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ABSTRACT Federated Learning (FL), as a promising distributed learning paradigm, is proposed to solve the
contradiction between the data hunger of modern machine learning and the increasingly stringent need for
data privacy. However, clients naturally present different distributions of their local data and inconsistent local
optima, which leads to poor model performance of FL. Many previous methods focus on mitigating objective
inconsistency. Although local objective consistency can be guaranteed when the number of communication
rounds is infinite, we should notice that the accumulation of global drift and the limitation on the potential
of local updates are non-negligible in those previous methods. In this article, we study a new framework
for data-heterogeneity FL, in which the local updates in clients towards the global optimum can accelerate
FL. We propose a new approach called Slingshot. Slingshot’s design goals are twofold, i.e., i) to retain the
potential of local updates, and ii) to combine local and global trends. Experimental results show that Slingshot
helps local updates become more globally favorable and outperforms other popular methods under various
FL settings. For example, on CIFAR10, Slingshot achieves 46.52% improvement in test accuracy and 48.21×
speedup for a lightweight neural network named SqueezeNet.

INDEX TERMS Federated learning, data heterogeneity, catastrophic forgetting, model performance.

I. INTRODUCTION
In each communication round of a standard FL called Fe-
dAvg [1], each selected client first receives the global model
from a central server and executes stochastic gradient descent
(SGD) with local data in several local epochs. The updated
local model is then returned to the server for aggregation.
Compared to traditional distributed learning, FL protects data
privacy by exchanging models instead of the local data of each
participant. Therefore, FL can be applied to areas with strict
privacy restrictions such as healthcare [2], [3]. On the other
hand, FL reduces the aggregation frequency, thereby lowering
communication costs [1].

The reality is that data heterogeneity (also known as sta-
tistical heterogeneity or non-identically distributed) prevents
FL from being largely applied in practice. In the real-world
environment, each client often has its own data distribution
because of personal preferences and attributes. Combining as
much data as possible to train an optimal global model that fits

the total data distribution is our expectation for FL. However,
in data-heterogeneity settings, FL has been found to converge
slowly to a sub-optimal point or not at all [4], [5], particularly
if the learning rate has not been specifically optimized.

The poor model performance and slow convergence of data-
heterogeneity FL result from inconsistent local optima across
clients [6], [7], [8], [9]. Seriously heterogeneous data means
that the clients’ local optima are far from each other. Thus,
the global optimum (the average of all local optima) would be
far from each local optimum. Such inconsistencies cause two
detrimental effects on FL, i.e., i) local updates deviate from
global updates (Local Drift as shown in Fig. 1), and ii) the
aggregated global model deviates from the global optimum
(Global Drift as shown in Fig. 1).

It is a common approach to address the data heterogeneity
problem in FL by alleviating objective inconsistency. These
methods can be divided into the following two categories.
The first method is to add the regularization term to constrain
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FIGURE 1. Comparison between the conventional federated learning
paradigm FedAvg [1] and our proposed Slingshot. FedAvg produces two
kinds of drifts when dealing with data heterogeneity. Slingshot is designed
to facilitate the convergence of local update models toward the global
optimum while preserving the quality of local updates.

the distance between the local updated model and the global
model [8], [10], [11]. The other one is to set the correction
term of Local Drift [6], [12]. However, these methods cannot
eliminate objective inconsistency, because the global model in
the regularization or correction term also includes drifts [13].
Although all client solutions can be aligned at the end of
federated training in these methods, the drift has gradually ac-
cumulated during the progressive alignment. In other words,
these methods ensure faster convergence of FL, but can not
guarantee the converged model is closer to the global opti-
mum. The accumulation of Global Drift leads to poor model
performance of FL. In addition, strict restrictions on consis-
tency limit the potential of local updates to improve local
models, thus degrading the updates of the global model [14].

In this article, we reconstruct a new perspective on data-
heterogeneity FL that prioritizes global benefits over objective
consistency. Particularly, we no longer asymptotically reduce
the Local Drift to ensure the consistency of clients, but focus
on increasing local updates in a globally favorable direction.
This is because local updates towards the global optimum can
potentially accelerate data-heterogeneity FL. Inspired by this
idea, we propose a new method called Slingshot by taking the
two following design goals into account, i.e., i) to retain the
potential of local updates, and ii) to combine local and global
trends such that local updates are more globally favorable.

