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ABSTRACT Time series data is ubiquitous and of great importance in real applications. But due to poor
qualities and bad working conditions of sensors, time series reported by them contain more or less noises.
To reduce noise, multiple sensors are usually deployed to measure an identical time series and from these
observations the truth can be estimated, which derives the problem of truth discovery for uncertain time
series data. Several algorithms have been proposed, but they mainly focus on minimizing the error between
the estimated truth and the observations. In our study, we aim at minimizing the noise in the estimated truth.
To solve this optimization problem, we first find out the level of noise produced by each sensor based on
differenced time series, which can help estimating the truth wisely. Then, we propose a quadratic optimization
model to minimize the noise of the estimated truth. Further, a post process is introduced to refine the result
by iteration. Experimental results on both real world and synthetic data sets verify the effectiveness and
efficiency of our proposed methods, respectively.

INDEX TERMS Differencing, optimization, time series, truth discovery.

I. INTRODUCTION
In recent years, the Internet of Things (IoT) and wireless
sensor networks [1], [2], [3] have emerged and are playing
a key role in many fields such as smart cities, smart farms,
healthcare systems, environmental monitoring projects and so
on. As one of the main types of data in IoT, time series data
becomes commonplace in these areas. For example, in the
application of a smart farm, a batch of sensors would be de-
ployed throughout the farmland to monitor temperature, soil
moisture, the concentration of CO2, etc. These measurements
can be collected in the form of time series to analyze the
effect of the environment on crop growth. As another example,
wearable sensors can be integrated onto the bodies of players
to monitor their motion and physiological conditions. This
can help the coach mastering the real-time situations of the
players and making decisions timely. Researchers have being
developing various algorithms over time series [4], [5], [6].
These algorithms can be used for analyzing, mining, pre-
dicting and visualization. In the smart farm application, data
analyzing and data mining algorithms can extract knowledge

such as association rules between environment measurements
and crop growth from the abundant time series. In the second
example, visualization algorithms can present the tedious and
abundant data in a more intuitive manner to the coach.

Although it is relatively easy to collect data using sensors,
in the real world, time series reported by sensors always
deviate from true data, which we refer to as the uncer-
tainty of time series. There are many reasons that can cause
uncertainty in time series, such as imprecision of sensors,
privacy-preserving requirements, and low confidence in some
data-producing methods. Among them, imprecise sensors
contribute the largest share. In the smart farming setting,
deployed sensors may have low precision due to budget lim-
itations. In healthcare systems, wearable sensors are often
designed to be as lightweight as possible to avoid affect-
ing the movement of the wearers, which can result in lower
data precision. In real applications, using inaccurate data di-
rectly for time series data analysis may lead to incorrect
decision-making. To cope with uncertainty of data, two main-
stream classes of methods have been proposed: uncertain data
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algorithms [7] and truth discovery methods [8]. Uncertain data
algorithms typically employ probabilistic models or statistical
techniques to represent and reason about uncertain data. They
take into account the probability distributions associated with
the data values and incorporate uncertainty propagation and
inference mechanisms to make decisions or perform computa-
tions. But uncertain data algorithms are usually more complex
and inefficient. Truth discovery methods, on the other hand,
focus on recovering the true data from multiple imprecise
information. For example, in a smart farm application, al-
though individual sensors may have errors, deploying multiple
sensors allows us to design algorithms that can accurately
recover the correct data as much as possible from multiple
sensors’ measurements. Although it cannot guarantee the ac-
quisition of absolutely correct data, truth discovery methods
have significant advantages of low development cost and high
efficiency. By reducing uncertainty, regular algorithms can be
directly applied on the recovered data, thus saving the efforts
of developing complex uncertain data algorithms for various
of problems.

Many truth discovery methods working on uncertain time
series have been proposed. Some complex algorithms assume
that different data sources (sensors) have varying reliabilities,
so their contributions to true discovery are different. These
algorithms combine truth discovery with the data source reli-
ability estimation into a joint framework, and seek the optimal
solution by iteration or optimization. Although existing meth-
ods have obtained promising results, they don’t make full use
of the inherent information within the observations in terms
of estimating data source reliability.

