
Received 10 February 2024; accepted 13 March 2024. Date of publication 20 March 2024;
date of current version 26 April 2024. The review of this article was arranged by Associate Editor Peng Li.

Digital Object Identifier 10.1109/OJCS.2024.3378709

A Lightweight Visual Font Style Recognition
With Quantized Convolutional Autoencoder

MOSHIUR RAHMAN TONMOY 1, ABDUL FATTAH RAKIB 2, RASHIK RAHMAN 2,
MD. AKHTARUZZAMAN ADNAN 2, M. F. MRIDHA 3 (Senior Member, IEEE), JIE HUANG4,

AND JUNGPIL SHIN 4 (Senior Member, IEEE)
1Advanced Machine Intelligence Research Lab, Dhaka 1213, Bangladesh

2Department of Computer Science and Engineering, University of Asia Pacific, Dhaka 1205, Bangladesh
3Department of Computer Science, American International University-Bangladesh, Dhaka 1229, Bangladesh

4School of Computer Science and Engineering, The University of Aizu, Aizuwakamatsu 965-8580, Japan

CORRESPONDING AUTHOR: JUNGPIL SHIN (e-mail: jpshin@u-aizu.ac.jp).

ABSTRACT Font style recognition plays a vital role in the field of computer vision, particularly in document
and pattern analysis, and image processing. In the industry context, this recognition of font styles holds im-
mense importance for professionals such as graphic designers, front-end developers, and UI-UX developers.
In recent times, font style recognition using Computer Vision has made significant progress, especially in
English. Very few works have been done for other languages as well. However, the existing models are
computationally costly, time-consuming, and not diversified. In this work, we propose a state-of-the-art
model to recognize Bangla fonts from images using a quantized Convolutional Autoencoder (Q-CAE)
approach. The compressed model takes around 58 KB of memory only which makes it suitable for not only
high-end but also low-end computational edge devices. We have also created a synthetic data set consisting
of 10 distinct Bangla font styles and a total of 60,000 images for conducting this study as no dedicated
dataset is available publicly. Experimental outcomes demonstrate that the proposed method can perform
better than existing methods, gaining an overall accuracy of 99.95% without quantization and 99.85% after
quantization.

INDEX TERMS Visual font recognition, computer vision, convolutional autoencoder, quantization, TinyML,
edge devices, bangla font style.

I. INTRODUCTION

The rise of digitization in today’s age has helped the area
of graphic design to go beyond traditional boundaries and
achieve unprecedented levels of richness and diversity. Fonts
have turned into a vital component of this creative environ-
ment, especially in the domain of typography. In a time when
visual communication is crucial, fonts are the digital can-
vas’s creative brushstrokes. They capture a message’s essence,
arouse emotions, and turn plain words into compelling visual
stories. Typography becomes a medium for storytelling in a
visually rich setting as designers and artists use various font
styles to communicate ideas and the identities of brands and
products. When they come across new font styles in their daily
lives, graphic artists want to be able to recognize them for
future uses [1].

The development of a powerful automatic font recognition
system that can recognize styles in images or photos has
an opportunity to minimize the tedious manual tasks that
designers often undergo. In addition to making font-related
tasks simpler, such a system would improve font selection and
management during the design phase. This invention will be
extremely beneficial to designers because it will let them free
up their vital time and allow them to quickly include variety in
their creative endeavors. However, building a thorough Visual
Font Recognition (VFR) system has its own set of difficulties
due to the enormous variety of font types and their subtleties
and complexities [2]. Though there are already many useful
systems like Identifont1 or MyFonts2 that can identify fonts

1[Online]. Available: www.identifont.com
2[Online]. Available: www.myfonts.com/pages/whatthefont

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see
https://creativecommons.org/licenses/by-nc-nd/4.0/120 VOLUME 5, 2024

https://orcid.org/0009-0004-3628-8242
https://orcid.org/0000-0002-1951-0751
https://orcid.org/0000-0003-3031-9736
https://orcid.org/0000-0003-4137-0844
https://orcid.org/0000-0001-5738-1631
https://orcid.org/0000-0002-7476-2468
www.identifont.com
www.myfonts.com/pages/whatthefont

and suggest similar ones, the field of font recognition is still
developing, especially in languages that hold complex charac-
ters such as Bangla, Hindi, and so on. This opens the door to
more inventive and productive design processes.

Bangla, also referred to as Bengali, is an international lan-
guage that is native to Bangladesh and the Indian states of
Tripura and West Bengal. With around 273 million speak-
ers, Bangla is spoken by a sizeable fraction of the world’s
population as both a primary and second language. Remark-
ably, Bangla is the seventh most spoken language worldwide
and the sixth most spoken native language [3]. As expected,
there has been a considerable increase in demand for various
Bangla font styles for design and other relevant purposes to
attract Bangla-speaking audiences by bringing diversity and
uniqueness in every possible form of work that relates to the
use of Bangla fonts, such as newspapers, invitation, greet-
ing cards, visiting cards, testimonies, brand logos, billboards,
covering from physical platform to digital mediums as well.
However, there hasn’t been much advancement in the area of
autonomous Bangla font recognition.

