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ABSTRACT Hand gesture-based Sign Language Recognition (SLR) serves as a crucial communication
bridge between hard of hearing and non-deaf individuals. The absence of a universal sign language (SL)
leads to diverse nationalities having various cultural SLs, such as Korean, American, and Japanese sign
language. Existing SLR systems perform well for their cultural SL but may struggle with other or multi-
cultural sign languages (McSL). To address these challenges, this paper introduces a novel end-to-end SLR
system called GmTC, designed to translate McSL into equivalent text for enhanced understanding. Here, we
employed a Graph and General deep-learning network as two stream modules to extract effective features.
In the first stream, produce a graph-based feature by taking advantage of the superpixel values and the
graph convolutional network (GCN), aiming to extract distance-based complex relationship features among
the superpixel. In the second stream, we extracted long-range and short-range dependency features using
attention-based contextual information that passes through multi-stage, multi-head self-attention (MHSA),
and CNN modules. Combining these features generates final features that feed into the classification module.
Extensive experiments with five culture SL datasets with high-performance accuracy compared to existing
state-of-the-art models in individual domains affirming superiority and generalizability.

INDEX TERMS SL, SLR, GCN, MHSA, McSL, Graph meets with attention and CNN (GmTC), Hand
gesture recognition (HGR), Bangla sign language (BSL), Korean sign language (KSL), American sign
language (ASL), Japanese sign language (JSL).

I. INTRODUCTION
Hand gesture recognition is a crucial aspect of Human-
Computer Interaction (HCI) and computer vision, especially
in applications like SLR, facilitating nonverbal communi-
cation between hard of hearing and non-deaf communities.
Hand gestures, integral to daily activities, convey specific
information through hand orientation, posture, and distinct
movements. They symbolize letters, digits, or objects, often
relying on hand orientation for meaning, and some gestures
having universal meanings and others varying based on cul-
ture or context [1], [2], [3]. SL is the only communication

medium among the hard of hearing and non-deaf communi-
ties. However, the hard of hearing community faces ongoing
challenges to meet their basic needs in the modern digital era.

Globally, the World Health Organization (WHO) reports
466 million people with deafness or disabling hearing loss [4].
In the U.S., the National Institute on Deafness estimates
15% of adults (37.5 million) experience difficulty hearing [5].
South Korea reports around 1.6 million individuals with hear-
ing impairments [6], and Japan notes approximately 370,000
people with hearing impairments [7]. Bangladesh and other
countries also host significant hard of hearing communities.
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The global diversity of SLs, including American Sign Lan-
guage (ASL), Korean Sign Language (KSL), Bengali Sign
Language (BSL), Japanese Sign Language (JSL), and Arabic
Sign Language (ArSL), Large Scale Argentine Sign Language
(LSA64) poses challenges for cross-cultural communica-
tion [8], [9], [10]. While the hard of hearing community is
eager to learn sign language through special language schools,
the non-deaf community often lacks interest. This situation
necessitates costly human SL translators. To address these
challenges, researchers have been working to develop auto-
matic multi-cultural SLR systems using machine learning and
deep learning approaches [8], [9], [10], [11]. Vision-based
SL datasets have become popular due to their portability
and cost-effectiveness over the sensor-based system [8], [10],
[12]. Traditional approaches involved hand-crafted features
and machine learning algorithms [1], [8], [13]. However, these
face challenges with large-scale datasets and diverse back-
grounds. To overcome the challenges, researchers have turned
to end-to-end deep learning-based Convolutional Neural Net-
works (CNN) for SLR [9], [10], [14].

Miah et al. achieved 93.00% and 99.00% accuracy for
BdSL38 and ASL datasets with the CNN-based BenSignNet
model [10]. Some researchers combined self-attention models
with CNN to enhance accuracy and generalizability compared
to only CNN model [13], [15]. Transformer models like ViT,
IPT, and SETR also have been employed [16], [17], [18], [19]
to improve the performance accuracy and generalizability.
However, fixed patch sizes are the most highlighted chal-
lenges in these models that are addressed by the CNN meeting
Transformer (CMT) model [20]. Shin et al. enhanced CMT
to improve the performance accuracy of the KSL, and they
reported 89.00% accuracy for KSL-77 and 98.00% for KSL-
20 [21], which is 10% high accuracy compared to the previous
model [22]. However, among the mentioned SLR systems,
Various technologies were employed for specific culture-
based SLR systems, e.g., KSL [21], [22], [23], ASL [1], [13],
[21], [24], [25], [26], [27], [28], BdSL [10], [29], [30], and
JSL [7].