In this paper, we approach the problem from a different
perspective. We consider the sequence reported by a sensor
as a combination of the ground truth sequence and a noise
sequence. The presence of more noise indicates that the data
source is less reliable. Therefore, the data source reliability
can be represented by the noise level of the observations. So,
the motivation of this study is to estimate the data source
reliability by analyzing the noise intensity in the observation
values. In the real world, time series are used to represent the
information of an actual object within a given time range. The
values in a time series generally do not fluctuate dramatically
in a very short time period. Therefore, it is reasonable to
consider the ground truth series as continuous and smooth.
But random noise series are not continuous in essence. Based
on the difference of smoothness, we propose a novel method
to estimate noise level of data source by performing differ-
encing on the observation sequence. Through differencing, the
truth series component in the observation can be significantly
attenuated, making the noise estimation more accurate.

After estimating the noise of data source, the reliability
or weight of data source can be obtained by solving a noise
minimization model. Then, the weighted sum of observations
is taken as the estimated truth. As an alternative, we propose
a quadratic noise minimization model to estimate data source
weights by representing the noise using the differenced series
of the estimated truth.

The smoothness of time series has been utilized in some
existing truth discovery methods, primarily as a constraint in
optimizing the objective function [9]. However, this differs
from the purpose of our method. Meanwhile, differencing
operation is also utilized in many time series data analysis
tasks, but its main purpose is to transform unstable sequences
into stable ones, which is different from our motivation either.

To further enhance the accuracy of the proposed noise min-
imization model, we incorporate an iterative process into it.
After estimating the ground truth, the weights of data source
can be updated, and subsequently, the ground truth can be
re-estimated. These two processes can be performed in an
iterative manner.

In summary, our main contributions are listed as follows:
1) We propose a new noise minimization framework to

perform truth discovery from uncertain time series.
2) We propose a new method to estimate noise in time

series based on differencing operation and provide the-
oretical support.

3) We improve our optimization model by iteration and
propose a quadratic optimization model as an alterna-
tive.

4) Experimental results show that our algorithms obtain
state of the art performance in both accuracy and time
cost.

In the rest of this paper, related works are surveyed in
Section II, and the problem definition is formalized in Section
III. We give our optimization model based on the weighted
noise minimization and an alternative quadratic model in
Section IV. A refining model by iteration is introduced in
Section V. Experiments are conducted in Section VI. Ad-
vantages and disadvantages of the proposed methods are
discussed in Section VII.

II. RELATED WORKS
A. TIME SERIES TRUTH DISCOVERY
Truth discovery aims to resolve conflicts from multi-source
noisy information. This problem has been extensively studied
over the years. Truth discovery method can be designed for
categorical [10], [11], [12], [13], [14], [15] or continuous
numerical data [9], [16], [17], [18], [19], [20], [21], [22],
[23], [24]. In this section, we only focus on algorithms work-
ing for continuous numerical data because time series in real
applications are seldom made of categorical data.

The simplest truth discovery method for numerical data is
using the average value of observations to be the estimated
truth. But this method doesn’t consider the qualities of data
sources and the estimation is not robust to data outliers. An-
other simple method uses the median value of observations as
the estimated truth. It is robust to data outliers but the median
value is just the middle value of the observations and it may
not be close to the truth.

Many existing algorithms share a common underlying prin-
ciple, that is, if a data source provides more trustworthy in-
formation, it is more reliable, and if a piece of information is
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provided by a more reliable data source, it is more trustworthy.
In light of the high relevance between data source reliability
and the ground truth, reliability estimation and truth discovery
are often combined into a joint framework, which can be
solved by iteration, optimization or probability methods [8].

In [16], the authors proposed a probability graph model
GTM, in which the variance of data source is modeled by a
gamma distribution, the ground truth and the observation val-
ues are modeled by Gaussian distributions. Truth discovery is
equivalent to getting the maximum a posterior estimate(MAP)
for the truth. Gaussian distribution is also used to represent the
source variance in [17]. To tackle the long tail phenomenon
of data sources, variance is estimated using the upper bound
of the confidence interval. Bootstrapping technology is inte-
grated into truth discovery procedure to decrease the effect
of the outlying claims [18]. The authors in [19] built a ran-
domized Gaussian mixed model, in which each data source
be considered as a component. The source bias is modeled by
an uniform distribution, and observations are considered fit-
ting a multi-variate Gaussian distribution. The estimated truth
is found by maximizing the likelihood of observing the
multi-source input. Li et al. [20] proposed a truth discovery
method which works on heterogeneous data types by design-
ing various distance functions for categorical and continuous
numerical data.

There are some methods taking advantages of the correla-
tions of the related objects. If two objects are similar, their
observations should be similar too. Such a principle is for-
mulated as a regularization term in the objective function of
the optimization model [21]. The authors in [22] proposed
a chain graph probability model, in which the dependency
of the related objects is modeled by a Markov random field.
The optimal inferred truth and the source weights are found
by maximizing the posterior distribution conditioned on the
observations.