Several industries stand to gain greatly from the widespread
usage of Bangla font styles. Regarding brand consistency, it
ensures that a recognizable and consistent font style remains
intact over a range of brand assets, strengthening the com-
pany’s identification and reliability [4]. Designers may ensure
visually appealing and harmonious designs by matching their
creative concepts with the proper Bangla font types with the
help of font recognition, which preserves design and aes-
thetic integrity. Understanding Bangla typefaces helps with
content localization by allowing content to be customized to
the linguistic and cultural tastes of various audiences who
speak Bangla. This improves the information’s accessibility
and resonance. Furthermore, using appropriate Bangla font
styles can help create more user-friendly and compelling in-
terfaces, which will increase the user experience overall. Last
but not least, font recognition is a useful tool for designers
and developers as it helps with design replication, making it
easier to consistently reproduce particular Bangla font styles
across different projects. Simply put, the ability to identify
Bangla font types gives these industries the tools they need
to preserve design continuity, improve user experiences, ad-
just the material for a wider audience, and preserve brand
consistency.

In response to the pressing demand for effective Bangla font
style recognition, the goal of our research is to create a novel,
lightweight convolutional autoencoder method to reduce the
tedious manual work that innumerable designers, artists, and
developers who deal with Bangla fonts must perform to rec-
ognize font styles accurately. This research effort seeks to
provide a practical and efficient solution to enhance people’s
creativity and productivity in a range of professional sectors.
The major contributions of this study are the following:
� We propose a lightweight Convolutional Autoencoder

for effectively recognizing visual font styles from im-
ages.

� We incorporated int-8 quantization to reduce the com-
putational complexity of the proposed model for deploy-
ment in the edge devices.

� We created a large synthetic data set employing 10 dif-
ferent Bangla font styles with a total of 60,000 images
for this research and made it public.

� We also present a comprehensive performance analysis
of our proposed method with past works as well as state-
of-the-art CNNs.

The rest of the paper is organized as follows: Section II
discusses the related works followed by Section III discusses
a background about Convolutional Autoencoder (CAE) and
model quantization. Section IV provides a brief overview of
the Bangla VFR data set. Section V presents the architecture
of the proposed system. Section VI contains the findings of
this study and discusses model performance. Limitations and
future work are discussed in Section VII and Section VIII
concludes this study.

II. RELATED WORKS
This section delves into contemporary approaches in font style
recognition, focusing primarily on the latest developments in
Bangla font style recognition while encompassing recent ad-
vancements in other font styles as well. It provides a glimpse
into their respective methodologies and performance.

A. FONT STYLE RECOGNITION IN VARIOUS LANGUAGES
Wang et al. [1] created the popular AdobeVFR dataset,
and they proposed the DeepFont framework. Their approach
leverages a domain adaptation technique that relies on a
Stacked-CAE that uses a substantial collection of unlabeled
real-world English text images, which are augmented with
synthetic data that has been preprocessed in a specialized
manner. The DeepFont system attains a top-5 accuracy ex-
ceeding 80%.

Li et al. [5] utilized a downsampling CNN approach for
classifying font styles for Chinese characters, and attained
a 99.03% accuracy with their dataset consisting of 18,000
instances of 18 distinct font styles.

Mohammadian et al. [6] employed CNN to recognize Per-
sian font styles, and they presented top-1 accuracy of 78.0%
on their own newly created dataset, at best 94.5% on the other
public ones.

Tensmeyer et al. [7] proposed a font recognition model
using a simple CNN and a new form of data augmentation
that can enrich robustness in terms of text colors. By using
the same method they found 98.8% accuracy in the Arabic
dataset consisting of 40 distinct fonts as well as 86.6% in the
Latin language.

Cheng et al. [2] have shown the issues of large-scale visual
font recognition (VFR). They have created an ample dataset
using 2,420 English font styles and developed an algorithm
using the nearest class mean classifier (NCM). This classifier
has given promising results in synthetic data as well as real-
world test data.

VOLUME 5, 2024 121

TONMOY ET AL.: LIGHTWEIGHT VISUAL FONT STYLE RECOGNITION WITH QUANTIZED CONVOLUTIONAL AUTOENCODER

Vijayakumar et al. [8] made use of the Capsule Network
(CapsNet) algorithm to implement a font style classification
system and attained 96.15% accuracy. However, they focused
on only 3 English common font styles, namely - Times New
Roman, Arial Black, and Algerian.

B. FONT STYLE RECOGNITION IN BANGLA LANGUAGE
Recently Hasan et al. [4] presented a transfer learning-based
approach where 5 different types of font styles were ex-
plored with an augmented dataset of 33,800 instances and
they achieved 96.23% accuracy with pre-trained VGG-16 over
VGG-19 and Xception. However, their employed dataset lacks
diversity. Previously, Islam et al. [9] utilized a convolutional
neural network (CNN) with a space adjustment technique
based on SCAE to detect Bangla fonts. They curated a dataset
with 12,187 images in 7 fonts, totaling 77,728 samples, and
achieved an average font recognition accuracy of 98.73%.
Nonetheless, their accuracy is unstable and no separate test
set evaluation has been conducted. Hasan et al. [10] also
introduced a CNN-based model for recognizing Bangla font
styles, achieving 96% accuracy with a dataset including par-
tially labeled real-world data and marked synthetic data of
10 Bangla fonts. Earlier, Wang et al. [11] proposed a transfer
learning-based font classifier, which can recognize 6 language
fonts including Bangla, English, Arab, Japanese, Korean, and
Chinese. They have blended the text with background images
to mimic the real-world scenario and used 2 transfer learning
models with 4 variants. The highest accuracy has been seen in
VGG16 (top-5) consisting of 97.53%.

