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ABSTRACT Federated learning is a distributed machine learning approach that allows a single server to
collaboratively build machine learning models with multiple clients without sharing datasets. Since data
distributions may differ across clients, data heterogeneity is a challenging issue in federated learning. To
address this issue, numerous federated learning methods have been proposed to build personalized models for
clients, referred to as personalized federated learning. Nevertheless, no studies comprehensively investigate
the performance of personalized federated learning methods in various experimental settings such as datasets
and client settings. Therefore, in this article, we aim to benchmark the performance of existing personalized
federated learning methods in various settings. We first survey the experimental settings in existing studies.
We then benchmark the performance of existing methods through comprehensive experiments to reveal
their characteristics in computer vision and natural language processing tasks which are the most popular
tasks based on our survey. Our experimental study shows that (i) large data heterogeneity often leads to
highly accurate predictions and (ii) standard federated learning methods (e.g. FedAvg) with fine-tuning often
outperform personalized federated learning methods.

INDEX TERMS Benchmarking, Distributed Computing, Federated Learning.

I. INTRODUCTION
Federated learning has emerged as a promising distributed
machine learning approach that enables a single server and
multiple clients to collaboratively build machine learning
models without sharing their datasets, thereby reducing pri-
vacy risks and communication traffic [39]. Due to its effective-
ness in distributed scenarios, federated learning has received
considerable attention from research communities. A vast ar-
ray of federated learning methods has been proposed in recent
years [11], [14], [21], [26], [30], [32], [51], [52], [55].

The general procedure of federated learning consists of two
main steps: client training and model aggregation. In the client
training step, clients train their own models on their local
data and send their trained models to the server. In the model
aggregation step, the server aggregates these models to build a
global model and distributes the updated model to the clients.
It repeatedly conducts two steps until reaching a given the
number of epochs. This procedure can incorporate clients’
local data into the global model without sharing data between
the server and clients.

One of the key challenges in federated learning is data
heterogeneity, where each client has local data with different
distributions. This challenge poses difficulties in training a
single global model that is optimal for all clients. As reported
in previous studies, typical federated learning methods en-
counter a divergent issue when clients have non-IID local
data [32], [33]. To overcome this challenge, recent research
has focused on personalized federated learning (PFL), which
aims to build personalized models optimized for individual
clients [4], [12], [31], [34], [36], [38], [45], [50], [57].

Motivation: The number of PFL methods has significantly
increased over the years. As a result, it is essential to under-
stand the characteristics of existing PFL methods to develop
new methods and select the optimal method for the user’s
situation.

To the best of our knowledge, a comprehensive compari-
son and analysis of state-of-the-art PFL methods in various
settings have not been conducted yet. In addition, they did
not investigate what factors (e.g., the number of clients) are
important to evaluate the performance of existing methods.
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Therefore, it is necessary (i) to benchmark the performance of
existing PFL methods for a deeper understanding of them and
(ii) to design experimental settings for fairly comparing PFL
methods.

Contributions: In this article, we provide a comprehensive
evaluation to benchmark the performance of the state-of-the-
art personalized federated learning (PFL) methods in various
experimental settings.

To start with, we examine the experimental settings used
in existing studies, as each study uses different settings. We
survey commonly used benchmarking datasets and the num-
ber of clients in federated learning settings. From our survey,
computer vision and natural language processing tasks are the
most popular tasks in federated learning, so we used them
in our benchmarking. In addition, many studies use standard
machine learning datasets (e.g., MNIST) after splitting the
whole dataset into sub-datasets by using data-splitting meth-
ods that control the characteristics of data distributions. Thus,
we also investigate what data-splitting methods are often used
in existing studies.

Next, we conduct empirical studies to benchmark the per-
formance of PFL methods in various experimental settings in
terms of accuracy, training time, and communication traffic
in computer vision and natural language processing tasks. In
our setting, we evaluate the impact of the number of clients,
the size of datasets, and the degree of data heterogeneity
(i.e., the skewness of labels in local data). We evaluate eight
state-of-the-art PFL methods, two non-personalized federated
learning methods, and two non-federated learning methods.
We also investigate the effectiveness of fine-tuning for per-
sonalization, which has not been well explored in previous
studies.

Our empirical study reveals the pros and cons of existing
methods. We report that highly accurate methods often re-
quire a large communication traffic and training time. We also
find that standard federated learning methods with fine-tuning
are capable of building highly accurate personalized models,
which have not been evaluated fairly in previous studies. Ad-
ditionally, we show that the PFL methods perform better when
the degree of data heterogeneity is larger because personalized
models can easily fit local data. We also demonstrate that the
size of datasets has a smaller impact to evaluate their perfor-
mance than the number of clients and data heterogeneity. Our
experimental setting can help to design experimental studies.
This article provides a valuable summary of the techniques of
existing methods and performance comparison in various set-
tings for researchers to develop new methods and practitioners
to select optimal methods.