Dynamic truth discovery problem has also received a lot
of attention in recent years. Zhi et al. [23] proposed using
first-order Markov process to represent the temporal dynam-
ics of time series. Observations are represented by hidden
Markov model, in which the truths are considered as the latent
variables. EM algorithm is used to infer model parameters.
Kalman filter and smoother are used to estimate the ground
truth. In [24], truth discovery component and time series anal-
ysis component are combined together. Temporal patterns in
time series are modeled by SARIMA model, by which data
prediction is performed. Estimated truth is encouraged to be
close to the prediction to fit the temporal pattern. In [9], the re-
lationship between different object observations is represented
by a random local regression model. In addition, the algorithm
utilizes the smoothness property of time series by setting a
constraint that the values at adjacent time points should be
similar.

B. TIME SERIES DATA CLEANING
A related topic to time series truth discovery is data cleaning,
which mainly deals with data missing, data inconsistence,

data integration and so on [25]. Many algorithms have
been proposed to tackle these problems,which mainly in-
clude smoothing-based methods, constraint based methods
and statistics based methods. The typical smoothing-based
methods include Moving average (MA) method, Autoregres-
sive (AR) model, and Kalman filtering model. They can be
used not only for data smoothing but also for data prediction.
Constraint based methods use dependency between data to
check and remedy error [26]. Statistics based algorithms use
probabilistic models to learn data statistical characteristics
and make inference to data. Hidden markov model (HMM)
is a commonly used statistical model, which has been used to
predict stocks price and clean RFID data [27], [28].

Data cleaning is often integrated into truth discovery
method or it can be used as an independent preprocess step
before conducting truth discovery. In [16], [22], data outliers
are detected based on the relative and absolute errors.

III. PROBLEM DEFINITION
In this paper, time series is not treated as discrete, but a
discrete sampling from a continuous time function v(t ), which
is usually smooth. We use V = 〈v1, v2, . . ., vn〉 to denote the
ground truth time series of length n. However, V is unknown,
but the approximate values can be measured by sensors.
Suppose there are m sensors, observations from them are de-
noted by S = {S1, S2, . . ., Sm},where Si = 〈si,1, si,2, . . ., si,n〉
and si,t denotes the measurement at time t by the i’th sensor.
Due to the inaccuracy of sensors, si,t = v j + ei,t , where ei,t is
the noise introduced by the i’th sensor at time t , which is an
observation of Ni,t , the noise random variable of this sensor
at time t . With respect to Ni,t , we make some reasonable
assumptions:

1) For each sensor, noises at different timestamps are in-
dependent identically distributed. Then the noise of the
i’th sensor can be denoted by Ni.

2) There is no systematic error in sensors, i.e., E [Ni] = 0.
3) Ni is independent with the true time series.
4) For any two different sensors, their noises are indepen-

dent with each other.
The main target of truth discovery on uncertain time series

is to find out the estimated ground truth: V̂ = 〈v̂1, v̂2, . . ., v̂n〉
from observations S , so that the distance Dist (V, V̂ ) between
the estimated series and the ground truth is as small as possi-
ble.

IV. OPTIMIZATION MODEL BASED ON NOISE
MINIMIZATION AND DIFFERENCING OPERATION
As introduced in section II, true time series can be estimated
by the average of the observations:

V̂ = 1

m

m∑
i=1

Si

But this method does not consider the reliability of the data
source. A better strategy is to assign different weights to
the data sources based on their reliability. The less noise
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the observation contains, the more reliable the corresponding
data source is, and a higher weight should be assigned to the
source. According to Assumption 2, where the expectation of
noise is 0, the noise intensity can be represented by the vari-
ance. Therefore, an improved estimation formula becomes:

V̂ =
m∑

i=1

w
(
σ 2

i

)
Si

s.t.
m∑

i=1

w
(
σ 2

i

) = 1

w
(
σ 2

i

) ≥ 0, i = 1, 2, . . ., m (1)

Where σi
2 = D[Ni], and w(σ 2

i ) is a weight function of
noise variance, which should monotonically decrease as σ 2

i
increases. Then truth discovery can be decomposed into two
phases. In the first phase, the noise of each data source �̂ =
〈σ̂ 2

1 , σ̂ 2
2 , . . .σ̂ 2

m〉 should be accurately estimated. In the second
phase, the weight function w(σ 2

i ) should be determined such
that the weighted sum of the observations is as close to the
ground truth as possible.