Our study includes the following contributions.
� We provide a new metric called MGAI (Mean Global

Accuracy Increase) to measure the effect of local up-
dates of FL algorithms. We show a positive correlation
between this metric and the final model performance.
Thus, this metric can help researchers compare the final
model performance of various FL algorithms during the
early testing phase in the laboratory.

� We propose a new method called Slingshot that improves
the quality of local updates in FL. Slingshot adopts
two dynamic targets representing local and global trends

respectively, which helps the updated local models get
closer to the global optimum. Also, it retains the poten-
tial of local updates to greatly improve local models.

� Our extensive experiments show that the improved lo-
cal updates of Slingshot make it applicable to various
datasets, models, and other settings in FL, with better
performance and faster convergence. For example, in a
severe data-heterogeneity setting, Slingshot reduces the
communication rounds of FedAvg by 72% on the CI-
FAR10 dataset.

Here is the guide for the subsequent sections. In Section
II, we review related work in the field of data-heterogeneity
federated learning and catastrophic forgetting. In Section III,
we discuss the underlying cause of FedAvg’s poor perfor-
mance with heterogeneous data is ineffective local updates.
We also define a new metric called MGAI to measure the
value of local updates. Following that, Section IV introduces
the proposed method Slingshot, detailing its motivation and
designs. Experimental setups and results are presented in Sec-
tion V. Finally, we conclude in Section VI with a summary
of key contributions. We hope our study will stimulate more
researchers to discuss what kind of local updates are more
beneficial to global updates and global models.

II. RELATED WORK
A. DATA-HETEROGENEITY FEDERATED LEARNING
The data heterogeneity among all clients is a key challenge in
FL. A common solution to addressing the data-heterogeneity
issue is to alleviate objective inconsistency by reducing the
Local Drifts aforementioned. The representative studies are
reviewed as follows. FedProx [10] simply adds a proximal
term to the objective. Scaffold [6] views the Local Drift as
“client-variance” and explores control variate to correct for
the Local Drift. Moon [8] adopts a model-level contrastive
loss by comparing representations learned by global models,
local models, and previous local models. FedDyn [11] adds
linear and quadratic penalty terms that dynamically modify
the clients’ objective to ensure objective consistency in the
limit. FedDC [12] decouples local training from global train-
ing and bridges the Local Drift with a local-drift variable.
FedGA [15] promotes the alignment of gradients across clients
with an implicit regularization.

In addition, some methods improve on the original
weighted aggregation of FedAvg with a focus on the server
side. These methods are designed to reduce Global Drift.
For example, FedNova [13] starts with various amounts of
local updates and normalizes all local gradients before the
aggregation. Considering the permutation invariance of neu-
ral network parameters, FedMa [16] matches and averages
similar weights layer by layer in the aggregation phase. To
mitigate feature drifts of heterogeneous data, FedBN [17]
does not aggregate the parameters of local BatchNorm layers.
FedOPT [18] converts the various dynamic optimizers into
federated versions, and applies them to the global updates
on the server. However, none of the mentioned methods can
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integrate with Local-Drift-reduction methods well. In fact,
Global Drift is actually the vector sum of Local Drift [9].
Thus, the Local-Drift-reduction methods are not orthogonal
to the Global-Drift-reduction methods in FL. We focus on the
Local-Drift-reduction methods, which are directly related to
the raw data and are more popular recently [12], [15].

From these previous studies mentioned above, we observe
that paying too much attention to objective consistency could
be harmful to FL. Because of the strong constraints or cor-
rections in these methods, the length of gradient descent of
the local model could be too short. Aggregating these less
updated models, the server collects less novel information
per communication round, thus increasing the communication
rounds [7]. In addition, the global model in the regularization
or correction term also includes drifts and the cumulative
Global Drift in these methods can not be ignored. Thus, we
try to find a more general and intuitive way to solve the issue
of data heterogeneity.

B. CATASTROPHIC FORGETTING IN FEDERATED LEARNING
Catastrophic forgetting refers to an important problem when
neural networks train the current task but forget the knowledge
of the previous tasks [19], if given a series of tasks with
different data distributions. Some recent papers attribute the
poor performance of data-heterogeneity FL to the catastrophic
forgetting across clients [20], [21]. Because of inconsistent
objectives, the global model forgets the previous knowledge
when each client executes local SGD, and local models forget
the locally learned knowledge when the updated models are
aggregated by servers. The biggest challenge in tackling data-
heterogeneity FL and catastrophic forgetting is how to balance
the knowledge with different data distributions. Consequently,
we can learn from the methods of catastrophic forgetting to
address data heterogeneity FL.