To facilitate further research, we open FedMeasure, a
Jupyter notebook-based tool that supports easy experimen-
tal studies with various methods, experimental settings, and
datasets under the MIT license1.

1[Online]. Available: https://github.com/OnizukaLab/FedMeasure

II. PRELIMINARIES
A. PROBLEM FORMULATION
We describe the problem formulation of personalized feder-
ated learning. Consider a server and a set of clients which
collaboratively build personalized models. Let S denote the set
of clients. |S| is the number of clients. We use a subscript i for
the index of the i-th client. Di and ni denote the local data and
the number of data samples (e.g., records, images, and texts)
of client i, respectively. N denotes the sum of ni across all
the clients. xi and yi are the features and the labels of samples
contained in the local data of client i, respectively. T and E are
the total numbers of global communication rounds and local
training rounds, respectively, where global communication
refers to the communication between the server and the clients
during training and local training refers to the training of each
client’s model using its local data.

In standard federated learning, a server and clients aim to
build a single global model wg. We define standard federated
learning as the following optimization problem:

min
wg∈Rd

|S|∑
i=1

Ti(wg), (1)

where Ti is the objective for client i and is defined as follows:

Ti(w) = 1

ni

∑
(xi,yi )∈Di

fi(xi, yi,w), (2)

where fi is a loss function.
In personalized federated learning, a server and clients aim

to create a personalized model wp for each client. We define
personalized federated learning as the following optimization
problem:

min{
wp1 ,...,wp|S|

}
∈Rd

|S|∑
i=1

Ti(wpi ), (3)

where wpi is the personalized model of client i.

B. RELATED WORK
Existing PFL methods: Distinct personalized federated learn-
ing (PFL) approaches employ a variety of techniques to
address data heterogeneity. We classify PFL methods into
five primary categories: (1) clustering, (2) model mixture, (3)
model parameter decoupling, (4) knowledge distillation, and
(5) meta-learning.
� Clustering (e.g. [7], [36], [44]): Methods with clustering

divide clients into multiple groups and utilize the groups
to build personalized models.

� Model mixture (e.g. [31], [36], [48], [57]): Methods
with model mixture update multiple model parameters
by appropriately averaging weighted personalized and/or
global models.

� Model parameter decoupling (e.g. [4], [12], [34]): In
methods with model parameter decoupling, a part of a

VOLUME 5, 2024 3

https://github.com/OnizukaLab/FedMeasure


MATSUDA ET AL.: BENCHMARK FOR PERSONALIZED FEDERATED LEARNING

TABLE 1. The Characteristics of Each Approach

model is aggregated in the server, and each client com-
bines the part with other locally updated parts to build
their whole personalized models.

� Knowledge distillation (e.g. [35], [38], [45]): Knowledge
distillation [22] is a technique for transferring the knowl-
edge of a large model (called teacher model) to a small
model (called student model) so that the student models
mimic the output of the teacher model. In PFL settings,
each client builds its own personalized model by using
outputs of global or other clients’ personalized models.

� Meta-learning (e.g. [2], [25], [50]): Meta-learning is a
technique to improve learning algorithms by training
on multiple tasks. Methods with meta-learning build a
meta-model that helps to build personalized models only
by re-training using each client’s local data.

Each approach exhibits unique characteristics. A compre-
hensive summary of the characteristics associated with each
method can be found in Table 1.

Existing benchmarks and tools on PFL methods: A few
studies addressed empirical evaluations of PFL methods. Li
et al. [29] empirically evaluated non-personalized federated
learning in environments with data heterogeneity. Abdele-
moniem et al. [1] evaluated the performance of FedAvg [39],
which is the most basic algorithm, in various settings. In
particular, they focused on the differences in the devices of
clients. Chen et al. [10] conducted an empirical study on
personalized federated learning. They focus on the effective-
ness of add-on methods to some existing PFL methods such
as fine-tuning and FedBN, but they used a small number of
PFL methods. Thus, although they showed the effectiveness
of combinations of PFL with add-on methods it is not compre-
hensive to benchmark PFL methods. Wu et al. [54] reviewed
existing methods and compared three basic federated learning
methods in a single dataset to show a case study, while it did
not aim to benchmark the performance of existing methods.
Therefore, to the best of our knowledge, there are no stud-
ies that benchmark various PFL methods. We focus on the

performance of existing PFL methods and them combined
with fine-tuning in various client settings.