A. ESTIMATING σ2
i WITH Si

From Assumption 2, E [Ni] = 0, thus σ 2
i = D[Ni] = E [N2

i ] −
E2[Ni] = E [N2

i ]. To estimate E [N2
i ], we can make full use of

the observation Si, by the concept of energy.
Definition 1: The energy of a time series Si is:

P(Si ) = 1

n

n∑
t=1

S2
i,t (2)

Si,t denotes the random variable reported by the i’th sensor
at time t , then Si,t = vt + Ni,t , we can get:

P(Si ) = 1

n

n∑
t=1

(vt + Ni,t )2

Then the expectation of the observation series energy is:

E (P(Si )) = E

(
1

n

n∑
t=1

v2
t

)
+ E

(
1

n

n∑
t=1

N2
i,t

)

+ E

(
2

n

n∑
t=1

vt × Ni,t

)
The first term on the right side is constant, the second term
on the right side is the expectation of N2

i and equals σ 2
i , and

the third term on the right side equals 0 because E (Ni,t ) is 0
according to Assumption 2.

Thus, the above equation can be simplified as:

E (P(Si )) = 1

n

n∑
t=1

v2
t + σ 2

i (3)

If vt is near 0, σ 2
i can be estimated with E (P(Si )):

σ̂ 2
i = E (P(Si )) (4)

E (P(Si )) can be approximated by P(Si ) using (2). It is obvious
that E (P(Si )) is a biased estimation of σ 2

i . Because V is
unknown, the bias can not be remedied.

B. REDUCING THE BIAS BY DIFFERENCING
From (3) and (4), the variance estimation bias is equal to
1
n

∑n
t=1 v2

t . If vt approaches 0, the bias will be very small,
resulting in a more accurate variance estimation. Considering
that true time series are typically smooth, the values of adja-
cent elements are likely to be similar. Therefore, we consider
using first-order differenced series of the observation to esti-
mate the noise variance of data source.

Definition 2: Differenced series is defined recursively:
zero-order differenced series S(0)

i of Si is itself, i.e., S(0)
i =

Si, k-order differenced series S(k)
i of Si is 〈S(k−1)

i,2 − S(k−1)
i,1 ,

S(k−1)
i,3 − S(k−1)

i,2 , . . ., S(k−1)
i,n−k+1 − S(k−1)

i,n−k 〉, where k ∈ {1, 2, . . . ,

n − 1}.
Then, the energy of first-order differenced series S(1)

i is:

P
(

S(1)
i

)
= 1

n − 1

n−1∑
t=1

(
S(1)

i,t

)2
(5)

The expectation of P(S(1)
i ) can be obtained:

E
(

P
(

S(1)
i

))
= 1

n − 1

n−1∑
t=1

(
v

(1)
t

)2 + 2σ 2
i (6)

E (P(S(1)
i )) can be approximated by P(S(1)

i ) using (5). Because

v
(1)
t is small compared to vt , σ 2

i can be more accurately esti-
mated with:

σ̂ 2
i = 1

2(n − 1)

n−1∑
t=1

(
S(1)

i,t

)2
(7)

And the expectation of σ̂ 2
i is:

E
(
σ̂ 2

i

)
= 1

2(n − 1)

n−1∑
t=1

(
v

(1)
t

)2 + σ 2
i (8)

For a smooth time series, three adjacent values are also likely
to lie on a straight line. That is to say, change of difference of
two adjacent values is small. Therefore, we can use second-
order difference of the observation to estimate σ 2

i .
It’s not hard to get the following equation:

σ̂ 2
i = 1

6(n − 2)

n−2∑
t=1

(
S(2)

i,t

)2
(9)

And the expectation of σ̂ 2
i is:

E
(
σ̂ 2

i

)
= 1

6(n − 2)

n−2∑
t=1

(
v

(2)
t

)2 + σ 2
i (10)
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To be more general, d-order difference of the observation can
be used to estimate σ 2

i :

σ̂ 2
i = 1

(n − d )
(2 d

d

) n−d∑
t=1

(
S(d )

i,t

)2
(11)

And the expectation of σ̂ 2
i is:

E
(
σ̂ 2

i

)
= 1

(n − d )
(2 d

d

) n−d∑
t=1

(
v

(d )
t

)2 + σ 2
i (12)