The authors of [22], [23] classified the most related pa-
pers on catastrophic forgetting into three main categories,
i.e., regularization [24], [25], [26], replay [27], [28], [29] and
parameter isolation approaches [30], [31], [32], [33]. It is a
common agreement for regularization-based methods to be
applied for data-heterogeneity FL, such as FedProx and Fed-
Dyn aforementioned. The replay-based methods have been
also proposed for FL, e.g., [7] corrects the classifier of neural
network by replaying virtual representations generated from
the Gaussian distribution. Inspired by the parameter-isolation
approaches [32], [33], we find that a globally favorable local
update in FL is actually fixing those model parameters that
improve both local and global accuracy while updating other
model parameters. Thus, we adopt two dynamic targets in the
local training phase to help local updates improve both local
and global accuracy. Moreover, these targets are not proximal
and do not unduly constrain the potential of local training to
update other parameters.

III. INEFFECTIVE LOCAL UPDATES
In this section, we define the optimization goals of feder-
ated learning and analyze the deep reasons why conventional

TABLE 1. Symbols and Notations

federated learning performs poor model performance in the
case of heterogeneous data. At last, we propose a new metric
to validate our analysis. Table 1 provides explanations for
important symbols and notations.

A. PRELIMINARIES
Assuming that there are a number of N ∈ N+ clients partici-
pating FL. We denote ω as the global model. Thus, the global
optimum in FL is defined as follows.

ω∗ = arg min

⎡
⎣ f (ω) � 1

|D|
N∑

k=1

∑
s∈Dk

f (ω; s)

⎤
⎦ , (1)

where Dk is the local dataset on client k(∈ [N]), the whole
dataset D = ∪k∈[N]Dk is the union of Dk , |D| indicates the
number of data samples in all clients, s is a data sample in Dk ,
and f (ω; s) means the supervised loss function given ω and s,
such as the common cross-entropy loss.

In FedAvg [1], each client first lets local model ωk = ω,
then executes mini-batch gradient descent at its device. In
fact, with its local data, each client k can only help the local
model get closer to the local optimum by executing local SGD
following FedAvg [1]:

ωk = ωk − η∇ fk (ωk ), k ∈ [N], (2)

fk (ωk ) � 1

|Dk|
∑
s∈Dk

f (ωk; s), k ∈ [N], (3)
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FIGURE 2. Underlying cause of FedAvg’s poor performance with heterogeneous data is the fact that local updates of a client have little or even negative
impacts on global accuracy. In the right subgraph, the solid lines indicate the periods during which a client performs local SGD, and the dashed lines
represent the intervals when this client is in idle status. While FedAvg’s local updates can significantly improve local accuracy, their impacts on the global
accuracy of local models remain marginal. In contrast, Slingshot strikes a balance between local and global accuracy and improves the quality of local
updates. Local update consists of multiple iterations, which is omitted as one iteration for simplicity in this figure.

where η is the local learning rate. After local training, client k
returns the updated model ωk to the central FL server for the
aggregation of model parameters

ω =
N∑

k=1

|Dk|
|D| ωk, (4)

where ω is the averaged model. And the server uses ω as the
new global model ω.

B. HETEROGENEOUS DATA MAKES UPDATES INEFFECTIVE
In a centralized learning, after one step of global update, the
global model will be changed to

ω+ = ω − η∇ f (ω). (5)

It is obvious that ω is worse than ω+ because the direction of
−∇ fk (ω) is towards the local optimum

ω∗k = arg min
∑
s∈Dk

f (ω; s)/|Dk|, k ∈ [N]. (6)

and there is a large angle between the directions of −∇ f (ω)
and −∇ fk (ω) especially when Dk is significantly different
from D. The difference between−∇ f (ω) and−∇ fk (ω) is the
mentioned Local Drift. The difference between ω+ and ω is
Global Drift. As shown in Fig. 2, the direction of the local
update deviates from the direction of the ideal local update
in FedAvg. In consequence, the speed of the global model

approaching the global optimum is slowed down because local
updates have limited contributions to achieving the global
optimum.