Existing SLR systems often excel in specific cultural con-
texts but struggle with others. For instance, BenSignNet [10]
may face challenges in recognizing KSL, ASL, or JSL, and
modified CMT [21] may encounter difficulties with BdSL,
JSL, or ASL datasets, and vice versa. The main drawback of
these systems is that they can perform well in specific cultural
contexts of SL and struggle with other SLs. For example,
BenSignNet [10] may face challenges in recognizing KSL,
ASL, or JSL, and modified CMT [21] encounter difficulties
in getting satisfactory performance with BdSL, JSL, or ASL
datasets, and vice versa. Nurnoby et al. addressed cultural
dependencies in SLR with a CNN-based multi-cultural SLR
system [11]. However, its limitations include an evaluation
with only two datasets (ArSL and ASL) and suboptimal
performance due to ineffective features, hindering real-time
deployment for McSL recognition.

In light of this situation, there is a crucial need for an
effective McSL to assist hard of hearing and speech-impaired

communities in various scenarios, such as interacting with
individuals whose nationalities are unknown. Our study intro-
duces an advanced McSL system, incorporating insights from
superpixel technology [31], a GCN network, and modified
CMT [20] module with MHSA. The primary contributions of
our study are outlined below:
� Novelty: We introduce an innovative graph meeting

with the Transformer and CNN (GmTC) Model for
Multi-Culture Sign Language (McSL) recognition, fus-
ing graphs, and general deep neural network (DNN)
based features. Our novel approach leverages superpixel-
based GGCN, Multi-Head Self-Attention (MHSA), and
deep learning layers to extract highly effective fea-
tures, establishing the McSL recognition system. By
seamlessly integrating short-range and long-range de-
pendencies from GCN, deep learning layers, and MHSA,
the GmTC Model offers a pioneering solution in SLR
technology.

� Adaptive Feature Aggregation with Dual Streams:
GmTC employs an adaptive approach that integrates
graph-based and general deep learning feature aggre-
gation through two parallel streams: GCN and general
deep learning streams. In the GCN stream, we introduce
a pioneering use of Simple Linear Iterative Clustering
(SLIC) for superpixel partitioning, transforming them
into a fully connected graph. This leverages spatial rela-
tionships among superpixels to extract effective features,
introducing a groundbreaking distance-based pixel rela-
tionship feature using GCN.
The second stream focuses on attention-based fea-
tures, undergoing multi-stage processing through MHSA
and CNN modules. A dedicated grain module ad-
dresses fixed-size patch challenges, facilitating the
extraction of multiscale features. The subsequent
combination of MHSA and CNN stages captures
long-range and short-range pixel dependencies, set-
ting a new standard for feature extraction in the
field.

� Innovative Adaptation and Generalization: The GmTC
model stands out with adaptive learning, surpassing
traditional feature expressions for superior generaliza-
tion. Extensive evaluations across SLR datasets (KSL,
JSL, BSL, ASL, LSA64) demonstrate GmTC’s high-
performance accuracy, surpassing benchmarks set by
both high-performance CNNs and canonical trans-
formers. GmTC achieves this by seamlessly integrat-
ing GCN features, DNN features, and long-range
dependencies from MHSA. This unique combina-
tion elevates performance accuracy and generalizabil-
ity, making GmTC a sophisticated and efficient so-
lution for a McSL. Our explanation of the portion
of the code can be found in the following link:
https://github.com/musaru/GmTC

We organize the rest of the paper as follows: A literature
review is described in Section II, in Section III we included
various hand gestures, and SL datasets Section IV describes
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the architecture of the proposed system. Section V highlight
the evaluation performance. In Section VII, draw the conclu-
sion and future work.

II. RELATED WORK
Researchers employed various technologies to develop the
hand gesture-based SLR system, specifically hand-crafted
feature extraction with machine learning algorithms and deep
learning algorithms [19], [32]. Many researchers extracted
hand-crafted features and employed machine learning algo-
rithms such as the Hidden Markov model (HMM), [1], Pattern
Trees (SP-Tree) [33] and they reported 93.00% accuracy for
Greek Sign Language (GSL) and 88.00% accuracy for Ger-
man Sign Language (GSL) respectively. Sequentially, Linear
Discriminant Analysis (LDA), k-nearest Neighbors (KNN),
and Random Decision Forest (RDF) also proved their effi-
ciency for various SL datasets [19].

Researchers focus on deep learning models for effec-
tive, generalized hand gesture recognition with large-scale
datasets that face difficulties in machine learning algorithms.
Miah et al. utilized a CNN, the BenSignNet model, achiev-
ing 93.00% and 99.00% accuracy for the BdSL38 and
ASL datasets, respectively [10]. Similarly, deep learning
has proven ability in CSL, ASL [34] and Arabic sign lan-
gauge [35]. Most of the mentioned systems can produce
good accuracy for the specific cultural SL, but they may
face difficulties with other or multi-cultural SLs. To over-
come the challenges, researchers focus on transfer learning,
including VGGNets [36] and AlexNet [37], InceptionNet and
GoogLeNet [38], ResNet [39]. This transfer learning has been
acknowledged as a valuable technique, encompassing various
methods to leverage pre-trained models for task-specific accu-
racy improvement.

