
Received 18 December 2023; accepted 14 January 2024. Date of publication 18 January 2024;
date of current version 16 February 2024. The review of this article was arranged by Associate Editor Amiya A Nayak.

Digital Object Identifier 10.1109/OJCS.2024.3355693

Low Area and Low Power FPGA
Implementation of a DBSCAN-Based RF

Modulation Classifier
BILL GAVIN , TIANTAI DENG (Member, IEEE), AND EDWARD BALL (Member, IEEE)

Department of Electrical and Electronic Engineering, The University of Sheffield, S1 3JD Sheffield, U.K.

CORRESPONDING AUTHOR: BILL GAVIN (e-mail: wcjgavin1@sheffield.ac.uk)

This work was supported by the U.K. Research and Innovation (UKRI) Future Leaders Fellowship under Grant MR/T043164/1.

ABSTRACT This paper presents a new low-area and low-power Field Programmable Gate Array (FPGA)
implementation of a Radio Frequency (RF) modulation classifier based on the Density-Based Spatial Clus-
tering of Applications with Noise (DBSCAN) algorithm, known as DBCLASS. The proposed architecture
demonstrates a novel approach for the efficient hardware realisation of the DBSCAN algorithm by utilising
parallelism, a bespoke sorting algorithm, and eliminating memory access. The design achieves 100% clas-
sification accuracy with lab-captured RF data above 8 dB signal-to-noise ratio(SNR) whilst exhibiting an
improvement of latency in comparison to the next quickest design by a factor of 7.5, a reduction in terms
of total FPGA resources used in comparison to the next smallest complete system by a factor of 3.65, and
a reduction in power consumption over the next most efficient by a factor of 4.75. The proposed design is
well suited for resource-constrained applications, such as mobile cognitive radios and spectrum monitoring
systems.

INDEX TERMS RF classifier, cognitive radio, DBSCAN, FPGA, automatic modulation classification, AMC,
beyond smart radio.

I. INTRODUCTION
The ever-increasing demand for wireless communication has
led to the emergence of numerous communication standards
and the need for efficient spectrum utilisation. Identifying and
classifying the modulation schemes of radio signals is critical
for dynamic spectrum access, cognitive radio systems, and
the development of beyond smart radio systems for 6G [1].
Machine learning algorithms have proven to be effective in
tackling such classification tasks. Among these algorithms,
Convolutional neural networks(CNN) [2] and long-short-term
memory (LSTM) [3] based systems have emerged as the most
popular unsupervised learning method for detecting patterns
in large datasets. While these models have shown strong per-
formance [2], [3], their complex and generalized nature can
be a limitation, particularly in mobile and low-power devices.
Yingchun Wang et al. [5] detail the challenges with deploy-
ing deep learning systems in these scenarios. They conclude
that to overcome the high power consumption and chip area
requirements that machine learning models suffer from, en-

gineers should either reduce model complexity or offload to
the cloud for processing. Our work will attempt to solve this
challenge by reducing complexity via introducing a bespoke
clustering algorithm, specifically designed to address scenar-
ios where CNNs and LSTMs fall short. The superiority of this
approach is underscored by several critical factors:
� Neural Networks such as CNNs and LSTMs can be

resource-heavy, requiring significant memory and pro-
cessing power. This can be a limiting factor, especially
when deploying models to mobile devices [5]. In con-
trast, our algorithm is optimized for energy efficiency,
making it ideal for deployment in battery-operated or
low-power devices.

� The streamlined design of our clustering algorithm al-
lows for rapid data processing, resulting in lower latency
compared to CNNs and LSTMs. This is particularly ben-
eficial in applications requiring real-time data analysis,
where the delay introduced by the computational com-
plexity of CNNs and LSTMs can be prohibitive [5].

© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

50 VOLUME 5, 2024

https://orcid.org/0009-0009-8694-2288
https://orcid.org/0000-0003-4507-5746
https://orcid.org/0000-0002-6283-5949
mailto:wcjgavin1@sheffield.ac.uk

� Tailoring the algorithm to specific data scenarios not
only enhances its efficiency but also reduces the compu-
tational overhead required for processing. This targeted
approach allows the algorithm to bypass the extensive
and often redundant calculations that CNNs and LSTMs
perform, further contributing to lower power consump-
tion and faster processing times [5].

In this work we propose a system called DBCLASS
(Density-Based CLASSifier), based on the Density Based
Spatial Clustering of Applications with Noise(DBSCAN) [4].

DBSCAN has not been applied thus far to tackle the
problem of RF modulation classification. A traditional im-
plementation of the algorithm in hardware would prove to
be computationally slow due to its inherent sequential pro-
cessing. FPGA implementations have the potential to address
these challenges by exploiting parallelism and customization
opportunities. This paper introduces a low area and low power
FPGA custom implementation of DBSCAN that addresses
these hardware limitations of the traditional algorithm.

The key achievements of this system are:
� A low-power design that reduces the overall power con-

sumption of the FPGA implementation by a factor of
4.75 in comparison to the next most efficient [15].

� A highly optimised pre-processing system based upon
DBSCAN and a minimally complex artificial intelli-
gence(AI) model together achieves a factor of 3.65
reduction in total FPGA resources used in comparison
to the next smallest complete system [19].

� A pipelined architecture that is designed to work on
real-time data-streams which achieves a reduction in la-
tency of by a factor of 7.5 compared to the next quickest
system [19].

� Competitive classification performance which matches
the accuracy of more complex CNN architectures at
SNRs above 8 dB.

The remainder of this paper is organised as follows:
Section II provides background on other work in this area
from the literature. Section III gives an overview of the
DBSCAN algorithm and its application to RF modulation
classification. Section IV describes the proposed FPGA-based
architecture in detail. Sections V and VI present and discuss
the experimental results, and Section VII concludes the paper
with a summary of the contributions.

II. RELATED WORKS
In the literature a number of approaches to modulation classi-
fication have shown their effectiveness in software. These can
roughly be divided into three schools of thought, statistical
wave feature extraction, automatic time series classification,
and constellation diagram classification.

A. STATISTICAL CLASSIFICATION
The first of these approaches takes samples of waves from
an incoming waveform and statistically determines features
about the sample; examples of features which are used can
be found in the article by A.K. Nandi and E.E. Azzouz [6].