Libraries and tools for federated learning are also developed
such as Flower [6], Leaf [8], and Fedscope [53]. Although
these provide some PFL methods and datasets, it is not suf-
ficient to evaluate a variety of PFL methods. For example,
there are several benchmarking (e.g., [10]) based on Fed-
scope, while it only provides four PFL methods. Therefore,
our framework is useful to compare PFL methods in various
settings. In addition, our framework aims to benchmark var-
ious settings, so it can apply new federated settings such as
federated class-incremental learning [16], [17].

III. SETTINGS FOR FEDERATED LEARNING
Each previous study uses different (i) benchmarking datasets,
(ii) data splitting methods to divide datasets into local data
on clients, and (iii) the number of clients. We review bench-
marking datasets, splitting methods, and the number of clients
used in previous studies. Tables 2 and 3 summarize the
datasets/data-splitting methods and the numbers of clients
used in existing studies, respectively.

A. DATASETS
First, we show datasets built for federated learning exper-
iments. Each dataset has an attribute that indicates who
generates data samples and/or their domains, so we can divide
the whole dataset into local data by using the attribute. We tag
datasets with their data types: image, text, and numerical data.
� FEMNIST (image) [8]: It includes images of handwrit-

ten characters with 62 labels and is divided into 3,400
sub-datasets by writers.

� Shakespeare (text) [32]: It includes lines in “The Com-
plete Works of William Shakespeare” and is divided into
143 sub-datasets of actors.

� Sent140 (text) [8]: It includes the text of tweets with two
labels, either positive sentiment or negative sentiment.
This dataset is divided into 660,120 sub-datasets of Twit-
ter users.

� Office-Home (image): It includes images with four do-
mains: Art, Clipart, Product, and Real world. All do-
mains share the same 65 typical categories in office and
home.

� Human activity recognition (numerical)2 It includes
mobile phone accelerometer and gyroscope data col-
lected from 30 individuals, with six labels (walking,
walking-upstairs, walking-downstairs, sitting, standing,
and lying-down).

� Vehicle sensor networks (numerical) [18]: It includes
sensor data collected from a distributed network of 23
sensors to predict vehicle types (AAV-type or DW-type).

2[Online]. Available: https://archive.ics.uci.edu/ml/datasets/Human+
Activity+Recognition+Using+Smartphones
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TABLE 2. Benchmarking Data Summary

� GLEAM (numerical)3: It includes two hours of high-
resolution sensor data collected from 38 participants
wearing Google Glass for activity recognition to predict
activities (e.g., walking, talking, drinking).

� FLICKR-AES (image) [43]: It includes 40,000 pho-
tographs from flickr with aesthetic ratings (between 1

3[Online]. Available: http://www.skleinberg.org/data/GLEAM.tar.gz

and 5) collected via Amazon Mechanical Turk by 210
annotators.

From Table 2, we can see that FEMNIST and Shakespeare
are often used in existing studies. However, there are no stan-
dard benchmarking datasets to evaluate PFL methods.

B. DATA-SPLITTING METHODS
Many existing studies also used standard machine learn-
ing datasets that are commonly used in general machine
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TABLE 3. Summary of the Number of Clients That are Used in Existing
Studies

learning tasks such as MNIST, CIFAR-10, and CIFAR-100.
The datasets are divided into sub-datasets by splitting meth-
ods. Since the splitting methods determine the characteristics
of data distribution, the performance of existing methods
changes depending on how to divide the datasets. Several
splitting methods are used in existing studies as follows:
� Random: Divides a dataset into sub-datasets in a uniform

random distribution.
� Class: Divides a dataset into sub-datasets so that the sub-

datasets include only a limited number of labels. In a
common way, we first sort data samples by labels and
sequentially divide them into the same size sub-datasets.

� Dirichlet-distribution: Divides a dataset into sub-
datasets according to Dirichlet distribution so that the
sub-datasets include different biased labels. Given αlabel
(> 0) and the number of clients |S|, the Dirichlet distri-
bution generates random numbers based on the standard
gamma distribution for every label, taking αlabel and |S|
as parameters, and divides the dataset into sub-datasets
based on those random number proportions.

� Similarity: Divides a dataset into sub-datasets so that the
features of the data samples within the same sub-dataset
are similar. It often uses k-means to divide the dataset to
sub-datasets.

� Swapping out: Randomly distribute data samples to
clients and swap out two labels within each sub-dataset
(i.e., data samples with similar features may have differ-
ent labels across sub-datasets).