Recently, some researchers achieved good performance
in vision-based hand gesture recognition using the Vision
Transformer (ViT) [40], [41] is prominent in hand gesture
recognition for SL applications [41]. The ViT transformer,
utilizing only a patch of the image, can result in poten-
tial information loss. Guo et al. introduced a transformer
model, CNN meets Transformer (CMT), by incorporating
self-attention with CNN layers to efficiently extract multi-
scale features [20]. Shin et al. further optimized CMT and
reported 89.00% and accuracy for KSL-77 and for KSL-20
respectively [21], [22].

However, among the mentioned SLR systems, Various
technologies were employed for specific culture-based SLR
systems, e.g., KSL [21], [22], [23], ASL [1], [13], [21], [24],
[25], [26], [27], [28], BdSL [10], [29], [30], and JSL [7].

Existing SLR systems often excel in specific cultural con-
texts but struggle with others or McSL. To address the
challenges, we introduce an advanced McSL system, incor-
porating insights from superpixel technology [31], Graph
Convolutional Neural (GCN) network, and a CMT module
with MHSA.

TABLE 1. Dataset Description

FIGURE 1. Sample images of the KSL-20 dataset.

III. DATASETS
We evaluated the proposed GmTC model using different SL
datasets as multi-culture sign language recognition systems
(McSL), including JSL, KSL, ASL, BSL and LSA64 datasets.
The dataset we utilized here to evaluate the model is demon-
strated in Table 1.

A. KSL DATASET
KSL is among the most widely used languages globally, and
the KSL-77 and KSL 20 datasets are utilized in the study
for evaluation [21], [22]. The KSL-77 dataset, which was
collected from 20 individuals and includes 1,229 videos, from
which 112,564 frames were extracted at a rate of 30 frames
per second [22]. KSL-20 is another famous dataset for the
KSL, which consists of 20 videos, and the recordings mainly
consist of 4-second videos, with two repetitions for each sign
from each signer [21]. Fig. 1 provides an example of a KSL
word dataset beside Table 1.

B. ASL DATASET
We evaluated the proposed model with ASL-10 and ASL-20
datasets, and this dataset mainly focuses on fundamental hand
gestures commonly used worldwide [12]. ASL-10 comprises
ten distinct gestures from 14 individuals, with ten instances of
each gesture, producing 1400 unique data samples. Another
famous dataset is ASL-20, which consists of 20 ASL words
and is composed of 18000 frames in total. Fig. 2 demonstrated
the sample images of this dataset.

C. BANGLA SIGN LANGUAGE (BSL) DATASET
Bangla is the 3rd most widely used language globally,
and Bangladesh has a population of 3 million individuals
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FIGURE 2. Sample image of the ASL sign word dataset.

FIGURE 3. Example of BSL image from our lab BSL dataset.

with hearing and speech impairments. Despite its signifi-
cance, there are limited publicly available datasets for Bangla
SLR [42]. Due to the scarcity of datasets for BSL, we also
curated a new dataset within our lab. For the Bangla Sign
Language (BSL) dataset selection, we focused on commonly
used alphabet gestures that convey comprehensive informa-
tion, referring to ’The Bangla Sign Language Dictionary’
by the National Centre for Special Education. Collaborating
with Proyash, Rangpur, a special education school for the
deaf-mute community, we recorded the dataset with guidance
from a SL instructor. The dataset comprises 38 gestures rep-
resenting the Bangla alphabet from the National Federation,
depicted in Fig. 3. It includes contributions from both general
and hearing-impaired individuals, with 15 participants—10
students from Bangladesh Army University of Science and
Technology (BAUST) and five hard of hearing students from
Proyash School, Rangpur. Table 1 provides participant details.
With over 600 samples for each of the 38 classes, totalling
around 22,800 samples, the size of each sample is 512 × 512
pixels, as illustrated in Fig. 3. In addition, we also tested the
model with the existing BSL-38 dataset that consists of 38
classes [29]. Each class encompasses 320 images, resulting
in 12,160 images across the 38 classes. The dataset creation
involved 42 deaf students and 278 non-deaf students.

D. JSL DATASET
The JSL dataset encompasses the 41 Japanese sign characters,
which are composed of the RGB image, and the sample size
has been adjusted to 400 × 400 and comprises 7,380 images,
encompassing 180 samples per class. These images were cap-
tured from 18 individuals, with ten images per person.

E. LSA64 DATASET
We also evaluated the proposed model with a benchmark
Large Scale Argentinian Sign Language (LSA), consisting of
3200 videos with the participation of 10 non-expert subjects,

each executing 5 repetitions of 64 unique sign types. The
chosen signs represent frequently used expressions within the
LSA lexicon, covering verbs and nouns [43].