We demonstrate this inference by testing a client’s local
accuracy (using a local test set with the same distribution
as the local train set) and global accuracy (using the global
test set) on CIFAR10. As shown in Fig. 2, when this client
executes local SGD under FedAvg, the local accuracy in-
creases significantly, while the global accuracy increases a
little or even decreases. In fact, the overall local accuracy
also increases slowly. This is because, in each communication
round, all local models start from the global model sent by
the central server. The slowly-growing global accuracy im-
plies that the starting point of local accuracy in each round
grows slowly. Therefore, the bad model-training performance
and slow convergence of data-heterogeneity FL are funda-
mentally induced by the ineffective local updates. When the
local updated model is not much closer to the global optimum
than the global model before training, such a local update is
ineffective.

C. MEAN GLOBAL ACCURACY INCREASE
In order to better explore what local updates are globally
beneficial, we integrate the findings from the previous section
and first define a metric called MGAI: Mean Global Accuracy
Increase. A study shows that the final test accuracy of FL is
greatly affected by the early phase of the training process [34].
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This is because if the global model is optimized to a sub-
optimal point far away from the global optimum in the early
training phase, the complex loss surface in data-heterogeneity
FL prevents the global model from escaping the sub-optimal
point. Thus, we focus on the global impact of local updates
in the early training phase. Note that measuring the accuracy
of a local model simply with a local test set or measuring the
accuracy of a global model simply with a global test set can
not directly account for the global impact of local updates.
The effective measurement scheme is to test the effectiveness
of local updates with a global test set.

Specifically, in each early critical communication round,
we measure the test accuracy of local models on the global
test set twice. The first measurement occurs before the first
local epoch, and the second measurement is conducted after
each selected client sends the updated model to the FL server.
The difference between the two measurements �k →∞ in-
dicates an effective local update of client k, while �k →−∞
indicates an ineffective one. Then we compute the mean

1
|S|

∑
k∈S �k of five communication rounds, and the MGAI

is obtained.
MGAI measures the increase of local updates on global ac-

curacy. The experimental results show that MGAI is positively
correlated with the final model performance. This validates
the idea that globally beneficial local updates can improve the
model performance of FL. Note that measuring MGAI can
be done directly on the server side. As the training task is
initiated on the server, we can collect the test set on the server
and measure MGAI in the early stages of training. In each
communication round, the first measurement of test accuracy
occurs before the local models are updated. At this time, each
local model is equal to the global model. The second mea-
surement of test accuracy occurs before aggregation. At this
time, the updated models are sent to the server. Although such
testing consumes some additional resources, it allows users to
select effective algorithms at an early phase. For example, for
a task to train a thousand rounds, it may only take 50 rounds
of MGAI measurement to select an effective algorithm, which
can save a lot of training resources.

IV. THE METHOD OF SLINGSHOT
Inspired by the observation from Fig. 2 and the analysis de-
scribed in previous section, we propose Slingshot to accelerate
data-heterogeneity FL. Slingshot exploits the directions and
the quality of local updates, which is based on the thinking
of how to improve MGAI. The design goal of Slingshot is
to enforce each local update becoming more favorable to the
update of a global model such that their local updates can help
the updated local model approach the global optimum. With
the goal in mind, the challenge is that each client does not
know where the global optimum is.

To assist each client to capture the globally favorable di-
rection, Slingshot has the following two changes compared to
FedAvg. Firstly, each local update is guided by two dynamic
targets. Secondly, the global model is moved back before
local updates and is compensated after local updates. These

Algorithm 1: Slingshot.

Input: learning rate η, hyper-parameters (α, μ), trainsets
Dk , global momentum m = 0, global model ω, previous
updated models ω

pre
k , last received global models ωrec

k ,
k ∈ [N]. /* All models are of the same architecture and
are initialized in the same way. */

Output: final global model ω.
1: for each round r = 1,..., R do
2: ω← ω − αm /* Move back global model. */
3: Sample clients S from {1,..., N}.
4: for each client k ∈ S in parallel do
5: Local model ωk ← ω