The class-based splitting method can create a peaky set-
ting where sub-data typically includes one or two types of
labels. The Dirichlet-distribution-based splitting method can
create a setting where labels in sub-data are biased, but the
number of types of labels is not too small. The Dirichlet-
distribution-based splitting method is more realistic than the
class-based one. The similarity-based splitting method uses
features instead of labels. It assumes that local data includes
data samples with similar features; for example, some clients
have blue images, but others have red images. The swapping-
out-based splitting method can create a special setting where
labels are different, even if their features are the same. For ex-
ample, this setting assumes that people add different labels to

images. Furthermore, some studies generate synthetic datasets
that follow their assumptions.

From Table 2, Random, Class, and Dirichlet-distribution
are often used as data-splitting methods. Since Dirichlet-
distribution can control the degree of data heterogeneity,
it imitates Random and Class. Thus, we adopt Dirichlet-
distribution in our experimental studies.

C. NUMBER OF CLIENTS
Even if some existing studies used the same datasets and split-
ting methods, the number of clients is often different. From
Table 3, we can see that 20 and 100 are often used in existing
studies. Only six papers changed the number of clients on the
same datasets, so most papers do not evaluate the effect of the
number of clients and the size of local data on each client.
Since the number of clients significantly impacts accuracy,
it is necessary to compare the accuracy of each method by
varying the number of clients.

IV. EMPIRICAL STUDY
In this section, we introduce experimental settings and re-
port our experimental results. We evaluate the performance of
personalized and non-personalized federated learning meth-
ods in terms of accuracy, convergence speed, communication
traffic, and training time. To validate their robustness for
datasets/settings, we evaluate “Average rank” which indicates
the sum of ranks for each dataset/setting divided by the num-
ber of datasets/settings.

To simplify the experiments, we used Pytorch to implement
virtual clients and the server on a single GPU machine. Ex-
periments were performed on a Linux server with NVIDIA
Tesla V100 SXM2 GPU (16 GB memory) and Intel Xeon
Gold 6148 Processor CPU (384 GB memory).

A. EXPERIMENTAL DESIGN DIMENSIONS
In federated learning, datasets, client, and training settings
affect the performance of learning methods. To evaluate the
performance of existing methods and understand their charac-
teristics, we consider the following four design dimensions in
this study.

Degree of data heterogeneity: As the degree of data hetero-
geneity increases, the accuracy of non-personalized federated
learning decreases, while personalized federated learning
rather improves accuracy because it builds a model that fits
each client. Previous studies have not comprehensively evalu-
ated this impact on the performance of personalized federated
learning methods. In this paper, we compare the accuracy of
existing methods by varying the degree of data heterogeneity.

Number of clients: The number of clients may significantly
differ, depending on use cases. For example, the number of
clients may be around 10 for small institutions, while the num-
ber of clients may be 100 or even more for mobile devices.
As the number of clients increases, it becomes more difficult
to aggregate models on the server, resulting in less accuracy.
Therefore, a robust method for varying numbers of clients is
desirable.
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TABLE 4. Data Statistics

Total number of data samples: Like the number of clients,
the total number of data samples also depends on the use
case, and the performances of federated learning methods may
differ when we vary the total number of data samples. Even
if the server is aware of the number of data samples of the
clients, it is challenging to select an optimal method. A robust
method for different numbers of data samples is desirable. To
this end, it is necessary to evaluate how the performances of
existing methods vary with the total number of data samples.

B. EXPERIMENTAL SETUP
Datasets, tasks, and models: We use five datasets: FEMNIST,
Shakespeare, Sent140, MNIST, and CIFAR-10 which are
often used in existing studies. In FEMNIST and Shakespeare,
we use original datasets. In Sent140 [8], we use 927
sub-datasets with more than 50 tweets in the experiment.
In MNIST and CIFAR-10, we divide them into sub-datasets
by the Dirichlet-distribution-based splitting method. The
number of clients, |S|, is selected from {5, 10, 20, 100}. We
change the total number of data samples using a ratio D to the
entire dataset (i.e., the total number of data samples is D · N),
whose range is {0.25, 0.5, 0.75, 1.0}. We use a parameter
αlabel to control the degree of heterogeneity for the labels
on the clients. αlabel is selected from {0.1, 0.5, 1.0, 5.0}.
The default values of |S|, D, and αlabel are 20, 1.0, and
0.5, respectively. We vary these parameters to evaluate their
impacts while using the above values as default parameters
unless otherwise indicated.

The five datasets are pre-partitioned into training and test
data. In FEMNIST, Shakespeare, and Sent140, we randomly
select |S| sub-datasets as local data. In MNIST and CIFAR-10,
we randomly divide the whole train and test data into |S|
local data based on Dirichlet distribution. The distributions
of test and train data follow the same distribution. We split
the training data into 7:3 for FEMNIST, Shakespeare, and
Sent140, and into 8:2 for MNIST and CIFAR-10. The two
splits are used for training and validation, respectively. Table 4
shows the statistics of the above datasets.