F. HAND GESTURE DATASET
We also assessed the proposed model using digit and hand
gesture datasets, specifically the NTU Dataset [32] and
Senz3D [44]. NTU dataset consists of ten gestures represent-
ing decimal digits 0 to 9, recorded from 10 individuals; the
dataset includes 1000 images with a resolution of 640 × 480.
We also evaluated our model with the Senz3d dataset compris-
ing 11 unique hand gestures. Every gesture from each person
has been replicated 30 times, leading to a total collection
of 1320 instances. The collection includes 3200 samples for
every gesture, and each RGB image adheres to a 640×480
resolution.

IV. PROPOSED METHODOLOGY
Fig. 4 demonstrated the architecture of the proposed model.
The study mainly aims to make a generalized system for a
multi-culture sign language recognition system (McSL) using
graphs and a general DNN. The RGB image can be writ-
ten as InputSingleImage = X i

R, where X i
R ∈ R(M×N×C) M = 90,

N = 90 and C = 3 indicate width and height and channel,
respectively.

We proposed Graph meets with Attention and CNN
(GmTC) to address the challenges of enhancing performance
accuracy and generalizability for McSL recognition. GmTC
is designed to outperform high-performance convolutional
models and canonical transformers. Unlike many previous
transformer-based hand gesture recognition systems that seg-
mented the input image into patches and extracted features
individually, resulting in poorly constructed models and the
implementation of linear projections, GmTC takes a dif-
ferent approach. The proposed GmTC system constructs a
hybrid network by leveraging the superpixel-based GCN for
local features and the long-range dependency of features
from MHSA with CNN. This innovative design enhances the
model’s effectiveness by considering spatial distance-based
relationships among super-pixels.

To do this, we employed two parallel streams: the
superpixel-based GCN and general deep learning streams.
In the GCN stream, superpixels were initially computed us-
ing the SLIC approach. These superpixels were then treated
as nodes in a fully connected graph, enabling the extrac-
tion of spatial relationships among them to derive effective
features. This stream specifically utilized a GCN to calcu-
late distance-based super-pixel relationship features. In the
second stream, self-attention-based features were extracted.
This involved passing the features through multiple stages
of the MHSA and CNN modules, inspired by existing archi-
tectures such as CMT [20], ResNet-50 [40], and DeiT [41].
The attention-based general deep learning stream addresses
fixed-size patch issues and extracts multiscale features us-
ing a grain module. The output undergoes four stages of
the MHSA and CNN module, employing multiple multi-head
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FIGURE 4. Architecture of the proposed model.

self-attention transformers (MHSAT) blocks sequentially in
each stage. Extracted features are stacked to maintain input
resolution. A feature refining module enhances and selects
potential features. The GCN feature is concatenated with the
general deep learning feature, creating the final feature. The
process concludes with a classification module containing a
fully connected layer and a softmax-based n-way classifica-
tion layer.

A. SLIC-BASED GCN STREAM
Superpixel-based graph convolutional methods represent a
transformative approach in computer vision, delivering im-
proved computational efficiency, noise resilience, and se-
mantic information extraction [45]. These techniques group
pixels into semantically meaningful superpixels, optimizing
graph convolutions for more efficient processing of larger
images. Constructing a graph by considering all image pixels
leads to high computational complexity. To address this, we
propose leveraging superpixel-based node graphs instead of
pixel-based nodes to exploit the capabilities of graph neural
networks fully [31], [46].

1) SIMPLE LINEAR ITERATIVE CLUSTERING (SLIC)
In pursuit of efficient McSL recognition, our approach in-
volves leveraging SLIC-based superpixels, which can signifi-
cantly reduce the size of graph nodes compared to traditional
image pixels. Superpixels, compact image segments defined
by shared characteristics such as color and location, offer an
advantageous intermediate representation. Notably, the SLIC
algorithm, chosen for its stability and rapid segmentation
speed, is employed in our work for image superpixel seg-
mentation aiming for computational efficiency by eliminating
redundant pixel values, making it particularly conducive to
learning models by reducing learnable parameters [27], [47],
[48]. We specifically adopted the SLIC approach to parti-
tion gesture images into spatially connected superpixels [36].
This strategy allowed us to explore the spatial structure of
gesture images more effectively. In our implementation, the
number of superpixels (N) is set equal to the image’s width,
providing optimal coverage and ensuring comprehensive spa-
tial analysis [31]. This innovative application of superpixels

in hand gesture recognition contributes to improved compu-
tational efficiency and more nuanced spatial understanding,
marking our research’s novel and impactful aspect. The SLIC
algorithm for the hand gesture image undergoes a dimen-
sion reduction, resulting in an N × N dimension superpixel
representation shown in Fig. 4 as superpixels. This captured
the spatial intricacies of the gesture, providing a compact
and informative representation that serves as a foundation for
subsequent stages in our hand gesture recognition process.
This dimensionality reduction contributes to improved com-
putational efficiency. It allows for a more focused analysis of
relevant spatial features, highlighting the effectiveness of the
SLIC-based superpixel approach in our research.