Although researchers have already explored the Bangla
VFR domain, it is patent that notable advancements have yet
to be made in the VFR domain as existing studies exhibit in-
sufficient accuracy in recognizing visual font styles, especially
in Bangla, and lack diversity in datasets. Furthermore, previ-
ous studies have predominantly relied on resource-intensive
Transfer Learning or deep DL architectures, hindering VFR
model deployment on edge devices. This study presents state-
of-the-art performance in the Bangla VFR domain by utilizing
a comprehensive and diverse dataset. In addition, we intro-
duce a novel quantized lightweight architecture suitable for
deployment on resource-constrained edge devices.

III. BACKGROUND
In this section, we present the necessary background to pre-
pare the stage for the comprehension of the methodology
proposed in this study. Firstly, we briefly discuss the Convo-
lutional Autoencoder in Section III-A, followed by a brief on
Quantization in Section III-B.

A. CONVOLUTIONAL AUTOENCODER
Autoencoders are deep learning architectures capable of re-
constructing data instances from their feature vectors and they
are learned automatically from data examples. It consists of
mainly an encoder and a decoder. The Convolutional autoen-
coder (CAE) is a type of neural network architecture used in
tasks related to image or spatial data. It combines elements of

FIGURE 1. Standard architecture of a convolutional autoencoder
comprising both encoder and decoder.

both convolutional neural networks and autoencoders to learn
efficient representations of input data [12].

In the encoder part, the network employs one or more
convolutional layers, often followed by pooling layers. These
layers are responsible for learning to extract relevant and cru-
cial features from the input image data. Convolutional layers
are utilized to capture patterns and details of the image by
applying multiple filters to the input while pooling layers are
used to downsample the feature maps to reduce the spatial
dimensions. The encoder work mechanism can expressed as
the (1).

Encoderout = Activation(Convolut ion(Input)) (1)

After the encoder layers, we get the latent space representation
that contains the compact representation of the input image
where the most vital spatial features are captured. This layer is
often known as the bottleneck layer which can be formalized
as (2).

Latent_Space = Flatten(Encoderout) (2)

Lastly, in the decoder part of the network, it mimics the
encoder but in reverse. It employs multiple layers of trans-
posed convolutions often followed by upsampling layers, and
sometimes even followed by additional convolutional layers
as expressed via (4).

U psampledout = U psampling(Latent_Space) (3)

Decoderout = Activation(Convolut ion(U psampledout))
(4)

The prime job of these layers in the decoder is to reconstruct
the input data from the compressed representation generated
by the encoder. The final layer usually matches the dimension
of the original image but can vary based on the applications.
Fig. 1 illustrates a standard convolutional autoencoder.

By training the network to encode and decode data, the
model can learn to capture meaningful patterns and features
from the input data, which can be valuable for downstream ap-
plications. Convolutional autoencoders are useful for various
tasks, primarily in image denoising [13], [14], image com-
pression [15], [16], feature extraction [17], clustering [12],
[18], anomaly detection [19], [20], and so on. CAEs are also
employed in image classification as employed in this study
and other such tasks [21], [22] while the main motivation
behind using CAEs lies in the applications mentioned above.
However, CAEs can also be powerful for such tasks as shown
in this study.

122 VOLUME 5, 2024

FIGURE 2. Overview of quantization of neural networks from float32 to
uint8.

B. QUANTIZATION
Quantization is a way to lower the memory and computational
expenses of conducting inference by using low-precision data
types like the 8-bit integer (int8) instead of the common
32-bit floating point (float32) [23]. By using fewer bits, the
final model should use less memory space, use less energy,
and benefit from faster integer arithmetic for operations [24].
Additionally, it enables the use of models on embedded hard-
ware, which occasionally only supports integer data types.
Quantization is a popular technique for compressing complex
and large DL models to deploy them in resource-constraint
edge devices [25], [26]. The formula for int8 quantization is
(5), where the value is firstly rounded to its nearest integer,
and the clipping operation takes place to clip the value in the
spectrum of [-128, 127]. On the other hand, in uint8 quanti-
zation, the clipping restrictions lie in a positive band starting
from zero, as shown in (6).

y = Clip(round (x),−128, 127) (5)

y = Clip(round (x), 0, 255) (6)

Fig. 2 presents an overview of uint8 quantization, where
values are rounded and clipped to the positive range as defined
by (6).

IV. BANGLA VFR DATASET
There is no public dataset available for the Bangla visual font
recognition task. For this reason, we have created a synthetic
dataset of 60,000 images. Dataset generation and preparation
is done by the following -

Firstly, we generated unique Bangla words from a large
Bangla text corpus, and for the accomplishment we utilized
the Wikipedia Bangla article corpus available publicly in
Kaggle [27], a popular platform for data scientists. By pre-
processing the initial generated words, we then extracted our
desired list of words. Among the final list of words, we ran-
domly picked 1000 unique words with a minimum length of 9
and a maximum length of 10 to be placed on the images.

Secondly, we collected 10 popular Bangla fonts from the
two most popular Bangla font-sharing sites, namely Lip-
ighor [28] and FontBD [29]. Finally, to generate images,
firstly we picked a 400 × 400 white background image, and

TABLE 1. Dataset Summary

then for each unique word, we printed the word in the white
blank image with a font size of 80 for 10 different selected
fonts, thus creating 10 different classes of font style. We also
added 5 different rotated copies of each image to introduce
diversity in the dataset. So each word has 6 instances per
class, which makes a total of 6000 images for 1000 words
per class and a dataset containing 60000 images of 10 distinct
Bangla font styles. We have employed Python programming
language and its popular packages to accomplish the above-
mentioned tasks. Table 1 presents the dataset summary and
Fig. 3 illustrates sample instances of the dataset, also the
sample augmentation instances are also illustrated via Fig. 4
as well.