Notable features include the kurtosis, entropy, standard devia-
tion, skewness, and symmetry of a wave. A.K. Nandi and E.E.
Azzouz create a system using these features and at 15 dB SNR
the system correctly identifies Amplitude Shift Keying(ASK)
and Frequency Shift Keying(FSK) at a minimum of 97% of
the time, at 20 dB the results are 100% accurate. Boutte
et al. [7] apply the same approach to modern modulation
schemes, this approach combined with a Support Vector Ma-
chines (SVM) network is shown to be capable of achieving
close to 100% accurate classification of Quadrature Phase
Shift Keying(QPSK) above an SNR of 6 dB, as well as this
Orthogonal Frequency Division Multiplexing(OFDM) BPSK
is classified with 95% accuracy above an SNR of 15 dB.
Both of these papers use a limited set of modulation types,
a clearer picture of performance across a larger set of modula-
tion schemes can be found in the work by D. Saharia et al. [8].
In this paper a large set of results is presented with a confusion
matrix of 11 different schemes. While some modulation types
are classified above 90% accuracy at an SNR of 16 dB it is
clear that the technique struggles to deal with such a vast
array of schemes, this is especially clear when differentiat-
ing between similar modulation types based upon Quadrature
Amplitude Modulation(QAM), 16QAM and 64QAM. When
attempting to differentiate between these two similar waves
they are classified as each other at almost the same rate as
themselves. Other modulation types are classified on average
with a 70% accuracy. A downside to this approach is the
intense pre-processing of signals which is required before
classification can be performed, this will lead to a delay in
obtaining a classification result as well as increase the size and
complexity of any hardware implementation. Due to the poor
performance at low SNRs and low throughput this approach
has been supplanted by more modern approaches.

B. DIRECT WAVEFORM CLASSIFICATION
Rajendran et al. in [9] use a LSTM to automatically clas-
sify RF waveforms, this achieves two notable improvements
over the statistical feature methods. Firstly the model exhibits
an enormous improvement in classification accuracy, across
exactly the same modulation types as in [8] there is an im-
provement in all but one. The system classifies most schemes
with an accuracy of at least 90% at 0 dB SNR, there still
exists some misclassification of similar waveforms such as
16QAM and 64QAM but the accuracy remains at 85% and
above, a marked improvement over the 52% accuracy with
high SNR data with the statistical feature classifiers. The sec-
ond advantage of using the LSTM is that the model directly
uses the incoming RF waveform, thereby avoiding the need
for pre-processing, however these gains are mitigated due to
requiring a larger sample of data for classification and the
LSTM structure being larger than most model structures in
general. This paper also gives a comparison of classification
accuracy of various model structures across a range of SNRs.
The LSTM is shown to be vastly superior to most model
structures, achieving an average of 90% accuracy above SNRs
of 0 dB, only the CNN comes close in terms of performance

VOLUME 5, 2024 51

GAVIN ET AL.: LOW AREA AND LOW POWER FPGA IMPLEMENTATION OF A DBSCAN-BASED RF MODULATION CLASSIFIER

by achieving an accuracy of 80%. Similar results are obtained
by Ke et al. in [10], a LSTM model is shown to have the
greatest average accuracy across all SNRs with 90%, a con-
fusion matrix of the same collection of modulation schemes
shows strong differentiation between each type, however the
reduced accuracy with similar waveforms remains. LSTM
based models have therefore shown strong robustness to noise
yet are unable to reach perfect classification accuracy of 100%
at any SNR.

C. CONSTELLATION CLASSIFICATION
The final approach to modulation classification is to classify
the data based upon the appearance of the constellation dia-
gram. There are a few ways of approaching this problem, the
first of which is to create images of the constellation diagram
and use an image-recognition CNN to classify constellations
based on learned appearances. This method is shown by Doan
et al. [11], at an SNR of 5 dB and above the model correctly
classifies all schemes with a 100% accuracy, by far the best
performance at this low SNR. However there are drawbacks
when using techniques such as this. Firstly the CNN, and
especially image recognition CNNs will have a large imple-
mentation size on a FPGA. Secondly not only is the CNN
structure large but an entire pre-processing system must be
implemented to prepare the images, adding further complexity
and resource utilisation. Finally, not only are large batches of
data required for the creation of the constellation image but
creating the image itself will add a significant delay to obtain-
ing a classification result. So this technique of classification
is capable of achieving the 100% accuracy but at the cost
of requiring more pre-processing and a large deep learning
model.

Yu Wang et al. [12] use a CNN to perform convolution
on constellation diagrams to calculate the data densities, this
is then used to train a second CNN model. The work again
achieves 100% classification accuracy above an SNR of 5 dB
and is capable of 90% accuracy at 0 dB. The key idea in
this work is rather than treating the constellation as an image,
the data is represented numerically and the densities of the
data points are used for classification. Yet this work requires
multiple CNNs connected in series and parallel, the input
CNN will determine the broad modulation type such as M-
PSK or M-QAM and then the data will pass to the model
which is trained to differentiate between orders of modulation.
This work shows that using data density for classification can
allow for strong performance yet the complexity of the system
makes it unsuitable for low-area and low-power embedded
systems.

While software models have shown greater accuracy at
low SNRs than FPGA models, owing to their use of float-
ing point precision, FPGAs have the advantage of reduced
delay and power consumption [2], [15], [16]. Thus FPGA
and application-specific integrated circuit(ASIC) solutions are
the optimal choice for low-power, low-area, and low-delay
modulation classifiers in embedded systems.

D. HARDWARE COMPARISONS
The majority of hardware implementations found in the lit-
erature are based upon the CNN. This is to be expected as
the CNN has shown the best accuracy in simulations [11],
[12]. Just as in software the approaches can also broadly be
characterised into either time-series or constellation demod-
ulation. The papers which exhibit the highest classification
accuracy are the ModNet system by Kumar et al. [22] and
HistoSVM by Cardoso et al. [23], these works both achieve
100% classification accuracy above an SNR of 9 dB, at
which point the accuracy of HistoSVM begins to decline
and reaches 74% accuracy at 0 dB. The 100% classification
accuracy of ModNet is maintained until 4 dB, below this
SNR the performance degrades until 86% accuracy is reached
at 0 dB. ModNet follows a similar approach to Doan [11]
and creates images of constellations which a CNN classifies.
HistoSVM introduces a wholly unique approach and creates
histograms which are used in conjunction with a Support
Vector Machines(SVM) classifier. The best performing time
series hardware model is ResNet by J O’Shea et al. [25]. In
this work the authors use a modified CNN known as a residual
neural network and achieve an overall 96% accuracy, this
performance is maintained until 10 dB SNR, although the au-
thors do demonstrate that low order modulation classification
accuracy reaches 100% accuracy. It is worth noting that the
trend of lower order modulation scheme classification achiev-
ing higher classification accuracy is consistent across many
papers [18], [22], [24], [25]. ResNet and ModNet are therefore
the best performing examples of waveform and constellation
classification in hardware respectively,

Out of these three best performing systems only HistoSVM
provides data for the characteristics of the FPGA implemen-
tation, making a hardware comparison between each model
difficult. A table of resource utilization of various designs can
be found in Table 3 in Section VI, additionally Fig. 11 in the
same section shows a comparison graph of accuracy against
SNR. HistoSVM uses by far the least registers compared to
other work, the majority of other designs are based upon the
CNN and use tens to hundreds of thousands of registers. Con-
versely, HistoSVM uses an enormous amount of BRAM, the
largest of any found in the literature, the latency of this work
again is the largest which can be found. So while HistoSVM
achieves 100% accuracy it comes at a cost of memory usage
and latency. RUNet [19] again by Kumar et al. uses a similar
residual neural network to ResNet and achieves very similar
accuracy. This model uses the least registers, Look-Up-
Tables(LUTs), Digital-signal-processors (DSP), and RAM of
any deep learning based model bar Zhao et al. [2] which
requires less registers and LUTs. Additionally RUNet has the
least latency of any deep learning based system at 7.5 μs,
narrowly beating S. Tridgell et al. [14], [16] by 0.5 μs.