2) GRAPH CONVOLUTIONAL NETWORK (GCN)
We implement an adjacency relation among the superpixels of
the SL images that can be represented as an undirected graph
using the following (1).

G = (V, E ) (1)

Here, V is the set of vertices, and E is the edge. Practically,
vertex and node can be encoded into the node matrix and an
adjacency matrix. After that, we applied a graph convolutional
neural network. In conventional neural networks, linear layers
use a linear transformation of the input data. This transforma-
tion involves converting input x superpixel features into the
hidden feature H using the following (2).

H = W x + b (2)

where b denotes the biased data, in the graph structure su-
perpixel data, we must add an extra connection among the
superpixels. In addition, we considered it as a graph; an ad-
jacency matrix is inevitable here and that x = (x · A). We can
enhance the representation of a node by combining its features
with those of its neighbours using convolution or neighbour-
hood aggregation using below (3):

H =
N∑

i=1

Wi.(x.A) + bi (3)

In this case, the weight matrix W is unique and sharable with
all neighbour nodes. In addition, every node does not have an
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equal number of neighbours, and it may be different. In this
situation, normalization using the degree of node D can be a
solution to ensure a similar range of values for each node [45].

H = 1

D

N∑
i=1

Wi.(x.A) + bi (4)

Now, from (4), we can rewrite the graph-based neural net-
work model that we used in our study. We considered the
multi-layer graph convolutional neural network (GCN) for the
superpixel-based node using the layer-wise propagation rules
in the equation described below. The partial derivative symbol
can be represented as (5).

GNN (x, A) = σ

(
L∑

l=1

Wl .
(

x.D̃− 1
2 ÃD̃− 1

2

)
Wl + bl

)
(5)

where L represents the number of layers of the graph neu-
ral network, the adjacency matrix of the self-connection in
the undirected graph is represented by Ã = A + IN and IN

denotes the identity matrix. Layer specific trainable weight
matrix represented by Wl and D̃i j = ∑L

l=1
∑

l Ãi j . Activation
function denoted by σ (.) and in our cases we used ReLU (.) =
max(0, .)

The final feature generated by the GCN stream can be
defined by the following (6).

GraphFeature = avg

⎛
⎜⎝GCNL ◦ . . . ◦ GCN2 ◦ GCN1︸ ︷︷ ︸

L layers

⎞
⎟⎠ (6)

where L denotes the number of layers and Graph convolution
is used here as the number of layers, ◦ denotes the compo-
sition of functions. The composition (◦) is used to indicate
the sequential application of the GraphConvolution functions.
Graph convolutions on superpixels of the hand gesture image
are effective in capturing relationships compared to convolu-
tions applied directly to pixels. This approach enhances the
extraction of effective features for hand gesture recognition,
with the resulting set of features denoted as GraphFeature,
serving as the final feature representation of the first stream.
The utilization of superpixels optimizes the modelling of spa-
tial dependencies within the SL, and this innovative strategy
aligns with the overarching goal of improving the efficiency
and accuracy of hand gesture recognition systems.

B. SPATIAL ATTENTION BASED GENERAL DEEP LEARNING
STREAM
The second stream is composed of a grain module, an MHSA
Transformer, MLP Convolution and a feature refining module.
The concept of this stream developed from the architecture
Shin [21], CMT [20], ResNet-50 [30], and DeiT [32]. We can
define the grain feature extractor model as GFeature(θG, X i

R)
where θGrain denoted the weight of the model. Here, the input
data dimension is represented with X ∈ RH×W ×d and height,
width and channel are represented with H, W and d, respec-
tively. The details of this branch are described below.

1) GRAIN MODULE
The grain module inputted the original image, generating
the fine-grained initial feature extraction. We developed this
model by following the ResNet [20], [49] technique. We di-
vide the module into two stages. Where the first block of the
module consists of a three × three two convolutional layer
with stride two and a second block, we use a three × three
one convolutional layer with stride one and produce 32 output
channels aiming to reduce the input size. Where the second
stage of the module is mainly used to perform the patch
aggregation method, including the convolutional layer and
normalization layer, we can express the grain feature extractor
model as GFeature(θG, X i

R) where θG denotes the weight of the
model. Here, the input data dimension is represented with
X ∈ RH×W ×d and height, width and channel are represented
with H,Wandd , respectively. Fig. 5(a) demonstrated the grain
architecture.

2) INITIALIZATION MODULE
In the MHSA Transformer, we first employed an initial model
for extracting local features from the grain feature as position
encoding techniques [20]. The main purpose of this module is
to discuss different augmentations such as shift and rotation,
which two are considered the most important manners in the
visual task, and it is not good to avoid this operation. In
addition, this module also helps us to overcome the image
translation dependency on the system [37], [50], [51]. Our
initial module can solve the local relation-related problems,
which can be extracted using the following (7).