In tasks and models, we follow the previous studies [11],
[12], [28], [32], [36], [39], [42], [51]. In task settings, we
conduct an image classification task for FEMNIST, MNIST,
and CIFAR-10. For Shakespeare, we conduct a next-character
prediction that infers the next characters after given sentences.
For Sent140, we conduct a binary classification that cate-
gorizes whether a tweet is a positive or negative sentiment.

We use different models for each task following the existing
works [12], [42], [51]. For FEMNIST and MNIST we use
CNN, and for Shakespeare we use LSTM. For CIFAR-10,
we use VGG with the same modification reported in [51].
For Sent140, we use a pre-trained 300-dimensional GloVe
embedding [41] and train RNN with an LSTM module.

Methods and hyperparameter tuning: We compare three
types of methods: (1) non-PFL methods, (2) PFL meth-
ods, and (3) non-federated learning methods. For (1), we
use FedAvg [39] and Fedprox [32]. For (2), we select PFL
methods based on our survey. We use HypCluster [36]
(i.e., with clustering), FML [45] (i.e., with knowledge-
distillation), FedMe [38] (i.e., with knowledge-distillation),
LG-FedAvg [34] (i.e., with model parameter decoupling),
FedPer [4] (i.e., with model parameter decoupling), Fe-
dRep [12] (i.e., with model parameter decoupling), Ditto (i.e.,
with model mixture) [31], and pFedMe [50] (i.e., with meta-
learning). For (3), we use Local Data Only, in which clients
build their models on their local data, and Centralized, in
which a server collects local data from all clients (central-
ized can be considered as an oracle). We use fine-tuning on
each client for FedAvg, Fedprox, HypCluster, FedMe, and
Centralized after building their models and denote them as
“method + FT”. In FML, LG-FedAvg, FedPer, FedRep, Ditto,
and pFedMe, we do not use fine-tuning because techniques
similar to fine-tuning are included in these methods.

We set the number of global communication rounds to be
300, 200, 500, 100, and 100 for FEMNIST, MNIST, CIFAR-
10, Shakespeare, and Sent140, respectively. We set the local
epoch E to be 2 for all the settings. All the clients participate
in each global communication round following recent stud-
ies [4], [45], [51]. We conduct training and test five times and
report mean and standard deviation (std) of accuracy over five
times of experiments with different clients.

We describe hyperparameter tuning. The learning rate is
selected from {10−3, 10−2.5, 10−2, . . . , 100.5} and optimized
for each method on default parameters. The optimal learning
rate is selected for default parameters and used the same
value for other experiments. The optimization method is SGD
(stochastic gradient descent) with momentum 0.9 and weight
decay 10−4. The batch sizes of FEMNIST, MNIST, CIFAR-
10, Shakespeare, and Sent140 are 20, 20, 40, 10, and 4,
respectively. Hyperparameters specific to each method is de-
scribed in our Github.

C. OVERALL PERFORMANCE COMPARISON
We compare the methods in terms of accuracy, convergence
speed, training speed, and communications traffic in the de-
fault parameter setting.

Accuracy: Table 5 shows the accuracy and average rank-
ing of each method. We note that the standard deviations
of FEMNIST, Shakespeare, and Sent140 are relatively large
because the clients differ in each test (we randomly select
20 clients from the set of clients). From Table 5, we can see
that the most accurate method is FedMe+FT for FEMNIST,
Ditto for Shakespeare, Hypcluster for Sent140, FedAvg+FT
for MNIST, and FedMe+FT for CIFAR-10. From this result,
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TABLE 5. Test Accuracy (Mean ± Std Between Runs / Std Between Clients)

we find that none of the existing state-of-the-art personalized
federated learning methods outperform the others in all the
datasets.

We can also see that FedMe+FT has the highest aver-
age rank. On the other hand, the other personalized fed-
erated learning methods have lower average ranks than
the standard federated learning methods such as FedAvg
and FedProx with fine-tuning. From this result, we can
find that only a few state-of-the-art personalized meth-
ods outperform standard federated learning methods, and
those with fine-tuning are often sufficient to deal with data
heterogeneity.

The standard deviation between clients indicates the differ-
ence in accuracy between clients. Thus, if the std is smaller,
clients achieve similar accuracy, i.e., fairly provide accurate
models to clients. Among existing methods, FedAvg+FT and
FedMe+FT achieved the best average rank. We can also see
that fine-tuning often decreases standard deviations between
clients, and thus it contributes to providing suitable models
for each client.