In terms of area utilization and delay, RUNet [19] is the
state-of-the-art in terms of implementation size, delay, and
accuracy. The lowest power design found is that of Amad
et al. [15] which uses 847 mW.

52 VOLUME 5, 2024

FIGURE 1. Difference between 16QAM and 16PSK.

Through efficient preprocessing in conjunction with a
minimally complex machine learning classifier, similar to His-
toSVM’s approach, there is a possibility of creating a system
that improves upon all work in terms of area, power con-
sumption, and delay. The following sections will discuss the
methodology in creating this system.

III. PROPOSED METHOD
In this work a new method of classification which minimises
preprocessing, and does not require the use of a complex
neural network model to achieve 100% accuracy is presented.
The idea is to exploit the characteristics of the constellation
diagram, which is essentially a set of clusters of points in 2D
space, ideal for the application of a clustering algorithm. Most
clustering algorithms such as K-Nearest Neighbours(KNN)
will group points into a specified number of clusters [26],
whereas the problem of this work is to solve the inverse.
There are well defined clusters, if the number of them could be
determined as well as their relative positions on the diagram,
a minimally complex network could classify them based upon
this information as each modulation type will have a unique
number and arrangement of constellations. The clustering al-
gorithm DBSCAN is suitable for this problem as it forms an
arbitrary number of clusters, without a user specified parame-
ter. This work will propose a novel method of using DBSCAN
to extract the information about the clusters directly and use
this information to achieve classification.

Time-series RF waves are decomposed and represented as
two waves known as In-Phase(I) and Quadrature(Q) which
respectively correspond to the instantaneous amplitude and
phase of the original wave. The IQ point pairs can then be plot-
ted in 2D space as a complex number Z. Modulation schemes
which utilise changes in phase and amplitude will exhibit dif-
ferent clusters of points throughout the 2D plane as the I and Q
values change to represent different data symbols, this forms a
particular pattern known as the constellation diagram. A sim-
ple example of how this system will operate is by examining
the examples of QPSK and 8PSK. Both of these modulation
schemes can be distinguished as a human by recognising that
the diagram with 4 constellations must represent the QPSK
and likewise the 8 constellations the 8PSK. Similarly, the
same process can be done with a computer through clustering
in order to determine the number of constellations, therefore
differentiating between QPSK and 8PSK.

FIGURE 2. Diagram of the operation of traditional DBSCAN.

Not all modulation types can be differentiated by the num-
ber of constellations, for example 16PSK and 16QAM both
have 16 constellations but it is the positioning of the constel-
lations which can be used to separate them. To achieve this a
proxy for determining positioning is to calculate the absolute
value and arguments of each constellation, an example is
shown below in Fig. 1. The calculated absolute values and
arguments can be clustered to sort them into groups. Once
the clustering is finished, a final result is obtained which is
the number of different arguments and absolute values of
the constellations, with this data the modulation scheme can
be determined with a machine learning classifier trained on
similar data. In addition to the argument and absolute value
data allowing for stronger differentiation between like con-
stellations, the 1 dimensional nature of the data allows for a
unidimensional DBSCAN to be executed on each set of data,
which facilitates further efficiency gains which are outlined in
Section IV-B.

A. DBSCAN
A diagram of the operation of DBSCAN can be found in
Fig. 2. Two different parameters are required to achieve ac-
curate clustering with DBSCAN. These parameters are the
minimum number of spatially near points to constitute a clus-
ter (minPts), and minimum distance between two points to be
considered part of the same cluster ε. DBSCAN has a worst
case computational complexity of O(n2) owing to the process
of checking the distance to each point in the dataset from each
point in the dataset. When working with 1 dimensional data
as in this case, it is advantageous to sort the data and apply a
modified algorithm. An example of unsorted and sorted data
can be seen in Figs. 3 and 4 respectively.

VOLUME 5, 2024 53

GAVIN ET AL.: LOW AREA AND LOW POWER FPGA IMPLEMENTATION OF A DBSCAN-BASED RF MODULATION CLASSIFIER

FIGURE 3. Unsorted QPSK argument data example sample.

FIGURE 4. Sorted QPSK argument data example sample.

FIGURE 5. Speed-up comparison of sorted 1D DBSCAN and traditional
DBSCAN in MATLAB.

By sorting the data only the distance to the next point in
the array needs to be calculated to determine if the next point
belongs to the same cluster. This results in a computational
complexity reduction of O(n2) to O(n). A graph of the speed-
up difference in software can be found in Fig. 5.

FIGURE 6. Diagram of the MLP structure.

FIGURE 7. Photograph of lab setup for data capture.

FIGURE 8. Block diagram of lab setup for data capture.

B. CLASSIFIER
The machine learning classifier was trained using the num-
ber of absolute value and argument clusters, which is output
from DBSCAN. Testing of suitable model structures was per-
formed using MATLAB R2021b. It was found that the data
showed good separation and therefore a small 4 node hid-
den layer 4 node output layer Multilayer Perceptron (MLP)
achieved as strong performance, a more complex models such
as a CNN or RNN would lead to an unnecessary increase in
FPGA utilization and power consumption. Its structure can be
found in Fig. 6. Training was performed with data obtained
from applying DBSCAN on arguments and absolute values of
RF data, it was standardised between±127 to mimic the 8-bit
data in the implementation scenario, 5-fold cross validation
and regularisation was employed to reduce overfitting.