V. METHODOLOGY
In this section, we present the methodology of our proposed
framework for recognizing Bangla visual fonts. We start
by going over the architecture of the recognition model in
Section V-A, followed by quantization of the model in Sec-
tion V-B, and finally we discuss the overall workflow of our
proposed framework in Section V-C.

A. RECOGNITION MODEL
As described in Section III-A, apart from classic applications
such as image denoising, and image compression, Convolu-
tional Autoencoders are powerful also for image classification
tasks which can be witnessed through this study as well.

In our architecture, we employed a lightweight convolu-
tional architecture and added a classification header on top
of the decoder to accomplish our target. Fig. 5 illustrates the
architecture of our employed model. As shown there, in the
encoder part - the inputs first undergo two Convolution layers
- layers 2 and 3, followed by a MaxPooling layer, and again
through two Convolution layers - layers 5, and 6. Then a Glob-
alMaxPooling layer is added to extract the maximum spatial
information across all channels from the feature map. This is
the bottleneck layer which holds the compact representation
of the spatial information of the input image. From layer 8,
the decoder part comes into action, starting with reshaping

VOLUME 5, 2024 123

TONMOY ET AL.: LIGHTWEIGHT VISUAL FONT STYLE RECOGNITION WITH QUANTIZED CONVOLUTIONAL AUTOENCODER

FIGURE 3. Sample data instances from the Bangla VFR dataset.

FIGURE 4. Sample of augmented data instances.

FIGURE 5. Architecture of the proposed convolutional autoencoder for recognizing Bangla visual font styles.

the tensor provided by the GlobalMaxPooling layer into a
suitable shape, followed by two TransposeConvolution layers
(layers 9, 10) to enlarge the encoded tensor based on the
spatial information. Then we upsampled the spatial dimension
by a factor of 3, followed by two TransposeConvolution again
to enlarge the upsampled tensor further in the context of the
spatial information.

Finally, to accomplish our classification task, at layer 14 -
we flattened out the tensor containing the spatial information
from the previous layer and fed it into an output layer with
Softmax as the activation function to recognize the font style
from the input image out of the 10 style classes utilized in the
training process. Table 2 provides a comprehensive overview
of the proposed architecture, detailing each layer’s output
shape and the associated parameters. It contains layer-by-
layer information according to the Fig. 5. In total, the model

comprises 36,091 parameters, all of which are trainable. This
concise summary serves to elucidate the structural compo-
nents and complexity of the proposed architecture.

For all the convolution layers employed here, whether reg-
ular or transpose, we used ReLU as the activation function.
The formula employed in the ReLU activation function is
expressed in (7). Here, it keeps positive input values the same
and outputs zero for any negative input values. It introduces
non-linearity and helps neural networks learn complex pat-
terns and features in data.

ReLU (x) = max(0, x) (7)

We employed the widely used Adam optimizer [30] that
incorporates adaptive learning rate and momentum feature
which accelerates the optimization of deep learning mod-
els. Furthermore, the Categorical Cross-Entropy (CCE) loss

124 VOLUME 5, 2024

TABLE 2. Summary of the Proposed Architecture

function is also utilized with our proposed architecture as
this study involves multiclass classification. It measures the
difference between the predicted probability distribution and
the true probability distribution of the classes as shown in (8).
Here, yi presents the true probability of class i (1 if the class
is the true class, 0 otherwise), and ŷi represents the predicted
probability of class i by the model.

CCE Loss = −
∑

i

yi log(ŷi) (8)

Total loss is calculated according to the (9) where CCE j rep-
resents the categorical cross-entropy loss for the jth example
in the batch.

Total Loss = 1

N

N∑

j=1

CCE j (9)

B. MODEL QUANTIZATION
We applied the quantization technique for compressing our
trained CAE with the motivation of deployment into memory-
limited edge devices as described in Section III-B. In our
quantization process, we first trained our regular CAE over
the data set, and after reaching a satisfactory performance,
we applied the quantization-aware training over the trained
CAE for converting it from float32 into int8 precision repre-
sentation and later fine-tuned it to preserve the best possible
performance closer to the original non-quantized version as
quantization comes with a trade-off between model accuracy
and the size of the overall architecture. Algorithm 1 depicts
the step-by-step workflow of our quantization-aware training.
With the help of the Tensorflow Quantization aware training
API, we performed the quantization process.

Algorithm 1: Quantization-Aware Training.
Input: Images X and Labels y
Output: Quantized Bangla Font Style Recognizer
Step 1: Initialize and compile the float32 CAE model
Step 2: Train the CAE over X , y
Step 3: Quantize the trained CAE from float32 to int8
Step 4: Fine-tune the Q-CAE till convergence
Step 5: Inference on new data with the Q-CAE

Finally, we get our quantized model with int8 weights and
uint8 activations.

C. PROPOSED FRAMEWORK
In Fig. 6, the overview of our proposed Bangla visual font
recognition framework is portrayed. Firstly, the lightweight
CAE trained on a large collection of images containing Bangla
text with various font styles. Then the trained CAE is quan-
tized to make it more lightweight for resource-constrained
edge devices and further fine-tuned to maintain a plausible
performance. This quantized trained CAE can employed on
resource-limited edge devices such as mobile, and tablets in
the form of apps, as well as browser extensions, web apps,
and desktop apps, which we’ll take input an image containing
Bangla text and output the name of the font style name.