6: ωloc ← ω + α(ωpre
k − ωrec

k ) /* Build loc. targets.
*/

7: ωglo← ω + α(ω − ωrec
k ) /* Build glo. targets. */

8: ωk ← LocalUpdate(ωk, ωloc, ωglo)
9: ωrec

k , ω
pre
k ← ω, ωk /* Update saved models. */

10: end for
11: Aggregated gradient g← FedAvg(ωk − ω), k ∈ S
12: ω← ω + g /* Global update. */
13: ω← ω + αm /* Compensate global model. */
14: m← ηm+ g /* Momentum update. */
15: end for
LocalUpdate (ωk,ωloc,ωglo):

1: for each local epoch do
2: for batch bi ∈ Dk do
3: lce ← CrossEntropyLoss(bi;ωk )
4: lss ← μ

2 (‖ωk − ωloc‖2 + ‖ωk − ωglo‖2)
5: l ← lce + lss

6: ωk ← ωk − η∇l
7: end for
8: end for
9: return ωk

two changes are elaborated in Designs 1 and 2, respectively.
Before describing the two designs, we depict the motivation
of Design 1 as follows.

A. MOTIVATION: BALANCING THE LOCAL AND GLOBAL
PERFORMANCE
Ineffective local updates in data-heterogeneity FL originates
from the fact that all clients share a common set of global
model parameters but the local and global optima are dif-
ferent. Motivated by the parameter-isolation approaches [32],
[33] ensuring minimal drop in performance, we argue that
the key to data-heterogeneity FL is to balance the local and
global performance. However, the local updates in FedAvg
are unbalanced, which aims at local optima but ignores the
global optimum. On the other hand, FedProx-like methods
add a strong penalty term written as μ

2 ‖ωk − ω‖2, where μ

controls the weight of this penalty term. This penalty term
prevents the updated local ωk model from getting too far from
the global model ω. In fact, such stringent penalty term limits
the effective forwarding of local updates towards local optima.
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Then global updates are also constrained accordingly. There-
fore, a globally-favorable local update should simultaneously
consider the update trends of both the local and global models,
while preserving its potential of moving towards local and
global optima.

B. DESIGN 1: SETTING TWO DYNAMIC TARGETS
We construct two dynamic targets for each local update (as
shown in lines 6-7 of Algorithm 1), i.e., local target ωloc and
global target ωglo. They imply the local and global trends,
respectively. For client k ∈ [N], ωrec

k is the global model last
received from the central server, and ω

pre
k is the previous

updated local model sent to the server. Both targets are con-
structed by global model ω adding accumulative gradients.
The local target ωloc is constructed as

ωloc = ω + α(ωpre
k − ωrec

k ), (7)

and the global target is constructed as

ωglo = ω + α(ω − ωrec
k ). (8)

where α is a hyper-parameter controlling how far the target
is from the global model. Then the local update of client k is
limited by two distances when fitting local data (as shown as
Local Update in Algorithm 1). One is the distance between the
local model ωk and the local target, represented by μ

2 ‖ωk −
ωloc‖2. And the other one is the distance between the local
model and the global target, represented by μ

2 ‖ωk − ωglo‖2.
Such two targets direct each client to find an updated model
that gets closer to its local optimum with a minimal drop in
global performance.

C. DESIGN 2: MOVING GLOBAL MODEL BACK
Although the penalty terms μ

2 (‖ωk − ωloc‖2 + ‖ωk − ωglo‖2)
help local updates more globally favorable, they also pre-
vent the local updates from converging to the local optimum
fast. Note that there is a trade-off in the size of the hyper-
parameters α. When α is too large, the dynamic targets are
too far from the local model, reducing the impact of targets
on local updates. On the other hand, these dynamic targets
are close to the global model. Our proposed Slingshot is then
equivalent to FedProx [10], which limits the potential of local
updates to improve local models. To prevent the value of
hyper-parameters α from unduly affecting the performance of
Slingshot, we further improve local updates.

In the state-of-the-art data-heterogeneity FL methods, local
updates are mainly affected by local datasets and regulariza-
tion terms (or correction terms). These methods often design
regularization terms (or correction terms) elaborately, but ig-
nore the raw effects of local datasets. When is the direction
toward a local optimum approximately equal to the direction
toward the global optimum? The answer is when the global
model is far away from both local and global optimum.

Let the local dataset guide the local model to the global
optimum as much as possible. We propose a method that
increases the distance between the global model and the global

optimum before local training but decreases the distance af-
ter training. Specifically, we let each client move the global
model back αm before local updates

ω← ω − αm, (9)

and compensate it after local updates (as shown in line 13
of Algorithm 1), where m is the global momentum, i.e. the
momentum of global updates. This momentum is updated as
shown in line 14 of Algorithm 1.