C. DATA
The data capture setup can be seen in Figs. 7 and 8 which show
a picture of the laboratory setup and its corresponding block
diagram. All data used for testing of the system and training of

54 VOLUME 5, 2024

FIGURE 9. Full system diagram.

the MLP classifier was generated using the Rohde & Schwarz
SMW100A [20] and captured with a Keysight N9030B PXA
signal analyser [21], waves modulated with BPSK, QPSK,
8PSK, and 16QAM were created at SNRs which ranged from
30 dB to 3 dB. The signal analyser was configured to the same
carrier frequency as the signal source but was not in carrier
phase lock. Additional Gaussian noise was added to the 3 dB
signals to generate 0 dB and−5 dB sets of data. RF samples of
two frequencies were captured, 73 GHz and 28 GHz, in both
cases the data rate was 50 Msymbols/s. The spectrum analyser
sampled data at 200Msamples/s, with a 160 MHz intermedi-
ate frequency Bandwidth, and a 100µs capture duration. The
73 GHz horn antennas used were Eravant SAZ-2410-12-S1
with a gain of 24 dBi and the 28 GHz horn antennas were
Quasar QWH21SB-URB-K-F-20 with a gain of 20 dBi, the
horn antennas are represented as the triangles in Fig. 8. Data
was radiated at a proximity of 6 cm between horn antennas.
Our data can be downloaded from Github at https://github.
com/billjgavin/28_and_75GHz_Capture_Files.

IV. HARDWARE IMPLEMENTATION
Following the confirmation of the performance of the system
in a software simulation the process of implementing the algo-
rithm in hardware began. The primary focus of the hardware
implementation was to create a system which was capable of
classifying real-time streams of RF data while maintaining
the performance achieved in software simulations. The imple-
mentation is fully pipelined and designed in such a way that
each module can operate continuously. A system diagram of
the full algorithm can be seen below in Fig. 9.

The algorithm is split into 4 constituent blocks: The ab-
solute and argument LUTs calculate the absolute values and
arguments of the complex IQ pairs which represent the RF
message. These values are split into two datapaths which oper-
ate simultaneously, the operations performed in each datapath
are identical. The first step of the split data paths is a custom
built sorting module which sorts data in real-time as it enters
the system. Following this, the sorted data flows byte by byte
into a custom DBSCAN module, a further explanation of
these systems can be found in Section IV-B. The final block
recombines both datapaths in an MLP classifier which out-
puts the predicted modulation scheme. The implementation
of the design was written in Verilog but the place and routing
of the implementation was handled by the Vivado 2021.2
tools. The implementation strategy was set to find the imple-
mentation with the strongest performance with the command
performance_explore. Otherwise all settings remained in their
default state.

A. ABSOLUTE AND ARGUMENT BLOCKS
Finding the absolute value and argument of a complex number
can be done with (1a) and (1a).

arg= tan−1
(q

i

)
(1a)

abs =
√

q2 + i2 (1b)

Each of these equations require operations which are
computationally slow to perform in hardware, finding the ar-
gument requires a division and an arctan, the absolute value
requires multiple multiplications and a square root. The goal
of this design is to handle a real time datastream, perform-
ing these operations would require too many clock cycles to
facilitate this. Instead, a set of outputs for every combination
of 8-bit I and Q inputs are precomputed. This required two
large LUTs with 65536 entries each which used a significant
amount of the available LUT slices on the FPGA. Despite this,
performing the calculations in this way reduced the complex
operations to a single clock cycle, enabling the rest of the
design to function in real-time. Additionally, normalisation
calculations were included in the output of the LUTs which
eliminated a required step in the system, saving both time and
resources. Incident data passed from the LUTs and into the
sorting block.

B. SORTING AND DBSCAN
In this work a custom DBSCAN algorithm is employed which
exploits the 1 dimensional nature of the absolute and argument
data. This is achieved by pre-sorting data before the DBSCAN
algorithm is applied. This sorting step allows for the minimum
value to the next largest point ε to be calculated by simply
taking the difference between point N and point N+1 in the
data array, rather than taking the difference between point N
and all other unclustered points. Overall algorithmic complex-
ity is reduced from the traditional O(n2) for DBSCAN to the
complexity of the sorting algorithm.

Further gains can be made to the calculation speed by
sorting data as it enters the system. As shown in Fig. 10, an
array of comparators lie between the input and an array of
shift registers. An input datum X is compared to the currently
held values in the shift register array, all previously stored data
points are compared with the incoming datum and all stored
data that is smaller than the new datum are shifted downwards,
the new datum is placed into the empty register, between the
values which are immediately larger and smaller than it. This
method of sorting achieves an effective sorting time of 0 as
by the time the final point of the sample for the DBSCAN
operation enters the system the data is already sorted and can

VOLUME 5, 2024 55

https://github.com/billjgavin/28_and_75GHz_Capture_Files
https://github.com/billjgavin/28_and_75GHz_Capture_Files

GAVIN ET AL.: LOW AREA AND LOW POWER FPGA IMPLEMENTATION OF A DBSCAN-BASED RF MODULATION CLASSIFIER

FIGURE 10. Real time sorting block.

move on into the DBSCAN block, the sorting system can then
begin sorting the next set of incoming data.

A major consideration of the DBSCAN algorithm is the
values of the ε and MinPts hyper parameters. Optimal ε values
vary between datasets and can have a large impact on classi-
fication performance. For instance, a choice of ε which is too
high can allow outlier noise points to ’bridge’ the gap between
two constellation clusters which makes the algorithm combine
the two clusters into one. Conversely, a ε which is too low
can cause a single cluster to be counted as multiple or none
at all. A case where this can cause an issue is that different
SNR values introduce different values of separation between
points as well as constellations themselves, meaning that an
optimal ε value for 20 dB data will not be optimal for 5 dB.
To counter this, the output of the absolute value and argument
LUTs were scaled to between +-127 for all input values, this
normalisation allowed a ε value of 5 to work optimally for all
SNRs.

Similarly, the minPts optimal value can differ depending
on the number of samples used per classification, the number
of constellations expected in a modulation scheme, the ratio
between these two values, and finally the SNR of the signal.
Choosing too high of a minPts value leads to clusters poten-
tially not being found, too low of a value can lead to randomly
occurring noise clusters being treated as constellations. In
testing the value of this hyperparameter was found to be less
important than ε. As a small sample size of 50 datapoints was
used to reduce latency and implementation size, it was found
that noisy points were very unlikely to be classified as an extra
constellation and minPts could be kept to small values such as
2 or 3.

DBSCAN is implemented as in Fig. 11. An algorithmic
representation can be seen in Algorithm 1. Data is input se-
rially from the sorting block, incident point N-1 is subtracted
from the previous point N. The difference is compared with
ε, should the difference be smaller than ε the point counter

Algorithm 1: Algorithm for optimized 1D DBSCAN.
ε← 8, minPts← 3
ClusterCount ← 0, PointCount ← 0
Data[50]← Input[50]
for i = 1 to 50 do

Data[i]− Data[i − 1] = Di f f
if Di f f ≤ ε then

PointCount ++
else

if PointCount ≥ minPts then
ClusterCount ++
PointCount ← 0

else
ClusterCount ← 0
PointCount ← 0

end if
end if

end for
Out put ← ClusterCount

will increment, if not the point counter resets. When the
point counter resets, its value is compared with minPts, if
the count of points in the cluster is greater than minPts then
the cluster count the will increment, otherwise the count re-
mains the same. The system output is the cluster count after
50 operations.