VI. EXPERIMENT AND RESULT ANALYSIS
In this section, we illustrate a detailed analysis of our exper-
iment and the outcomes, starting with the description of the
experimental setup utilized for conducting our experiment and
evaluating the findings through various metrics.

A. EXPERIMENTAL SETUP
All the implementations for the experiment including al-
gorithms, auxiliary functions, evaluation, etc. have been
implemented using the popular deep learning framework Ten-
sorFlow and with the help of other popular packages and
libraries such as Numpy, Matplotlib, and Scikit-learn. We
made use of the free resources provided by Google Colab,
a cloud-based platform that provides free access to GPUs,
TPUs, and other auxiliary resources.

B. EVALUATION METRICS
We have evaluated our proposed architecture by employing
the 4 most common and standard metrics, namely - Accuracy,
Precision, Recall, and F1-score, and the respective equations
are the following -

Accuracy = True Positive + True Negative

Total Number of Predictions
(10)

Precision = True Positive

True Positive + False Positive
(11)

Recall = True Positive

True Positive + False Negative
(12)

VOLUME 5, 2024 125

TONMOY ET AL.: LIGHTWEIGHT VISUAL FONT STYLE RECOGNITION WITH QUANTIZED CONVOLUTIONAL AUTOENCODER

FIGURE 6. Overview of the Bangla visual font recognition system.

F1 − score = 2 × Precision × Recall

Precision + Recall
(13)

True Positive means the model correctly predicted the
positive class, and True Negative indicates that the model
predicted the negative classes correctly. In addition, False Pos-
itive and False Negative both mean the model misclassified the
respective classes.

C. PERFORMANCE EVALUATION
To evaluate our proposed model’s performance, we start by
discussing the training and validation performance in Sec-
tion VI-C-1, followed by performance over the test data in
Section VI-C-2, and lastly, we also discuss the performance
of our model in Section VI-C-3.

1) PERFORMANCE OVER TRAIN AND VALIDATION SET
At first, we split the whole Bangla VFR dataset randomly into
two subsets - train set and validation set, allocating 80% of
the data for the training, and 20% for the validation, resulting
in sample sizes of 48000 and 12000, respectively. Then we
have trained our proposed Convolutional Auto Encoder archi-
tecture utilizing the train and validation set over 10 epochs.
Fig. 7 presents the train vs. validation accuracy graph, from
which we observe a smooth upward trend of the performance
of our employed model over the both train and validation set.
Also, as illustrated in Fig. 8, both the train and validation loss
showed a smooth decline over the training epoch.

2) PERFORMANCE OVER TEST SET
To evaluate our model’s performance on unseen data, we have
also created a separate Test set following the same procedure

FIGURE 7. Train vs. validation accuracy of the employed convolutional
autoencoder over 10 epochs.

described in Section IV. For this, we have picked 100 unique
and new words. Then for each word, we have generated
two instances per class with random rotation as illustrated in
Fig. 4. Finally, there are 200 images per class consisting of
a test set of 2,000 images in total. An in-depth classification
report of our model over the test set is presented in Table 3.
Since we employed a balanced dataset, both in training and
testing, the accuracy metric alone is sufficient to measure the
performance of our model. As our model’s accuracy is satis-
factory, it is obvious that performance scores on other metrics
will be better as well. Here, we see that our employed CAE
performs extraordinarily well on almost all the test samples
and its misclassification is negligible as it only 1 misclassified
only one instance from FN Suborno Jayonti as FN Jagat
Shonkhoneel, illustrated in the confusion matrix in Fig. 9.
Fig. 10 shows the overall accuracy score comparison over all
the data subsets.

126 VOLUME 5, 2024

FIGURE 8. Train vs. Validation Loss of the employed Convolutional
Autoencoder over 10 epochs.

TABLE 3. Classification report of the proposed convolutional autoencoder
over the test set for class-wise performance evaluation

FIGURE 9. Confusion Matrix of the employed Convolutional Autoencoder
over the Test set.

3) PERFORMANCE AFTER QUANTIZATION
After training and testing our CAE, we then quantized it
into int8 format to make it more lightweight for resource-
constraints devices. Then we fine-tuned the quantized model
to maintain the performance as close as possible to the regular
float64 architecture. In Fig. 11, the performance of our quan-
tized model over the test set is depicted through the confusion

FIGURE 10. Performance of the proposed convolutional autoencoder in
accuracy metric over train, validation, and test set.

FIGURE 11. Confusion matrix of the quantized convolutional autoencoder
over the test set.

TABLE 4. Comparison of Performance in Accuracy Metric Among Past
Bangla Visual Font Recognition Studies

matrix. In comparison to the regular model’s performance, our
fine-tuned model misclassified only 2 extra instances, which
can be negligible considering the trade-off between model size
and inference accuracy. The comparison of the test accuracy
before and after quantization is shown in Fig. 12.

D. PERFORMANCE COMPARISON
The performance comparison of our proposed Quantized-
CAE with other related works is shown in Table 4. Our

VOLUME 5, 2024 127

TONMOY ET AL.: LIGHTWEIGHT VISUAL FONT STYLE RECOGNITION WITH QUANTIZED CONVOLUTIONAL AUTOENCODER

FIGURE 12. Compaision of the test accuracy of the proposed
convolutional autoencoder before and after quantization.

TABLE 5. Comparison of Performance With the State-of-the-Art Baseline
Models

proposed method secured the highest accuracy over the
most recent research works, reaching 99.95% accuracy with
non-quantized CAE, and 95.85% of accuracy after int8 quan-
tization.