IM(X i
R) = EWConv(θIM , Gi

R) + Gi
R (7)

Here, the initial module feature is contained in the IM vari-
ables, an element-wise convolutional operation denoted by
EWConv. Moreover, G ∈ R(H×W ×d ) represented the feature
of the grain module, and height, width, and channel represent
H, W and d, respectively.

3) MULTIHEAD SELF ATTENTION (MHSA)
Multihead self-attention (MHSA) [14], [40] has recently
proven to be excellent in both computer vision and NLP-
related research. Fig. 6 demonstrates the MHSA architecture.
The main concept of the self-attention model is to include a
query, key, and value matrix. Firstly, self-attention can take
input in the following format: X ∈ Rn×d . It is then trans-
formed into the mentioned three matrices, defined as Q ∈
Rn×d , K ∈ Rn×d , and V ∈ Rn×d , respectively. In this study,
the number of patches is represented as n = H × W , where H
and W denote height and width. The data dimensions for the
three matrices are denoted as d , dk , and dv for the query, key,
and value, respectively. The MHSA can be expressed by the
following (8).

SA = sof tmax

(
qkT

√
dk

)
× v (8)
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FIGURE 5. (a) Grain model. (b) CNN feature extraction module. (c) feature refining module. (d) MHSA transformer. (e) MLP convolution.

FIGURE 6. Architecture of MHSA attention module.

where SAT is the self-attention, query, key, value and di-
mension represented by q, k, v and dk , respectively, the
mechanism of the attention module is to multiply the query
key matrix, then use an activation layer and make an atten-
tion map. Afterwards, we performed matrix multiplication
between the value and attention map and generated output
for the single head and four head in our cases. We repeated
the same procedure four times and concatenated the four head
values to produce the final MHSA feature. Finally, we applied
the activation layer and produced the MHSA feature to feed
the MLP convolution or next module. We can write the Initial
model and Multihead attention output below the equation,
which takes the output of the Grain feature as input.

Gi
R = IM(G(i−1)

R ) (9)

Gi
R = MHSA(LN (Gi

R) + Gi
R) (10)

Here, Gi
R and Gi

R denotes the initial module (IM) and MHSA
module feature for the individual stage I consequently where
layer normalization denoted with LN. Finally, we can write
the final feature of the MHSA as MHSAi

R, which we sent to
the convolutional layer.

4) CNN MODULE
Fig. 5(b) demonstrated the CNN architecture which we used
here after the MHSA module for further enhancement. This
module aims to incorporate spatial information from the local
region of output MHSA [52]. Here, we develop the CNN
model by including four convolutional layers that are incor-
porated with GeLU activation and batch normalization.

5) MLP CONVOLUTION
We employed the multilayer perception convolution block af-
ter the attention in the MHSA. In the MLP block, we included
a single block of the 1 × 1 two convolution layers [53]. We
used the GeLU activation function and normalization layer
after the first one-by-one convolution layer and a batch nor-
malization layer. In the same for the 2nd convolutional layer
seems to be a general convolutional layer, but we used kernel
size 1, aiming to work for 1 pixel for the input image. The
main purpose of using CNN is to extract two-dimensional
neighbourhood structures, whereas MLPConv, after MHSA,
converted the global MHSA into local pixel information. The
output of the MLP convolution can be defined by the fol-
lowing (11). Fig. 5(e) demonstrated the MLP convolution
architecture.

MLPi
R = Gi

R = MLPConv(conv(Gi
R)) (11)

C. FEATURE REFINING MODULE
After generating the feature from the multi-stage of the CNN
and MHSA transformer, we used a feature refining module
to refine the feature, aiming to detect effective features to
improve the performance, accuracy and efficiency of the sys-
tems. To implement this module, we follow the FFN for the
ViT transformer [44], where the demonstrated the two linear
layers, which are separated using a GeLU activation func-
tion [16], [19]. Fig. 5(d) demonstrated the schematic diagram
of the feature refining module, which is also made by follow-
ing the inverted residual feed-forward network (IRFFN) [20].
The output of this module can be defined as the following (12).

RFMLP = Avg(EW conv(conv(conv(EW conv(MLPi
R)))))

(12)
where RFMLP represents the output of the feature refining
module, in addition, Avg defined the averaging pooling layer.
We included the GeLU activation function and Batch Normal-
ization in each layer. The elementwise convolutional neural
network calculates local information with a minimum cost and
value. Then, we employed a global average pooling layer to
produce the matrix’s feature vector by averaging the sample-
wise features.
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TABLE 2. Possible Hyperparameters

D. FEATURE CONCATENATION AND CLASSIFICATION
MODULE
After extracting the GCN and deep learning-based MHSAT
features, we concatenated them to produce the final features
according to (13), which we fed the classification module
with. The output of the concatenation is shown in (13). After
that, we applied the dropout layer on the concatenated fea-
ture, and the dropout rate followed the 40% rules. Then, we
set a density layer as an activation function for the softmax
activation. Finally, this softmax action function produces a
probabilistic confidence map, which we considered a feature
map. This probabilistic confidence map is generated as a num-
ber of features equal to the associated dataset classes.