It is worth noting that Design 2 is fundamentally different
from the conventional FL methods using momentum [18],
[35]. Although we use server-side momentum, this momen-
tum is not really incorporated into the optimizer. This is
because the momentum that we add to the global model
cancels out before and after the local training, while the mo-
mentum added to the model in the conventional FL methods is
maintained. Considering that it is difficult to directly correct
the global update, (especially in the scenario of Big Data and
deep models, even a minor correction to the global model
will have a huge impact) we do not directly correct the global
update. The reason we introduce server-side momentum is to
implicitly improve local updates, i.e., to implicitly add the gra-
dient pointing to the global optimum on the local update. Our
experiments in Section V-B prove that both of our proposed
designs can improve the performance of FL. Also, Slingshot’s
performance is less sensitive to hyper-parameter α because of
Design 2.

D. PROPERTY ANALYSIS
Compared with the classical FL algorithm FedAvg, most
data-heterogeneity FL methods have additional resource con-
sumption [6], [8], [10]. To the best of our knowledge, an
efficient data-heterogeneity FL method that does not require
preserving additional models or gradient states has not yet
emerged. Slingshot also needs to maintain some historical
models locally on the clients to improve the training, such
as ω

pre
k and ωrec

k . These models consume additional mem-
ory resources. On the other hand, the effectiveness of some
methods depends heavily on synchronizing the extra saved
models. For example, the conventional data-heterogeneity FL
algorithm Scaffold [6] incurs 2×communication overhead for
synchronizing the global variate c. However, Slingshot does
not require this kind of synchronization, eliminating addi-
tional communication resource consumption. This means that
Slingshot’s communication overhead per round is equal to that
of FedAvg.

V. EXPERIMENTS
A. TRAINING CONFIGURATION
1) DATASETS AND MODELS
We test our proposed Slingshot through the experiments
conducting on five common image-classification datasets: CI-
FAR10, CIFAR100 [36], FashionMNIST [37], EMNIST [38]
and SVHN [39]. These datasets can be easily downloaded
from Pytorch [40]. For CIFAR10, CIFAR100 and SVHN,
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FIGURE 3. Improved local updates of Slingshot. We measure the metric called MGAI (Mean Global Accuracy Increase). MGAI measures the impacts of
local updates on global accuracy. A larger MGAI means that the locally updated model performs better on the global test set. The concentration of the
Dirichlet distribution β is set to 0.3.

we use a CNN with two 5×5 convolutional layers as used
in FedAvg [1]. For FashionMNIST and EMNIST, the classic
LeNet [41] is adopted (the number of input channels of the
first layer is changed to 1).

2) THE PARTITION OF DATASETS
The whole test dataset is stored at the FL server, but each
client has only a subset of the train dataset during the entire
FL training. We adopt a popular approach that appeared in FL
papers to partition datasets [7], [8], [12]. Concretely, for each
class, a distribution of data samples across all clients is gen-
erated by the Dirichlet distribution (Dir(β )). The parameter β

is the concentration of the Dirichlet distribution, and a lower
concentration leads to a more heterogeneous distribution of
data. To implement different degrees of data heterogeneity,
we set β = 0.1, 0.3, and 0.5, respectively. In these challenging
settings, the data distribution and the amount of data can vary
widely from client to client.

3) FEDERATED LEARNING SETTINGS
In each communication round, a central FL server randomly
samples a specified number of clients to perform local SGD
via a fixed random seed. For CIFAR10, CIFAR100, and
SVHN, we set 1000 communication rounds, and 10 out of
100 clients are selected for each round. For FashionMNIST,
we set 300 communication rounds, and 10 out of 200 clients
are selected for each round. For EMNIST, we set 200 commu-
nication rounds, and 10 out of 100 clients are selected. Unless
otherwise specified, we set the number of local epochs in each
round to 5, the batch size in the local update phase to 64,
the initial learning rate to 0.1, the decay rate of learning rate
in each round to 0.998 [11], the momentum to 0.9, and the

weight decay to 10−4, respectively. We also apply the same
data-augmentation techniques for each dataset.