This combination of real-time sorting and modified DB-
SCAN achieves an algorithmic complexity of O(n) and allows
for complete pipelining of the preprocessing system. This can
be seen clearly in Algorithm 1, the DBSCAN algorithm has
been reduced to 50 loops or 50 clock cycles. As soon as the
sorting process completes the data is serially output and the
empty registers filled with a new set of data. The time taken
from when the first datum enters the system to achieving a
DBSCAN result is 2N clock cycles, where N is the number
of datapoints chosen for the DBSCAN calculation. This also
achieves a significant reduction in implementation size and
power consumption as the algorithm is reduced to a subtrac-
tion, 2 comparisons, and 2 counters.

C. MLP
The outputs of the DBSCAN algorithm enter the final stage
of the system which is the MLP classifier. The MLP takes
the number of different argument and absolute value clusters
and predicts the modulation scheme. The number of nodes
in the MLP is as follows: 2 in the input layer, 4 in the single
hidden layer, and 4 at the output for the 4 different modulation
schemes used in training, each output node is followed by a
logistic outfunction that is calculated with a LUT. The largest
value of the output nodes is taken as the classification result.
Training of the MLP was performed off the FPGA in software
using MATLAB, the weights and biases were exported from
MATLAB and stored on the FPGA in ROM. The MLP fea-
tures a 64-bit 2’s complement datapath with a fixed point set

56 VOLUME 5, 2024

FIGURE 11. 1D DBSCAN optimised architecture.

FIGURE 12. Graph of classification accuracy against SNR of recorded
signal in dB.

after the 32nd bit. A datapath of at least this size was found
to be a requirement to maintain the expected performance
as it eliminated overflow issues, but more importantly, the
precision of the weights and intermediate values needed to
be as similar as possible to those in the software simulation.
Weights and biases were stored to 16-bit precision. The output
takes the 8 most significant bits of the 64-bit datapath results.
Training of the model in software was performed using 30000
data points per modulation scheme per SNR value, totalling
720000 data points split into samples of 50, and therefore
14400 overall samples.

V. RESULTS
This section presents the accuracy and FPGA implementation
characteristics. Section V-A provides the accuracy of the sys-
tem across a range of SNRs, in Section V-B an overview of
the hardware is found.

A. ACCURACY
The FPGA implementation of the proposed RF classifier was
developed and evaluated using a Xilinx Zedboard. Fig. 12
presents the classification accuracy of the implemented RF
classifier as a function of SNR. It can be observed that the
classifier achieves 100% accuracy for all SNRs above 8 dB.

FIGURE 13. Graph of classification accuracy against SNR of software
generated signal in dB.

At SNRs below 8 dB, the classification accuracy of 8PSK
and 16QAM modulation schemes degrades severely, this is
primarily due to the increasing effect of noise causing constel-
lations to begin to overlap, the majority of 8PSK and 16QAM
signals which were incorrectly classified were predicted to be
QPSK signals. At 5 dB QPSK classification accuracy begins
to decrease, likewise after 0 dB BPSK performance degrades.
At -5 dB the accuracy of QPSK, 8PSK, and 16QAM becomes
no better than a random guess while the performance of BPSK
classification drops to 75%. Fig. 13 displays the classification
accuracy against SNR for orders of QAM from 4 to 256. These
results are obtained from using MATLAB generated wave-
forms and were included to illustrate how the performance
of this system degrades as modulation complexity increases.
The graph shows that the classification accuracy decreases as
modulation order increases. From the graph it can be seen
that the 4, 8, and 16QAM curves are similar but slightly
less accurate than the results found for QPSK, 8PSK, and
16QAM in Fig. 12. This is attributed to the values of the ε

and minPts hyperparameters being slightly varied to 3 and
2 respectively for this test. This was required to tune the
system for the higher order modulated data but came at a cost
of slightly worse performance for the low order modulated
data. The 32QAM curve shows the system has the ability
to recognize and classify this modulation scheme with the

VOLUME 5, 2024 57

GAVIN ET AL.: LOW AREA AND LOW POWER FPGA IMPLEMENTATION OF A DBSCAN-BASED RF MODULATION CLASSIFIER

TABLE 1. Resource Utilization for FPGA Implementation

TABLE 2. Power Consumption of the FPGA Implementation

accuracy starting at 96% at 30 dB SNR. As the SNR decreases
the 32QAM curve follows a similar trend to that of the lower
order modulation’s curves but reaches 14% accuracy at 5 dB
rather than the −5 of that of 4, 8, and 16QAM, for these
tests 14% is taken as being no better than a random guess
between 7 classes. 64, 128, and 256QAM begin with strong
classification accuracy at 30 dB SNR but performance quickly
degrades as SNR decreases. Beyond this trend there is no
other particular trend that can be observed from the three
highest order modulated data’s curves, the lines overlap and
the strongest performer varies across SNRs. The weak perfor-
mance shown by these curves is explained by the clustering
system’s inability to handle the densely spaced constellation
diagrams of these modulation schemes, even at 30 dB there is
overlap between constellations, at 20 dB and lower there is so
much overlap that accurate clustering becomes difficult. Figs.
15 and 16 show the classification accuracy of each modulation
scheme used in this work at 8 dB and −5 dB SNR. 8 dB is
the lowest SNR at which 100% accuracy is achieved by the
classifier and as can be seen in Fig. 14 each sample is correctly
classified. Fig. 15 shows the classification accuracy at −5 dB,
the system only correctly classifies each sample 25% of the
time, as can be seen from the number of blue and red matrix
elements, which is equal to a random guess, meaning that the
system ceases to function at all at this SNR, apart from for
BPSK which still maintains 82% accuracy.

This work has also shown to be carrier-frequency-offset
(CFO) resistant, the lab recorded datasets featured significant
CFO and there was no reduction in performance detected in
comparison to the MATLAB generated data. This is primarily
due to the system operating on small batches of data, so as
long as CFO is not significant enough to cause distortion
within a 50 sample window, the effect of CFO is negligible.

B. HARDWARE PERFORMANCE
In this section, the results of the FPGA implementation of the
machine learning classifier using a ZedBoard with a Zynq-
7000 SoC XC7Z020-CLG484-1 are presented. For testing a

FIGURE 14. Graph of comparison of classification accuracy against SNR in
dB of this work and the state-of-the-art using recorded data.