FinalFeature = GraphFeature

⊕
RFMLP (13)

V. EXPERIMENTAL EVALUATION
We conducted various experiments to evaluate the proposed
system’s superiority, effectiveness and generalizability, in-
cluding diverse language datasets to build the McSL recog-
nition system.

A. TRAINING SETTING
Table 1 demonstrated the dataset information used in the study
to evaluate the proposed model. We used four multi-culture
SL datasets: Japanese, Korean, Bangla and ASL. To divide the
dataset into the training, we follow the state-of-the-art model
strategy, and in most cases, it is 70% as a training dataset and
30% as a testing dataset. Table 2 showed the various hyperpa-
rameter ranges which we used in the study. In our study, our
architecture was instantiated within the PyTorch framework
on NVIDIA 8 GB GPU machines. For the compilation phase,
we opted for the Adam optimizer as the optimization method,
employing a learning rate of 0.001 during the model training.
The batch size was configured to 32, and a dropout rate of 0.2
was applied.

B. ABLATION STUDY
Our model consists of a superpixel-based GCN module and
a CNN, MHSA-based general deep learning branch. The
GCN incorporates multiple layers for effectiveness, utilizing
a superpixel-based graph structure. The general deep learning
module comprises multi-stages of CNN and MHSA, with four
stages in our study. The performance analysis in the table be-
low covers the McSL model on diverse datasets and branches.
According to the Table 3, we can say that two-stream fusion

TABLE 3. Strategic Ablation Study Highlighting Variations in GCN and
General CNN Branch

TABLE 4. Performance Result of the KSL Datasets and State-of-the-Art
Comparison

features can improve the performance accuracy in this strat-
egy.

C. PERFORMANCE WITH THE KSL DATASET
Table 4 demonstrated the performance accuracy of the pro-
posed model with KSL-77 and the KSL-20 datasets, where
our proposed model achieved 99.33% and 100.00% accuracy,
respectively. The table also reported performance accuracy
with transfer learning and state-of-the-art model performance.
Yang et al. applied a CNN mode where they reported 79.00%
accuracy [22]. Shin et al. applied parallel of the CNN and
attention model and achieved 89.00% and 98.00% accu-
racy for the KSL-77 and lab KSL dataset, respectively [21].
Fig. 7 demonstrated the accuracy and loss curve for the KSL-
77 dataset. The KSL 77 is a large dataset that contains 77 class
labels, and our proposed model achieved high-performance
accuracy compared to the state-of-the-art model.

D. PERFORMANCE WITH THE ASL DATASET
We also assessed our model using two ASL datasets, ASL-10
and ASL-20, employing various transfer learning techniques.
Table 5, showcase our model’s strong performance, achiev-
ing 99.46% and 99.60% accuracy for ASL-10 and ASL-20
datasets, respectively. Rahim et al. applied CNN and SVM
for feature extraction and classification, reporting 97.00%
accuracy for our lab ASL dataset [28]. Miah et al. also em-
ployed advanced augmentation and segmentation techniques,
achieving 99.30% accuracy with our lab ASL dataset [9]. In
summary, our proposed model demonstrates superior accu-
racy compared to existing models. Notably, these accuracy
rates surpass those reported for transfer learning and existing
of the art model mentioned in the table.
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FIGURE 7. Accuracy and loss curve for the KSL-77 dataset.

TABLE 5. Performance Result of the ASL Datasets and State-of-the-Art
Comparison

TABLE 6. Performance Result of the BSL Datasets and State-of-the-Art
Comparison

E. PERFORMANCE WITH THE BSL DATASET
We demonstrated the performance accuracy of the proposed
model with the BSL dataset. Table 6 demonstrated the perfor-
mance accuracy where our proposed model achieved 93.50%
accuracy for the existing BSL dataset and 96.88% accu-
racy achieved for the lab dataset. The table also reported
the performance accuracy with the transfer learning and the
state-of-the-art comparison table. Rafi et el. Employed the
VGG19 method for the BSL recognition, where they achieved
89.60% accuracy, and we reported 92.00% accuracy for the
lab dataset [29]. Abedin et al. used a concatenated CNN

TABLE 7. Performance Accuracy of the Proposed Model With JSL and Digit
Datasets

model, which generated 91.52% accuracy for the existing BSL
dataset [30]. In addition, Musa et al. employed the BenS-
ingNet model on the existing BSL dataset, which generated
93.00% accuracy [10]. Based on the performance accuracy
in the table, our performance model achieved higher perfor-
mance accuracy than the existing model.

