved using more optimal derived contexts.
In the ‘early stopping’, the sufficiency of the values in the
present set of features was required to be compared with the
sensitivity of the imputed values in the missing features. An
optimal context was derived by allowing broad changes in the
values of present features but only a narrow range of values
in the missing set of features. For the ‘next best feature’, the
classification change due to the missing features was required
to be captured. SHAP demonstrated good performance with
outside contexts, particularly with fixed values of present
features, enabling a focused analysis of missing features. An
optimal context was derived that combined standard and
outside and showed improved success rates. Statistical tests
were done to confirm the significance of these improvements.

Overall, this work facilitates the evaluation of domain-
specific utility of XAI with respect to the neighborhood
contexts. Our proposed methodology is adaptable to evaluate
XAI via proxy application-based explananda by 1) simulating
scenarios using different perturbations/imputations and then
2) examining the feature ranking to provide the utility. By
highlighting these contributions, we emphasise the practical
relevance and broader applicability of our research, offering a
promising avenue for advancements in XAI.
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