To demonstrate our employed model’s superiority, we have
also performed a baseline comparison with 8 state-of-the-art
CNN models as presented in the Table 5, utilizing their pre-
trained weights from the ImageNet dataset [31] and they are
trained in the same environment. Our proposed Convolutional
Autoencoder outperformed them by attaining higher accuracy
on the test set. The comparison is illustrated using the Fig. 13.

VII. LIMITATIONS AND FUTURE WORK
The proposed Q-CAE is capable of correctly recognizing the
Bangla Font styles from images containing Bangla texts. It’ll
be quite helpful for identifying font-style names from docu-
ments, blogs, and other sources that contain plain font-style
content. However, when it comes to complex design, textual
artwork, and typography, designers often tend to modify the

FIGURE 13. Accuracy comparison among state-of-the-art baseline models
and our proposed architecture.

original styles of the employed fonts such as extending certain
corners of a character, squeezing sides to make it look thinner,
and so on. It is also common to utilize a combination of
multiple font styles in a single design i.e. attaching characters
from different font styles. Recognizing font styles accurately
from the above-mentioned scenarios is a tough task since in
most cases, the original style isn’t preserved. Furthermore,
this model is not employed over 3D shapes and designs.

In future work, we aim the address the issues mentioned
above for developing a robust font style recognizer that will
be able to recognize fonts from designer images.

VIII. CONCLUSION
In this work, we proposed a lightweight Convolutional autoen-
coder for recognizing Bangla font styles. The quantization
technique is also employed to make the proposed model
further compressed and lightweight to make it suitable for
deploying into resource-constrained edge devices. To conduct
the study, we’ve created a synthetic data set consisting of a
total of 60000 images of 10 distinct Bangla font styles. Our
proposed model, both with and without quantization, achieve
a state-of-the-art accuracy as shown in the Table 4. Our study
concludes that the proposed lightweight Q-CAE can be uti-
lized with web and mobile apps, and browser extensions as
well as incorporating edge devices that will correctly recog-
nize the font style name from the respective scenario. In future
work, we aim to build a robust Bangla font style recognizer
that will be able to perform well on designer images as well.

DATA AVAILABILITY
The dataset utilized in this study is publicly available in
Mendeley data.

URL: https://data.mendeley.com/datasets/cnd2wh65my/1

ACKNOWLEDGMENT
The authors would like to thank the Advanced Machine Intel-
ligence Research Lab (AMIR Lab) for resource sharing and
precious opinions.

128 VOLUME 5, 2024

https://data.mendeley.com/datasets/cnd2wh65my/1

REFERENCES
[1] Z. Wang et al., “Deepfont: Identify your font from an image,” in Proc.

23rd ACM Int. Conf. Multimedia, 2015, pp. 451–459.
[2] G. Chen et al., “Large-scale visual font recognition,” in Proc. IEEE

Conf. Comput. Vis. Pattern Recognit., 2014, pp. 3598–3605.
[3] Wikipedia contributors, “Bengali language,” Accessed: Oct. 10, 2023.

[Online]. Available: https://en.wikipedia.org/wiki/Bengali_language
[4] S. Hasan, G. Rabbi, R. Islam, H. I. Bijoy, and A. Hakim, “Bangla

font recognition using transfer learning method,” in Proc. Int. Conf.
Inventive Computation Technol., 2022, pp. 57–62.

[5] X. Li, J. Wang, H. Zhang, Y. Huang, and H. Huang, “SwordNet: Chi-
nese character font style recognition network,” IEEE Access, vol. 10,
pp. 8388–8398, 2022.

[6] M. Mohammadian, N. Maleki, T. Olsson, and F. Ahlgren, “Persis:
A persian font recognition pipeline using convolutional neural net-
works,” in Proc. IEEE 12th Int. Conf. Comput. Knowl. Eng., 2022,
pp. 196–204.

[7] C. Tensmeyer, D. Saunders, and T. Martinez, “Convolutional neural
networks for font classification,” in Proc. IEEE 14th IAPR Int. Conf.
document Anal. Recognit., 2017, pp. 985–990.

[8] D. T. Vijayakumar and M. R. Vinothkanna, “Capsule network on
font style classification,” J. Artif. Intell. Capsule Netw., vol. 2, no. 2,
pp. 64–76, 2020.

[9] M. M. Islam, A. S. A. Rabby, N. Hasan, J. Nahar, and F. Rahman,
“A novel bangla font recognition approach using deep learning,” in
Emerging Technologies in Data Mining and Information Security: Pro-
ceedings of IEMIS 2020, vol. 2. Berlin, Germany: Springer, 2021,
pp. 745–754.

[10] M. Zahid Hasan, K. Tanzila Rahman, R. I. Riya, K. Z. Hasan, and
N. Zahan, “A CNN-based classification model for recognizing vi-
sual bengali font,” in Proc. Int. Joint Conf. Comput. Intell., 2020,
pp. 471–482.

[11] Y. Wang, Z. Lian, Y. Tang, and J. Xiao, “Font recognition in natural im-
ages via transfer learning,” in Proc. 24th Int. Conf. MultiMedia Model.„
2018, pp. 229–240.

[12] X. Guo, X. Liu, E. Zhu, and J. Yin, “Deep clustering with convolutional
autoencoders,” in Proc. 24th Int. Conf. Neural Inf. Process., 2017,
pp. 373–382.

[13] L. Gondara, “Medical image denoising using convolutional denoising
autoencoders,” in Proc. IEEE 16th Int. Conf. Data Mining Workshops,
2016, pp. 241–246.