4) BASELINES AND HYPER-PARAMETERS
We compare Slingshot with the standard FL paradigm FedAvg,
as well as other three popular methods in data-heterogeneity
FL including FedProx [10], FedGa [15], and Moon [8]. For
CIFAR100, we tune μ of FedProx from {0.1, 0.01, 0.001}
and use the best μ 0.01, α of FedGa is set to 0.05 tuned
from {0.1, 0.05, 0.025}, μ of Moon is set to 0.01 tuned from
{1, 0.1, 0.01, 0.001} and α of Slingshot is set to 0.2 tuned
from {0.2, 0.1, 0.05}. For CIFAR10, the best μ of Moon is
changed to 0.001, and the best α of Slingshot is 0.1. In order
to fairly compare the generalization of these methods, their
specific hyper-parameters for the other tasks are set to the
best for CIFAR10. We explore the sensitivity of Slingshot’s
hyper-parameters α and show the results in Fig. 6. All the
settings of μ in Slingshot are the same as those set in FedProx.

B. IMPROVED LOCAL UPDATES
Our key idea is to help local updates more globally favor-
able in data-heterogeneity FL. Thus, we compare the global
impacts of local updates of various federated learning base-
lines. Our proposed metric MGAI measures the increase in
global accuracy of the locally updated models, which shows
the effectiveness of local updates. As shown in Fig. 3, Sling-
shot improves the value of local updates compared to other
baselines, especially with a large number of local epochs.
This is because Slingshot can not only appropriately guide the
directions of local updates but also preserve the possibility of
a large improvement of the updated model.

Effective local update results in good performance of the
global model. We compare the performance of Slingshot with
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FIGURE 4. Comparison of the early critical stage performance between Slingshot and FedAvg under the different number of local epochs. The number in
each black bracket represents the number of local epochs. In addition, we mark the differences in performance and communication efficiency between
Slingshot and FedAvg, respectively. The oscillation is the true test accuracy curve.

FIGURE 5. Global accuracy v.s. communication rounds. A smaller β

represents a greater degree of heterogeneous data. FedAvg is stuck at 1%
accuracy in (c). The color band represents the oscillation of the true
accuracy curve of the corresponding method.

that of FedAvg in the early stages (known as critical periods).
The experimental results show that MGAI is positively cor-
related with model performance. Slingshot has better model
performance than FedAvg, with a higher MGAI. Note that the

FIGURE 6. Effectiveness of Slingshot. (a) Testing hyper-parameters α of
Slingshot on EMNIST. (b) Ablation study on CIFAR10. The color band
represents the oscillation of the true accuracy curve of the corresponding
method.

number of local epochs in a communication round is a crucial
parameter of FL. A simple and crude way to reduce the impact
of heterogeneous data in FedAvg is to reduce the number
of local epochs. However, decreasing local epochs seriously
increases communication costs. It is generally believed that
a large number of local epochs causes a serious challenge of
data heterogeneity. Thus, we conduct five groups of experi-
ments corresponding to local epochs = 2, 5, 10, 15, and 20
respectively, to test the performance under various degrees
of data heterogeneity. Fig. 4 shows that the acceleration of
Slingshot in the early stage is robust for different local epochs.
This observation suggests that Slingshot works well under
various degrees of data heterogeneity.

C. CONVERGENCE COMPARISON
1) NON-IID DATASET AND PARTIAL PARTICIPANTS
The reason why the early training stage is called the critical
round is that the early training often determines the qual-
ity of the final model and the overall convergence speed of
the algorithm. Our experimental results also prove that the
convergence rate and model performance in the early train-
ing stage imply the eventual convergence rate and model
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TABLE 2. Global Model Performance and Communication Efficiency for Five Benchmark Datasets

performance. In addition, the positive relationship between
MGAI and the final model performance is also confirmed.
Thus, researchers can predict the final performance of various
FL algorithms by measuring MGAI during the early testing
phase.

Table 2 shows the convergence of the mentioned methods
for five benchmark datasets by comparing both the top-1
accuracy of the global model and the number of rounds
that achieve the target accuracy. In order to better compare
the convergence, we set higher target accuracies for the set-
tings with larger β (smaller challenge). Compared to other
baselines, Slingshot shows the best model performance and
communication efficiency in almost all settings. For CIFAR10
(β = 0.1), the top-1 accuracy of Slingshot is 7.08% higher
than that of FedAvg, and the number of communication rounds
to achieve 63% accuracy is reduced by 72%. Slingshot is also
5.30× faster than FedAvg on EMNIST with fewer challenges
of convergence. Slingshot’s local updates are more globally
beneficial and not pulled by different local optima, thus Sling-
shot achieves the target accuracy with fewer communication
rounds.