F. PERFORMANCE WITH THE JSL, DIGIT AND NTU
DATASETS
Table 7 demonstrates the performance accuracy of the pro-
posed model with the JSL dataset for the proposed model,
where it reported that the proposed model achieved 92.37%
accuracy. It also showed the performance for NTU and
Senz3D datasets, where our model achieved 97.22% and
99.74% performance accuracy, respectively. Then, we re-
ported performance for the state-of-the-art models, including
PoseGAN [26], GestureGAN [25], and Ma et [24] and sev-
eral transformer learning. Among them, Ren et al. developed
a hand gesture recognition based on a template-matching
method where they reported 93.00% accuracy [54]. The pose
Guided Person Generation Network (PG2) method is reported
93.66% and 98.73% accuracy for the NTU and Senz3D
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TABLE 8. State of the Art Comparison With LSA64 Dataset

datasets, respectively. In the same way, the author in [25] re-
ported 95.33% and 99.49% accuracy. Siarohin et al. reported
96.12% and 99.54% accuracy for NTU and Senz3D datasets,
respectively [26]. Tang et al. proposed Gesture GAN method-
ology including a generator and discriminator, by taking RGB
image input for the generation and classification and achieved
96.66% and 99.74% for the NTU and Senz3D datasets, re-
spectively [25].

G. STATE OF THE ART-COMPARISON WITH A BENCHMARK
LSA64 DATASET
Table 8 demonstrated the state-of-the-art comparison of the
proposed model with the LSA64 dataset. The 3D CNN [55]
method, employing a three-dimensional convolutional neu-
ral network, achieves an accuracy of 93.90% for 64 classes.
In contrast, the cumulative Shape Difference + SVM ap-
proach [56], combining shape differences cumulatively with
a support vector machine, yields an accuracy of 85.00%. The
Inception CNN + LSTM [57] and Inception CNN + BiLSTM
models [57], incorporating long short-term memory networks,
demonstrate higher accuracies at 95.20% and 96.00%, re-
spectively, for 64 classes. A notable configuration is the 3D
CNN + LSTM [58] method, achieving an impressive accu-
racy of 98.50% for 40 classes. Our proposed model achieves
high-performance accuracy with 64 sign words, proving its
superiority compared to the state-of-the-art model evaluated
in Table 8.

VI. DISCUSSION
In the study, we proposed a hybrid GmTC model to en-
hance effective features of hand gesture recognition, aiming
to produce good performance accuracy compared to the exist-
ing state-of-the-art model. Besides the performance accuracy,
we also tried to stabilize the computational complexity of
the proposed model with the recently developed system.
We calculated the parameter and computational complexity
of the proposed system. Notably, the consistent parameters
of the proposed model are 8 million across the dataset for
32 × 32 pixel image, and the computation complexity value
of 130 BFLOP for each batch across diverse datasets indi-
cates the proposed model’s uniform demand for processing
resources. This insight proves invaluable for assessing the

model’s efficiency and scalability, irrespective of dataset vari-
ations. Our ultimate goal is to contribute to the establishment
of a Multicultural Sign Language (McSL) communication
system, particularly benefiting the hard of hearing and mute-
hearing community. To achieve this, the proposed system is
seamlessly deployable for real-time applications. Leveraging
a pre-trained GmTC model saved as a pickle file, a user
interface (UI) tailored for desktop, web, or mobile applica-
tions integrates a menubar, buttons, and input/output boxes.
The UI must include real-time gesture capture; the GmTC
model processes the input sign language gesture, providing
an immediate and dynamic response. The output box displays
predicted values, creating an interactive and engaging user
experience. This deployment strategy for McSL recognition
supports the hard of hearing and mute community, empower-
ing researchers to integrate our system effortlessly.

VII. CONCLUSION
In our study, we proposed GmTC, a novel model for McSL
recognition, by integrating graphs and general DNN. The
proposed model is constructed with two streams. The GmTC
system synergistically utilizes GCN, local CNN features, and
long-range dependencies from multi-head self-attention, com-
pelling the model to attain diverse discriminative features
such as short-range, long-range, and graph-based extractions.
Our primary objective was to extract extensive distance-based
pixel relationships, demonstrating the efficacy of GCN in
image-based tasks. Consequently, the GmTC model learns
these adaptive features, enhancing generalization capabili-
ties. The proposed method achieved its goal by producing
high-performance accuracy with diverse SLR datasets (JSL,
KSL, BSL, ASL, and LSA64). The outcomes revealed consis-
tently high-performance accuracy, affirming the effectiveness
and generalizability of our approach. The comprehensive
evaluation showcased the model’s superiority over high-
performance CNN and canonical transformer models. In the
future, we aim to deploy this model as a streamlined, gen-
eralized McSL system by including ten SLs and optimizing
parameters for enhanced speed in multimodal applications.
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