Convergence speed: Fig. 1 shows the validation accuracy
of each global communication round. The validation accuracy
is the average accuracy at each epoch of the five experiments.
Since each client evaluates its model by its own validation data
after training its model and before aggregating models, the
accuracy of each method is equivalent to that after fine-tuning.

From Fig. 1, we can see that FedAvg and Ditto are stable
and converge quickly for all datasets. On the other hand, we
can see that FedMe has the highest average rank but loses in
convergence speed to FedAvg and Ditto. From this result, we
can find that the methods with the highest accuracy and the
fastest convergence are different.

Training time: We evaluate run time on the training phase
in each method. Fig. 2 shows the average run time per global

communication round. We note that the run time is the average
of ten global communication rounds.

From Fig. 2, we can see that FedAvg has the smallest
training time for all datasets. FedMe and Ditto have a large
training time than the other methods. pFedMe spends similar
training time to the other methods on FEMNIST and Sent140,
while it spends much larger time than the other methods
on Shakespeare, MNIST, and CIFAR-10. pFedMe has large
training time for clients, so when the volume of local data
increases, its training time increases.

Communications traffic: We evaluate communications traf-
fic on the training phase in each method. Since each method
exchanges models between the server and client, communica-
tions traffic is compared by the size of model parameters sent
per global communication round. Table 6 shows the commu-
nications traffic per global communication round.

From Table 6, we can see that FedMe has the largest
communication traffic. This is because FedMe has the extra
model transmission compared with the other methods. FedPer,
FedRep, and LG-FedAvg have smaller communication traffic
than other methods because these three methods send only
a part of the model between the server and the clients. LG-
FedAvg has the smallest communication traffic among them
because the output side of the model has a smaller number of
model parameters than the input side of the model.

D. IMPACT OF EXPERIMENTAL SETTINGS ON ACCURACY
In this section, we compare the accuracy of each method in
different experimental settings.

Impact of the degree of data heterogeneity: Table 7 shows
the accuracy when we vary the degree of data heterogeneity.
A smaller αlabel indicates a larger degree of data heterogeneity
(i.e., close to the class-based splitting). On the other hand, a
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FIGURE 1. Validation accuracy over time of various methods.

FIGURE 2. Training time per global communication round.

TABLE 6. Communication Traffic: The Number of Model Parameters Communicated Between the Server and Clients Per Round
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TABLE 7. Accuracy v.s. Degree of Data Heterogeneity

TABLE 8. Accuracy v.s. Number of Clients

larger αlabel indicates a smaller degree of data heterogeneity
(i.e., close to the random splitting).

From Table 7, we can see that the accuracy of FedAvg
and FedProx decreases as the degree of data heterogeneity
increases. On the other hand, we can see that the accuracy
of personalized federated learning methods tends to increase
as the degree of data heterogeneity increases. As the degree
of data heterogeneity increases, the clients can easily build
personalized models that fit their local data. We can find that
data heterogeneity works positively for personalized federated
learning.

We can also see that FedAvg+FT and FedProx+FT have
the highest average rank on MNIST, and FedMe+FT has the
highest average rank on CIFAR-10. This result indicates that
the standard federated learning methods with fine-tuning are
often sufficient to deal with the data heterogeneity.

Impact of the number of clients: Table 8 shows the accuracy
of varying the number of clients. From Table 8, we can see that
the accuracy decreases significantly as the number of clients
increases. As the number of clients increases, it becomes
more difficult to aggregate the model on the server, resulting
in decreasing accuracy. FedAvg+FT has the highest average
rank for MNIST, and Ditto has the highest average rank for
CIFAR-10. This result indicates that a larger number of clients
is more challenging, while we can design robust methods for
a different number of clients.

Impact of the total number of data samples: Table 9 shows
the accuracy when we vary the total number of data samples.
From Table 9, we can see that the accuracy decreases as the
total number of data samples decreases. This is because clients
do not have sufficient data samples to train their models when
the number of data samples is small. The ranks of methods
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TABLE 9. Accuracy v.s. Total Number of Data Samples

do not change much, so the number of data samples does not
significantly impact deciding the superiority of methods.

E. SUMMARY
We summarize our experimental results as follows:
� There is a trade-off between accuracy, communication

traffic, and training time. For example, FedMe is accu-
rate in various experimental settings but reports large
communication traffic and training time. Therefore, it is
essential to report not only accuracy but also communi-
cation traffic and training time.

� The standard federated learning methods with fine-
tuning work well for data heterogeneity. In particular, in
easy-to-learn datasets such as MNIST, they outperform
the personalized federated learning methods.

� In a large degree of heterogeneity, we observed
higher accuracy of federated learning methods. These
characteristics should be considered when developing
and evaluating new federated learning methods.