Zedboard was connected to a PC via UART, this connection
was used to transmit and receive the recorded signals and
classification outputs. Implementation statistics were obtained
via the Vivado 2021.2 implementation reporting tools. The
implementation utilized a total of 12,963 (24.37%) LUT el-
ements, 2,350 (2.21%) flip-flops, and 38 (17.27%) DSP units.
No BRAM usage is required for this system. The detailed
resource utilization is summarized in Table 1.

The power consumption values for various components of
the implemented classifier are summarized in Table 2. As
shown in Table 2, the total power consumption of the im-
plemented classifier is 1,704 mW. The power consumption is
primarily dominated by the processor, consuming 1,526 mW.
The other components, such as clocks, signals, logic, DSP, and
static, exhibit a dynamic power consumption of 39 mW and a
static power consumption of 139 mW.

VI. RESULTS COMPARISON
In this section the results from testing are compared to the
state-of-the-art examples from the literature. Section VI-A be-
gins by contextualising the hardware utilization. Section VI-B
compares the accuracy of the system.

A. HARDWARE COMPARISON
Table 3 displays a comparison of the state of the art RF
classifier implementations. In terms of total FPGA resources
used there is no system of comparable size and efficiency to
DBCLASS, column 5 shows that this work achieves a 3.65
times reduction in total resources used compared to the next
smallest. Furthermore, this system uses the second least num-
ber of registers (although the design with the least number of
registers has a non-traditional structure which mainly utilizes
RAM [23]). Against the traditional CNN designs this work
exhibits a 6.9 times reduction in registers required by the next
smallest. Similarly, the number of LUT elements required
also show a 2.6 times reduction to RUNET [19]. The lack

58 VOLUME 5, 2024

TABLE 3. Comparison of Resource Utilization for FPGA Implementation

FIGURE 15. Confusion matrix of accuracy at 8 dB SNR.

FIGURE 16. Confusion matrix of accuracy at −5 dB SNR.

of DSP usage of [19], [23] means that they have less DSP
usage than in this work but of the designs which use DSP
blocks DBCLASS is the lowest. Finally, DBCLASS requires
no RAM. It is worth noting that some papers such as that of
J.Zhao et al. [2] report comparable implementation sizes to
this work but these results were discounted from Table 3 in
order to maintain a fair comparison with the complete systems
discussed here, this is due to the large amount of preprocess-
ing which was done in software on a PC which will lead to a
smaller implementation size. In summary, DBCLASS utilizes
the least number of FPGA elements in 3 of 4 categories and
the lowest total number of elements.

DBCLASS exhibits the quickest performance which is
shown by a latency of 1 μs, which is 7.5 times quicker
compared to the next quickest [19]. Similarly, the power con-
sumption of this design is 4.75 times less than the next most

efficient. This is to be expected due to the smaller implementa-
tion size and lack of requirements for memory accesses of this
work. Further gains could be made to the latency as this design
is limited to 50 MHz due to the longest critical path length. By
further pipelining the sorting block, significant gains could be
made to the longest path, therefore reducing latency via in-
creasing clock speed. Conversely, using a larger sample size of
data for classification will necessitate a larger implementation
and latency, as the latency of the system is equal to 2N + 3,
where N equals the sample size. This work has thus shown
that in a 50 sample DBSCAN configuration, it is the quickest,
most efficient, and smallest design in comparison to all others
found in the literature.

B. ACCURACY COMPARISON
Fig. 14 shows a comparison graph of the accuracy across a
range of SNRs of this work and the state-of-the-art. The accu-
racy is taken as an average of each system’s accuracy across a
range of modulation schemes, it is important to note that each
work uses a different combination of modulation schemes for
testing. In general across all works, higher order modulation
schemes show reduced performance in the presence of noise,
due to the more densely spaced constellation diagrams fea-
turing overlapping constellations more readily. Papers [19]
and [25] use the largest number of modulation schemes for
testing, consisting of a set of 24 different schemes including
high order modulations of 256, 128, and 64QAM, utilizing
these high order schemes in testing will naturally introduce a
penalty to the average system classification accuracy due to
the previously mentioned overlap in denser constellation dia-
grams, in this case 5 out of 24 total modulation schemes used
in these papers are of order 64 and above. Conversely, [18],
[23] use a maximum of 16QAM, [15], [22] use a maximum
of 64QAM. Due to this, these works are expected to have a
higher average accuracy due to the higher order datasets used.

Above 8 dB our work, HistoSVM [23], and ModNet [22]
all exhibit 100% accuracy, beating the next most accurate de-
signs RUNet [19] and Resnet33 [16]. Of all existing hardware
models in the literature ModNet [22] achieves 100% accuracy
at the lowest SNR, their work achieves perfect classification
until 4 dB, at which point the accuracy begins to degrade. This
work achieves an accuracy trend similar to that of HistoSVM,
RUNet and ResNet, at 8 dB the performance of the DBSCAN
system begins to decrease. This trend of reduced accuracy
then continues until at -5 dB the accuracy becomes no better
than a random guess for 3 of the 4 modulation schemes used
for testing. This is shown in Fig. 12, in which the accuracy on
BPSK and QPSK data remains at 100% yet the system cannot

VOLUME 5, 2024 59

GAVIN ET AL.: LOW AREA AND LOW POWER FPGA IMPLEMENTATION OF A DBSCAN-BASED RF MODULATION CLASSIFIER

maintain perfect accuracy for the more densely spaced 8PSK
and 16QAM modulation schemes. Although the DBSCAN
system matches the trends seen in both ResNet and RUNet,
it consistently achieves greater classification accuracy at all
SNRs. At 0 dB the autoencoder accuracy is greater than the
DBSCAN model in this work, but the performance remains
comparable. Although this work is shown to have a greater
accuracy than [19], [25], these two papers feature tests on high
order modulation schemes.

A more apt comparison may be with the testing of this work
on generated data which includes higher order modulated
signals. However this comparison is still not 1-to-1 as the
modulations of 64, 128, and 256QAM constitute 42% of this
work’s average and 21% of the average of [19] and [25]. We
made the choice to not include the amplitude and frequency
modulated schemes which feature in [19], [25], as DBCLASS
had been designed to work on QAM and PSK only, this is
due to the fact that these are the modulation types that modern
communication systems predominantly use [1]. The accuracy
curve for our work’s data tests across all SNRs is lower than
that of other work found in the literature. This is primarily due
to the degradation of performance at very high modulation
orders. Figs. 12 and 13 show that the performance on low or-
der modulated data remains comparable regardless of whether
the data is recorded or simulated owing to the similar curves
across modulation orders included in both tests. Therefore
DBCLASS remains competitive in terms of accuracy on low
order modulated data but performance decreases at higher
orders.