[14] M. S. R. Tusher et al., “An enhanced variational autoencoder approach
for the purpose of deblurring bangla license plate images,” Int. J. Adv.
Comput. Sci. Appl., vol. 14, no. 6, pp. 10–14569, 2023.

[15] Z. Cheng, H. Sun, M. Takeuchi, and J. Katto, “Deep convolutional
autoencoder-based lossy image compression,” in Proc. IEEE Picture
Coding Symp., 2018, pp. 253–257.

[16] Z. Cheng, H. Sun, M. Takeuchi, and J. Katto, “Energy compaction-
based image compression using convolutional autoencoder,” IEEE
Trans. Multimedia, vol. 22, pp. 860–873, 2020.

[17] S. Ryu, H. Choi, H. Lee, and H. Kim, “Convolutional autoencoder based
feature extraction and clustering for customer load analysis,” IEEE
Trans. Power Syst., vol. 35, no. 2, pp. 1048–1060, Mar. 2020.

[18] K. Ghasedi Dizaji, A. Herandi, C. Deng, W. Cai, and H. Huang, “Deep
clustering via joint convolutional autoencoder embedding and relative
entropy minimization,” in Proc. IEEE Int. Conf. Comput. Vis., 2017,
pp. 5736–5745.

[19] J. K. Chow, Z. Su, J. Wu, P. S. Tan, X. Mao, and Y.-H. Wang, “Anomaly
detection of defects on concrete structures with the convolutional au-
toencoder,” Adv. Eng. Informat., vol. 45, 2020, Art. no. 101105.

[20] L. Chen, Q. Guan, B. Feng, H. Yue, J. Wang, and F. Zhang, “A
multi-convolutional autoencoder approach to multivariate geochemical
anomaly recognition,” Minerals, vol. 9, no. 5, 2019, Art. no. 270.

[21] O. E. David and N. S. Netanyahu, “Deeppainter: Painter classification
using deep convolutional autoencoders,” in Proc. Artif. Neural Netw.
Mach. Learn.: 25th Int. Conf. Artif. Neural Netw., 2016, pp. 20–28.

[22] S. Karimpouli and P. Tahmasebi, “Segmentation of digital rock images
using deep convolutional autoencoder networks,” Comput. Geosci.,
vol. 126, pp. 142–150, 2019.

[23] J.-C. See, H.-F. Ng, H.-K. Tan, J.-J. Chang, W.-K. Lee, and S. O.
Hwang, “Doubleqext: Hardware and memory efficient CNN through
two levels of quantization,” IEEE Access, vol. 9, pp. 169082–169091,
2021.

[24] N.-D. Ho and I.-J. Chang, “O-2A: Outlier-aware compression for 8-bit
post-training quantization model,” IEEE Access, vol. 11, pp. 95467–
95480, 2023.

[25] Y. M. Kim, K. Han, W.-K. Lee, H. J. Chang, and S. O. Hwang, “Non-
zero grid for accurate 2-bit additive power-of-two CNN quantization,”
IEEE Access, vol. 11, pp. 32051–32060, 2023.

[26] A. F. Rakib, R. Rahman, A. A. Razi, and A. T. Hasan, “A lightweight
quantized CNN model for plant disease recognition,” Arabian J. Sci.
Eng., vol. 49, pp. 1–12, 2023.

[27] Shazol, “Bangla wikipedia corpus,” kaggle, Accessed: Aug. 18, 2023.
[Online]. Available: com/datasets/shazol/bangla-wikipedia-corpus

[28] Lipighor, “Lipighor - free bangla font,” Accessed: Aug. 20, 2023. [On-
line]. Available: https://lipighor.com

[29] FontBD, “Fontbd - free bangla font,” Accessed: Aug. 22, 2023. [On-
line]. Available: https://fontbd.com

[30] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
2014, arXiv:1412.6980.

[31] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in Proc. IEEE Conf. Com-
put. Vis. Pattern Recognit., 2009, pp. 248–255.

MOSHIUR RAHMAN TONMOY received the
bachelor’s degree in computer science and engi-
neering from the University of Asia Pacific, Dhaka,
Bangladesh, in 2023. Throughout his undergradu-
ate journey, he showcased a profound interest in
competitive programming and programming con-
tests, nurturing his critical and logical thinking
abilities. His research journey commenced with
a collaboration with the Institute of Automation
Research and Engineering, where he actively par-
ticipated in innovative research initiatives. Since

2023, he has been a Research Assistant with Advanced Machine Intelligence
Research Lab, Dhaka. His research interests include deep learning, computer
vision, and federated learning, and their interdisciplinary applications aimed
at enhancing societal well-being and benefiting humanity.

ABDUL FATTAH RAKIB received the B.Sc. de-
gree in computer science and engineering from the
University of Asia Pacific, Dhaka, Bangladesh, in
2022. He was a Research Intern with the Institute
of Automation Research and Engineering, where
he enriched his expertise in the field of artificial in-
telligence. He has authored or coauthored research
articles in prestigious conferences and journals.
His research interests include data science, com-
puter vision, NLP, and healthcare informatics.

RASHIK RAHMAN received the bachelor’s de-
gree in computer science and engineering from
the University of Asia Pacific, Dhaka, Bangladesh,
in 2021. He was an AI Engineer with Quan-
tum.AI. He joined SammTech as a Data Scientist.
He is currently a full-time Faculty Member with
the Department of CSE, University of Asia Pa-
cific, Dhaka, Bangladesh. His research interests
include but are not limited to computer vision,
NLP, TinyML, and federated learning.