� The number of clients has a large impact on the accuracy,
so it is important to evaluate the performance in various
settings. On the other hand, since the size of the dataset
does not have a large impact, it is not essential to evaluate
its impact.

� Our experimental settings can reveal the pros and cons
of existing methods. So, our settings can evaluate the
performance of PFL methods fairly.

V. OPEN ISSUES
We discuss open issues of personalized federated learning.

A. HYPER-PARAMETER SEARCH
It is difficult to tune hyper-parameters in (personalized) feder-
ated learning. Even when we select the best hyper-parameters
using the whole dataset, it takes a large time to select them.
There are two types of hyper-parameters; client and global

settings. For the former, each client possibly selects their
best hyper-parameters if the hyper-parameters only affect their
personalized models, such as the number of local epochs and
learning rate. However, their personalized models affect other
personalized models, so it may cause the deterioration of
the performance of other personalized models. We need to
avoid selfishly selecting hyper-parameters, so it is beneficial
to develop hyper-parameter tuning methods that improve the
performance of all personalized models.

For the latter, some hyper-parameters of the methods are
shared among clients to build personalized models. For exam-
ple, in methods with clustering, the optimal number of clusters
may be different from each client, and in methods with model-
decoupling, optimal server and client-side models may be
different. The server generally cannot collect the accuracy of
personalized models due to privacy concerns. So, the server
needs to select the hyper-parameters from their personalized
models and/or other non-privacy information.

Therefore, we need efficient and effective hyper-parameter
search methods.

B. HETEROGENEOUS CLIENTS
In our experimental studies, we assume that all clients are the
same device. However, it is often not true, in particular, feder-
ated learning among mobile clients, for example, people use
smartphones and tablets with different computing resources
and communication bandwidth. Setting on heterogeneous
clients assumes that each client has different devices [1]. This
setting follows the real-world application because devices are
generally different across clients. Therefore, some devices
cannot store large size of models due to the memory space,
and other devices may take a long time to train their personal-
ized models.

Existing PFL methods often assume that each client has the
same device and consider only the accuracy performance of
each client. As we show the training time and communication
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traffic of existing methods, some methods take large (or small)
training time and model sizes. We need PFL methods that
adaptively select models and training methods according to
client devices.

C. BENCHMARKING SETTING
Many PFL methods have been proposed, but they are eval-
uated in different datasets and metrics. There is no de facto
standard on the evaluation setting on (personalized) federated
learning. In addition, the metrics differ across existing studies,
for example, accuracy, communication traffic, and training
time. In our experimental results, FedMe and Ditto often
achieved good accuracy, but it takes a longer training time
compared with other methods. Furthermore, fairness (e.g.,
group and individual fairness) has become important recently
in machine learning fields. So, we need to consider additional
metrics that are not used in existing studies.

Furthermore, new federated learning settings have been
studied recently. For example, federated class-incremental
learning [16], [17] assumes that the number of classes in-
creases on demand (e.g., increases the predicted target of
diseases, e.g., COVID-19). We need to benchmark the per-
formance on recent new settings for further studies.

VI. CONCLUSION
In this article, we empirically evaluated personalized feder-
ated methods in various experimental settings. Our experi-
mental results showed several key findings: First, no method
consistently outperformed the others in all the datasets. Sec-
ond, standard federated learning with fine-tuning was accurate
compared with most personalized federated learning meth-
ods. Third, the large degree of data heterogeneity improved
the accuracy of personalized federated learning methods. We
opened our Jupyter notebook-based tool FedMeasure to
facilitate experimental studies. We hope that our experimental
results help to develop and evaluate new federated learning
methods.

Limitations and future work: This study has three limita-
tions. First, despite 17 methods (ten federated learning, four
variants, and three non-federated learning methods) and five
datasets were used in this study, which are comprehensive
compared with previous ones, we also note that there are
numerous other federated learning methods (e.g., [24], [26],
[37], [40], [52]) and datasets. Second, to study the impact
of the data heterogeneity, we controlled the label distribu-
tion skew but did not investigate the impact of other types
of skews, such as quantity skew, in which each client has
a different number of data samples, and feature distribution
skew, in which the clients’ data share the same labels but vary
in features. Third, we varied the number of clients, the total
number of data samples, and the degree of data heterogeneity,
whereas other parameters, such as client-participant ratio, the
number of local epochs, and model architectures, were not
varied. In future work, we plan to enrich our benchmark tool
by adding datasets and methods to find further insights.

REFERENCES
[1] A. M. Abdelmoniem, C.-Y. Ho, P. Papageorgiou, and M. Canini,

“Empirical analysis of federated learning in heterogeneous envi-
ronments,” in Proc. 2nd Eur. Workshop Mach. Learn. Syst., 2022,
pp. 1–9.