C. COMPARISON SUMMARY
The hardware comparisons discussed in Section VI-A con-
clusively show that this work is the smallest, quickest, and
most efficient system for automatic modulation classifica-
tion. The accuracy comparisons of Section VI-B demonstrated
that when working with M-PSK and M-QAM modulation
schemes where M is less than or equal to 16, the DBSCAN
system of this work is competitive in terms of classification
accuracy. When M is above 16 performance is seen to deteri-
orate. Therefore it can be concluded that this DBSCAN based
modulation classifier is the optimal choice for a low-power,
low-area, low-latency design working on low order modulated
data.

VII. CONCLUSION
The paper presents a novel FPGA-based implementation of
a machine learning classifier for RF modulation classifica-
tion. An introduction to, and comparison of, the state of the
art is presented and clustering is proposed as an improved
method to achieve classification, DBSCAN was identified as
the ideal algorithm. Additional optimisations to the DBSCAN
algorithm lead to large improvements in the delay, size, and
power consumption of the system. The latency was found to
be 7.5 times lower than the next fastest work [19]. Similarly
the design consumed 4.75 times less power than the most
efficient system in the literature [15]. This work also required

the second least number of registers [23], the second smallest
number of LUTs [2] by 2.6 times, the second least number of
DSP slices [19], and no RAM. The DBCLASS was found to
have the smallest implementation by 3.65 times on aggregate
in comparison to the next smallest work in the literature. Thus,
to the best of the authors knowledge, this work’s design has
been shown to be the smallest, fastest, and most efficient, as
well as being 100% accurate above 8 dB when using mod-
ulation schemes of orders below 16. The DBCLASS design
is therefore the optimal choice for engineers working with
low-power devices on real-time data-streams at noise levels
above 8 dB.

ACKNOWLEDGMENTS
For the purpose of open access, the authors have applied a
Creative Commons Attribution (CC BY) licence to any Au-
thor Accepted Manuscript version arising.

REFERENCES
[1] C. Zhang, Y.-L. Ueng, C. Studer, and A. Burg, “Artificial intelligence

for 5G and beyond 5G: Implementations, algorithms, and optimiza-
tions,” IEEE Trans. Emerg. Sel. Topics Circuits Syst., vol. 10, no. 2,
pp. 149–163, Jun. 2020, doi: 10.1109/JETCAS.2020.3000103.

[2] J. Zhao, Y. Zhao, H. Li, Y. Zhang, and L. Wu, “HLS-Based FPGA
implementation of convolutional deep belief network for signal mod-
ulation recognition,” in Proc. IEEE Int. Geosci. Remote Sens. Symp.,
2020, pp. 6985–6988, doi: 10.1109/IGARSS39084.2020.9324385.

[3] M. Bkassiny, “A deep learning-based signal classification approach for
spectrum sensing using long short-term memory (LSTM) networks,”
in Proc. 6th Int. Conf. Inf. Technol., Inf. Syst. Elect. Eng., 2022,
pp. 667–672, doi: 10.1109/ICITISEE57756.2022.10057728.

[4] X. Xu, M. Ester, H.-P. Kriegel, and J. Sander, “A distribution-based
clustering algorithm for mining in large spatial databases,”
in Proc. 14th Int. Conf. Data Eng., 1998, pp. 324–331,
doi: 10.1109/ICDE.1998.655795.

[5] Y. Wang et al., “A survey on deploying mobile deep learning appli-
cations: A systemic and technical perspective,” Digit. Commun. Netw.,
vol. 8, pp. 1–17, 2022.

[6] A. K. Nandi and E. E. Azzouz, “Algorithms for automatic modulation
recognition of communication signals,” IEEE Trans. Commun., vol. 46,
no. 4, pp. 431–436, Apr. 1998, doi: 10.1109/26.664294.

[7] D. Boutte and B. Santhanam, “A feature weighted hybrid ICA-SVM ap-
proach to automatic modulation recognition,” in Proc. IEEE 13th Digit.
Signal Process. Workshop 5th IEEE Signal Process. Educ. Workshop,
2009, pp. 399–403, doi: 10.1109/DSP.2009.4785956.

[8] D. Saharia, M. R. Boruah, N. K. Pathak, and N. Sarma,
“An ensemble based modulation recognition using feature ex-
traction,” in Proc. Int. Conf. Intell. Technol., 2021, pp. 1–6,
doi: 10.1109/CONIT51480.2021.9498547.

[9] S. Rajendran, W. Meert, D. Giustiniano, V. Lenders, and S. Pollin,
“Deep learning models for wireless signal classification with distributed
low-cost spectrum sensors,” IEEE Trans. Cogn. Commun. Netw., vol. 4,
no. 3, pp. 433–445, Sep. 2018, doi: 10.1109/TCCN.2018.2835460.

[10] Z. Ke and H. Vikalo, “Real-time radio technology and mod-
ulation classification via an LSTM auto-encoder,” IEEE Trans.
Wireless Commun., vol. 21, no. 1, pp. 370–382, Jan. 2022,
doi: 10.1109/TWC.2021.3095855.

[11] V.-S. Doan, T. Huynh-The, C.-H. Hua, Q.-V. Pham, and D.-S. Kim,
“Learning constellation map with deep CNN for accurate modula-
tion recognition,” in Proc. IEEE Glob. Commun. Conf., 2020, pp. 1–6,
doi: 10.1109/GLOBECOM42002.2020.9348129.

[12] Y. Wang, M. Liu, J. Yang, and G. Gui, “Data-driven deep learn-
ing for automatic modulation recognition in cognitive radios,” IEEE
Trans. Veh. Technol., vol. 68, no. 4, pp. 4074–4077, Apr. 2019,
doi: 10.1109/TVT.2019.2900460.

60 VOLUME 5, 2024

https://dx.doi.org/10.1109/JETCAS.2020.3000103
https://dx.doi.org/10.1109/IGARSS39084.2020.9324385
https://dx.doi.org/10.1109/ICITISEE57756.2022.10057728
https://dx.doi.org/10.1109/ICDE.1998.655795
https://dx.doi.org/10.1109/26.664294
https://dx.doi.org/10.1109/DSP.2009.4785956
https://dx.doi.org/10.1109/CONIT51480.2021.9498547
https://dx.doi.org/10.1109/TCCN.2018.2835460
https://dx.doi.org/10.1109/TWC.2021.3095855
https://dx.doi.org/10.1109/GLOBECOM42002.2020.9348129
https://dx.doi.org/10.1109/TVT.2019.2900460

[13] S. Soltani, Y. E. Sagduyu, R. Hasan, K. Davaslioglu, H. Deng, and T.
Erpek, “Real-time and embedded deep learning on FPGA for RF sig-
nal classification,” in Proc. IEEE Mil. Commun. Conf., 2019, pp. 1–6,
doi: 10.1109/MILCOM47813.2019.9021098.