VOLUME 5, 2024 129

https://en.wikipedia.org/wiki/Bengali_language
com/datasets/shazol/bangla-wikipedia-corpus
https://lipighor.com
https://fontbd.com

TONMOY ET AL.: LIGHTWEIGHT VISUAL FONT STYLE RECOGNITION WITH QUANTIZED CONVOLUTIONAL AUTOENCODER

MD. AKHTARUZZAMAN ADNAN received the
bachelor’s degree in computer science and infor-
mation technology from the Islamic University of
Technology (IUT), Gazipur, Bangladesh and the
master’s degree in computer science and engi-
neering from the University Teknologi Malaysia,
Iskandar Puteri, Malaysia, showcasing his commit-
ment to advancing his knowledge in the field. He
is currently working toward the Ph.D. degree with
Macquarie University, Sydney, NSW, Australia. He
is a dedicated and accomplished Researcher. He is

also an Assistant Professor with the Department of Computer Science and En-
gineering, University of Asia Pacific, Dhaka, Bangladesh. His early education
laid the foundation for his passion for technology and its applications. Over
the years, he has demonstrated a strong academic aptitude and a keen interest
in the evolving domains of artificial intelligence, machine learning, deep
learning, and natural language processing. He was a Reviewer for several
journals and international conferences.

M. F. MRIDHA (Senior Member, IEEE) received
the Ph.D. degree in AI/ML from Jahangirnagar
University, Dhaka, Bangladesh, in 2017. From
2019 to 2022, he was an Associate Professor and
the Chairperson of the Department of Computer
Science and Engineering, Bangladesh University
of Business and Technology, Dhaka. From 2012
to 2019, he was a CSE Department Faculty Mem-
ber with the University of Asia Pacific, Dhaka,
and the Graduate Head. He is currently an Asso-
ciate Professor with the Department of Computer

Science, American International University Bangladesh, Dhaka. For more
than ten years, he has been with the master’s and bachelor’s students as
a supervisor of their thesis work. His research experience, within both
academia and industry results in more than 150 journals and conference
publications. His research work contributed to the reputed journals of Sci-
entific Reports (Nature), Knowledge-Based Systems, Artificial Intelligence
Review, Engineering Applications of Artificial Intelligence, IEEE ACCESS,
Sensors, Cancers, Biology, and Applied Sciences. His research interests in-
clude artificial intelligence, machine learning, deep learning, natural language
processing, and Big Data analysis. He is also the Founder and Director of
the Advanced Machine Intelligence Research Laboratory. He was a program
committee Member for several international conferences/workshops and an
Editorial Board Member for several journals, including PLOS ONE journal.
He was a Reviewer for reputed journals, such as IEEE TRANSACTIONS ON

NEURAL NETWORKS AND LEARNING SYSTEMS, Artificial Intelligence Review,
IEEE ACCESS, Knowledge-Based System, Expert System, Bioinformatics,
Springer, Nature, and MDPI, and conferences, such as ICCIT, HONET,
ICIEV, IJCCI, ICAEE, ICCAIE, ICSIPA, SCORED, ISIEA, APACE, ICOS,
ISCAIE, BEIAC, ISWTA, IC3e, ISWTA, CoAST, icIVPR, ICSCT, 3ICT, and
DATA21.

JIE HUANG received the B.Eng. degree from the
Nagoya Institute of Technology, Nagoya, Japan, in
1985, and the M. Eng. and D. Eng. degrees from
Nagoya University, Nagoya, in 1987 and 1991,
respectively. From 1992 to 1993, he was a Sys-
tem Engineer with Phenix Data Corp, Indianapolis,
IN, USA. From 1993 to 1998, he was a Frontier
Research Scientist with the Bio-Mimetic Control
Research Center, under the Institute of Physical
and Chemical Research (RIKEN). From 1998 to
2002, he was an Assistant Professor with the Uni-

versity of Aizu, Aizuwakamatsu, Japan. Since 2002, he has been an Associate
Professor with the School of Computer Science and Engineering, University
of Aizu. His research interests include sound signal processing, human audi-
tion, and robot auditory sensing systems.

JUNGPIL SHIN (Senior Member, IEEE) received
the B.Sc. degree in computer science and statistics
and the M.Sc. degree in computer science from
Pusan National University, Busan, South Korea, in
1990 and 1994, respectively, and the Ph.D. degree
in computer science and communication engineer-
ing from Kyushu University, Fukuoka, Japan, in
1999, under a scholarship from the Japanese Gov-
ernment (MEXT). He was an Associate Professor,
a Senior Associate Professor, and Full Professor
with the School of Computer Science and Engi-

neering, University of Aizu, Aizuwakamatsu, Japan, in 1999, 2004, and 2019,
respectively. He has coauthored more than 350 published papers for widely
cited journals and conferences. His research interests include pattern recogni-
tion, image processing, computer vision, machine learning, human-computer
interaction, non-touch interfaces, human gesture recognition, automatic con-
trol, Parkinson’s disease diagnosis, ADHD diagnosis, user authentication,
machine intelligence, bioinformatics, and handwriting analysis, recognition,
and synthesis. He is a Member of ACM, IEICE, IPSJ, KISS, and KIPS.
He was the program Chair and a program committee member for numerous
international conferences. He is the Editor of IEEE journals, Springer, Sage,
Taylor & Francis, MDPI Sensors and Electronics, and Tech Science. He is a
reviewer for several major IEEE and SCI journals.

130 VOLUME 5, 2024

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