Among the five dataset tasks, the most difficult one is
CIFAR100. For CIFAR100 with heterogeneous data, some
methods even cannot train effectively. For instance, when
β = 0.1, the global accuracy in FedAvg is stuck at 1%. How-
ever, in this case of significantly heterogeneous data, Slingshot
still converges best. Sometimes, other methods are no better
than vanilla FedAvg while Slingshot is always better than
FedAvg with heterogeneous data. It is because Slingshot is not
overly constrained by objective consistency and not seriously
affected by cumulative Global Drift such as FedProx, but it
is more general to choose the globally favorable direction to
update.

TABLE 3. Top-1 Accuracy, With IID Dataset and Full Participants

The test accuracy results of training models on CIFAR10
and CIFAR100 are shown in Fig. 5. In each communica-
tion round, only a subset of clients are selected by the
central server, and these clients may have little data in
data-heterogeneity settings. In addition, the selected clients
may have data that are useless or even have negative impacts
on global training at this stage. Thus, the test accuracy results
of all methods have some degree of oscillation. However,
Slingshot captures the globally favorable direction even if with
oscillation, resulting in faster convergence.

2) IID DATASET AND FULL PARTICIPANTS
Table 3 shows that Slingshot does not degrade performance
with full participants and IID dataset, where all clients have
the same data distribution and the same amount of data. Due
to the feature drifts among samples and the randomness of
stochastic gradient descent, Slingshot is also effective under
the setting of IID and full participants.

D. ROBUSTNESS AND EFFECTIVENESS
It is not our intention to get a competitive method by tuning
hyper-parameters. Specific hyper-parameters, however, defi-
nitely affect the convergence of all methods. We explore the
sensitivity of Slingshot’s parameter α in Fig. 6(a). This sensi-
tivity is similar to that of FedGa while Slingshot outperforms
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FIGURE 7. Model performance and convergence when training different
models on CIFAR10 (β = 0.1). The color band represents the oscillation of
the true accuracy curve of the corresponding method.

FedGa for all α. What we want to emphasize is that the
designs of Slingshot are generalized to help solve the problem
of data heterogeneity. Fig. 6(b) shows both Slingshot’s designs
can speed up data-heterogeneity FL and Design 1 has a larger
impact than Design 2. Despite using a similar loss function
adopted by FedProx, Slingshot is more effective than FedProx.
This is because Slingshot constrains local updates to a globally
favorable direction rather than a global model given a Global
Drift.

Since deep models are transmitted in FL instead of data,
FL is often associated with high communication costs. It
is natural to choose a lightweight model in FL. However,
experimental results show that lightweight models that are
more effective in centralized training are possibly more dif-
ficult to train in data-heterogeneity FL. This is because
such lightweight models are compressed. Compared with the
sparse model, their gradient norm is larger, so they are more
susceptible to the drifts of FL. Fig. 7 shows that Slingshot can
be applied to various lightweight models to tackle the prob-
lem of data heterogeneity. For example, Slingshot achieves
46.52% improvement on test accuracy and 48.21× speedup
for a lightweight neural network named SqueezeNet-1.0.

VI. CONCLUSION
A major challenge in federated learning (FL) is the data-
heterogeneity problem. Previous approaches have paid plenty

of attention to alleviating data-heterogeneity FL by focus-
ing on objective inconsistency. Differently, we find that it
is a significant challenge to guarantee local updates that are
globally favorable. To address this challenge, we carried out
the following two attempts. First, we propose a new metric
called Mean Global Accuracy Increase (MGAI) to evaluate
what kind of local updates are globally favorable. MGAI helps
the researchers predict the final performance of various FL
algorithms during the early testing phase. Meanwhile, this
metric helps researchers understand that truly effective local
updates for FL should point to global optimum and be of
appropriate length. Such local updates can greatly improve
MGAI and the final performance of the global model. Thus,
we propose a new method of FL called Slingshot that ex-
ploits the globally favorable direction and the quality of local
updates. Our experiments demonstrate a faster convergence
of FL training under the proposed Slingshot, as well as its
robustness and effectiveness. Hopefully, our studies can spark
more discussions about the directions and the quality of local
updates in FL.
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