[14] S. Tridgell, D. Boland, P. H. W. Leong, and S. Siddhartha,
“Real-time automatic modulation classification,” in Proc.
Int. Conf. Field- Program. Technol., 2019, pp. 299–302,
doi: 10.1109/ICFPT47387.2019.00052.

[15] A. Emad et al., “Deep learning modulation recognition for RF spectrum
monitoring,” in Proc. IEEE Int. Symp. Circuits Syst., 2021, pp. 1–5,
doi: 10.1109/ISCAS51556.2021.9401658.

[16] S. Tridgell, D. Boland, P. H. W. Leong, R. Kastner, A. Khodamoradi,
and Siddhartha, “Real-time automatic modulation classification using
RFSoC,” in Proc. IEEE Int. Parallel Distrib. Process. Symp. Workshops,
2020, pp. 82–89, doi: 10.1109/IPDPSW50202.2020.00021.

[17] G. J. Mendis, J. Wei-Kocsis, and A. Madanayake, “Deep learning
based radio-signal identification with hardware design,” IEEE Trans.
Aerosp. Electron. Syst., vol. 55, no. 5, pp. 2516–2531, Oct. 2019,
doi: 10.1109/TAES.2019.2891155.

[18] M. A. Azza, A. E. Moussati, and O. Moussaoui, “Implementation of an
automatic modulation recognition system on a software defined radio
platform,” in Proc. Int. Symp. Adv. Elect. Commun. Technol., 2018,
pp. 1–4, doi: 10.1109/ISAECT.2018.8618837.

[19] S. Kumar, R. Mahapatra, and A. Singh, “Automatic modulation recog-
nition: An FPGA implementation,” IEEE Commun. Lett., vol. 26, no. 9,
pp. 2062–2066, Sep. 2022, doi: 10.1109/LCOMM.2022.3184771.

[20] Rohde & Schwarz, “R&SSMB100A Microwave Signal Generator,”
Datasheet Version 3.0, Rohde & Schwarz Headquarters, Munich, Ger-
many, Nov. 2023.

[21] Keysight, “X-series signal analyzer N9030B PXA signal analyzer,”
Datasheet 5992-1317EN, Keysight Headquarters, Santa Rosa, CA,
USA, Apr. 2023.

[22] S. Kumar, A. Singh, and R. Mahapatra, “Hardware implementa-
tion of automatic modulation classification with deep learning,” in
Proc. IEEE Int. Conf. Adv. Netw. Telecommun. Syst., 2019, pp. 1–6,
doi: 10.1109/ANTS47819.2019.9118057.

[23] C. Cardoso, A. R. Castro, and A. Klautau, “An efficient FPGA IP core
for automatic modulation classification,” IEEE Embedded Syst. Lett.,
vol. 5, no. 3, pp. 42–45, Sep. 2013, doi: 10.1109/LES.2013.2274793.

[24] A. F. D Castro, R. S. R. Milléo, L. H. A. Lolis, and A.
A. Mariano, “Artificial neural network based automatic modu-
lation classification system applied to FPGA,” in Proc. 34th
SBC/SBMicro/IEEE/ACM Symp. Integr. Circuits Syst. Des., 2021,
pp. 1–6, doi: 10.1109/SBCCI53441.2021.9529976.

[25] T. J. O’Shea, T. Roy, and T. C. Clancy, “Over-the-air deep
learning based radio signal classification,” IEEE J. Sel. Top-
ics Signal Process., vol. 12, no. 1, pp. 168–179, Feb. 2018,
doi: 10.1109/JSTSP.2018.2797022.

[26] K. M. A. Patel and P. Thakral, “The best clustering algorithms in
data mining,” in Proc. Int. Conf. Commun. Signal Process., 2016,
pp. 2042–2046, doi: 10.1109/ICCSP.2016.7754534.

[27] “18650 3.7V 4400mAh product specification,” Hunan Sounddon
New Energy Co., Ltd., China, 2023. Accessed: Oct. 27, 2023.
[Online]. Available: https://cdn-shop.adafruit.com/datasheets/18650%
204400mAh.pdf

BILL GAVIN recieved the M.Eng. (first class) in
2020 from The University of Sheffield, Sheffield,
U.K., where he has been working toward the Ph.D.
degree covering machine learning applied to the
physical layer of communications systems, since
2021.

TIANTAI DENG (Member, IEEE) received and
the B.Eng. from the Harbin Institute of Technolo-
gies, Harbin, China, in 2015, and the Ph.D. degree
from Queen’s University Belfast, Belfast, Ireland,
in 2019. He is currently a Lecturer with the Univer-
sity of Sheffield, Sheffield, U.K. Prior his career as
an academic, he was a Senior Engineer with HiSil-
icon, Huawei. His main research interests include
hardware acceleration for image processing, deep
learning and high-level design environments.

EDWARD BALL (Member, IEEE) and was born
in Blackpool, United Kingdom in November 1973.
He received the Master of Engineering (with a
1st class) degree in electronic systems engineer-
ing from the University of York, York, U.K., in
1996. After graduating, he was with industry for
20 years, first spending 15 years working as En-
gineer, Senior RF Engineer and finally Principal
RF Engineer with Cambridge Consultants Ltd in
Cambridge, U.K. He then spent five years as Prin-
cipal RF Engineer and Radio Systems Architect at

Tunstall Healthcare Ltd in Whitley, U.K. In 2015, he joined the Department of
Electronic and Electrical Engineering at the University of Sheffield, Sheffield,
U.K., where he is currently a Reader in RF engineering. His research interests
include radio technology, from RF system design, RF circuit design (sub-GHz
to mm-wave) and the application of radio technology to real-world industrial
and commercial problems. He has a particular passion for RF hardware
design. Mr. Ball is a member of the IET and is a Chartered Engineer. He
became a Member of IEEE in April 2008

VOLUME 5, 2024 61

https://dx.doi.org/10.1109/MILCOM47813.2019.9021098
https://dx.doi.org/10.1109/ICFPT47387.2019.00052
https://dx.doi.org/10.1109/ISCAS51556.2021.9401658
https://dx.doi.org/10.1109/IPDPSW50202.2020.00021
https://dx.doi.org/10.1109/TAES.2019.2891155
https://dx.doi.org/10.1109/ISAECT.2018.8618837
https://dx.doi.org/10.1109/LCOMM.2022.3184771
https://dx.doi.org/10.1109/ANTS47819.2019.9118057
https://dx.doi.org/10.1109/LES.2013.2274793
https://dx.doi.org/10.1109/SBCCI53441.2021.9529976
https://dx.doi.org/10.1109/JSTSP.2018.2797022
https://dx.doi.org/10.1109/ICCSP.2016.7754534
https://cdn-shop.adafruit.com/datasheets/18650%204400mAh.pdf
https://cdn-shop.adafruit.com/datasheets/18650%204400mAh.pdf

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