[2] D. A. E. Acar et al., “Debiasing model updates for improving person-
alized federated training,” in Proc. 38th Int. Conf. Mach. Learn., 2021,
pp. 21–31.

[3] I. Achituve, A. Shamsian, A. Navon, G. Chechik, and E. Fetaya,
“Personalized federated learning with Gaussian processes,”
in Proc. Int. Adv. Conf. Neural Inf. Process. Syst., 2021,
pp. 8392–8406.

[4] M. G. Arivazhagan, V. Aggarwal, A. K. Singh, and S. Choudhary, “Fed-
erated learning with personalization layers,” 2019, arXiv:1912.00818.

[5] M. Asad, A. Moustafa, and T. Ito, “Fedopt: Towards communication
efficiency and privacy preservation in federated learning,” Appl. Sci.,
vol. 10, no. 8, 2020, Art. no. 2864.

[6] D. J. Beutel, T. Topal, A. Mathur, X. Qiu, T. Parcollet, and N. D. Lane,
“Flower: A friendly federated learning research framework,” 2020,
arXiv:2007.14390.

[7] C. Briggs, Z. Fan, and P. Andras, “Federated learning with hierarchical
clustering of local updates to improve training on non-IID data,” in
Proc. Int. Joint Conf. Neural Netw., 2020, pp. 1–9.

[8] S. Caldas et al., “LEAF: A benchmark for federated settings,” 2018,
arXiv:1812.01097.

[9] Z. Chai et al., “TiFL: A tier-based federated learning system,” in
Proc. 29th Int. Symp. High-Performance Parallel Distrib., pp. 125–136,
2020.

[10] D. Chen, D. Gao, W. Kuang, Y. Li, and B. Ding, “pFL-bench: A com-
prehensive benchmark for personalized federated learning,” in Proc.
NeurIPS Datasets Benchmarks Track, 2022.

[11] H.-Y. Chen and W.-L. Chao, “FedBE: Making bayesian model ensemble
applicable to federated learning,” in Proc. Int. Conf. Learn. Representa-
tions, 2021.

[12] L. Collins, H. Hassani, A. Mokhtari, and S. Shakkottai, “Exploiting
shared representations for personalized federated learning,” in Proc. Int.
Conf. Mach. Learn., 2021, pp. 2089–2099.

[13] L. Corinzia, A. Beuret, and J. M. Buhmann, “Variational federated
multi-task learning,” 2019, arXiv:1906.06268.

[14] Z. Dai, B. K. H. Low, and P. Jaillet, “Federated Bayesian optimization
via thompson sampling,” in Proc. 34th Int. Conf. Neural Inf. Process.
Syst., 2020, pp. 9687–9699.

[15] E. Diao, J. Ding, and V. Tarokh, “HeteroFL Computation and commu-
nication efficient federated learning for heterogeneous clients,” in Proc.
Int. Conf. Learn. Representations, 2021.

[16] J. Dong et al., “Federated class-incremental learning,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., 2022, pp. 10164–10173.

[17] J. Dong, D. Zhang, Y. Cong, W. Cong, H. Ding, and D. Dai, “Federated
incremental semantic segmentation,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., 2023, pp. 3934–3943.

[18] M. F. Duarte and Y. H. Hu, “Vehicle classification in distributed sensor
networks,” J. Parallel Distrib. Comput., vol. 64, no. 7, pp. 826–838,
2004.

[19] A. Fallah, A. Mokhtari, and A. Ozdaglar, “Personalized federated
learning with theoretical guarantees: A model-agnostic meta-learning
approach,” in Proc. 34th Int. Conf. Neural Inf. Process. Syst., 2020,
pp. 3557–3568.

[20] F. Hanzely, S. Hanzely, S. Horváth, and P. Richtárik, “Lower
bounds and optimal algorithms for personalized federated learn-
ing,” in Proc. 34th Int. Conf. Neural Inf. Process. Syst., 2020,
pp. 2304–2315.

[21] C. He, M. Annavaram, and S. Avestimehr, “Group knowledge transfer:
Federated learning of large CNNs at the edge,” in Proc. 34th Int. Conf.
Neural Inf. Process. Syst., 2020, pp. 14068–14080.

[22] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a
neural network,” 2015, arXiv:1503.02531.

[23] B. Huang, X. Li, Z. Song, and X. Yang, “FL-NTK: A neural tangent
kernel-based framework for federated learning analysis,” in Proc. Int.
Conf. Mach. Learn., 2021, pp. 4423–4434.

[24] Y. Huang et al., “Personalized cross-silo federated learning on non-IID
data,” in Proc. AAAI Conf. Artif. Intell., 2021, pp. 7865–7873.
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