Proof:
From Definition 1 and 2,

P
(

S(d )
i

)
= 1

n − d

n−d∑
k=1

[
d∑

t=0

(−1)(d+t )
(

d

t

)
Si,t+k

]2

= 1

n − d

n−d∑
k=1

[
d∑

t=0

(−1)(d+t )
(

d

t

)
× (vt+k + Ni,t+k )

]2

= P
(
V (d )

)
+ P

(
N (d )

i

)
+ 2

n − d

(n−d )∑
k=1

[
d∑

t=0

(−1)(d+t )
(

d

t

)
vt+k

×
d∑

t=0

(−1)(d+t )
(

d

t

)
Ni,t+k

]
Then,

E
(

P
(

S(d )
i

))
= E

(
P
(
V (d )

))
+ E

(
P
(

N (d )
i

))
+ 2

n − d

(n−d )∑
k=1

[
d∑

t=0

(−1)(d+t )
(

d

t

)
vt+k

×E

(
d∑

t=0

(−1)(d+t )
(

d

t

)
Ni,t+k

)]
Because E (Ni,t+k ) = 0,

E
(

P
(

S(d )
i

))
= E

(
P
(
V (d )

))
+ E

(
P
(

N (d )
i

))
(13)

As V is smooth, V (d ) is small comparing to N (d )
i and can be

ignored. So:

E
(

P
(

S(d )
i

))
≈ E

(
P
(

N (d )
i

))
(14)

Since

E
(

P
(

N (d )
i

))
= 1

n − d

n−d∑
k=1

E

(
d∑

t=0

(−1)(d+t )
(

d

t

)
Ni,t+k

)2

= 1

n − d

n−d∑
k=1

E

[
d∑

t=0

(
d

t

)2

N2
i,t+k

+2
d∑

t=0

d∑
t1>t

(−1)(2d+t+t1)
(

d

t

)(
d

t1

)
Ni,t+kNi,t1+k

]
Ni,t+k and Ni,t1+k are independent, so,

E
(

P
(

N (d )
i

))
= 1

n − d

n−d∑
k=1

d∑
t=0

(
d

t

)2

E
(
N2

i,t+k

)
Since

d∑
t=0

(
d

t

)2

=
(

2 d

d

)
,so

E
(

P
(

N (d )
i

))
= 1

n − d
(n − d )

(
2 d

d

)
E
(
N2

i

) =
(

2 d

d

)
σ 2

i

(15)

From (14),

σ 2
i ≈

E
(

P
(

S(d )
i

))
(2 d

d

)
We use P(S(d )

i ) to approximate E (P(S(d )
i )) and get:

σ̂ 2
i =

P
(

S(d )
i

)
(2 d

d

) = 1

(n − d )
(2 d

d

) n−d∑
t=1

(
S(d )

i,t

)2
(16)

From (13), (15), and (16),

E
(
σ̂ 2

i

)
= E

(
P
(
V (d )

))(2 d
d

) + σ 2
i = 1

(n−d )
(2 d

d

) n−d∑
t=1

(
v

(d )
t

)2+σ 2
i

The proof completes.
From (12), variance estimation bias is:

bias = 1

(n − d )
(2 d

d

) n−d∑
t=1

(
v

(d )
t

)2
(17)

It can be seen that as d increases, the bias declines expo-
nentially. Therefore, σ̂ 2

i in (11) can be seen as the unbiased
estimation of σ 2

i under high order difference.
To gain a clear understanding of the relationship between

difference order and the accuracy of noise estimation, we
conduct the following experiment. We randomly choose 5 true
time series from UCR dataset [29] to calculate noise esti-
mation biases using (17), and then generate 5 random noise
series following a standard normal distribution to estimate
noise variances using (11). From Fig. 1, we can see that as d
increases, the noise estimation bias decreases rapidly and ap-
proaches zero, while the noise estimation remains relatively
stable.

Although experiment shows that the value of d has not
much impact on noise estimation based on a small amount
of samples, it affects efficiency when d is large.

Besides unbiasedness, the stability of the estimation is also
should be considered, i.e., the variance of σ̂ 2

i . Further inves-
tigation reveals that as d increases, the variance of the noise
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FIGURE 1. Relationship between noise estimation accuracy and difference
order.

estimation also increases, indicating that the noise estimation
becomes less stable.

We derive the following theorem regarding the relationship
between the difference order and the stability of noise estima-
tion:

Theorem 1: Suppose μ4 = Rσ 4
s , where μ4 is fourth order

central moment of noise random variable, R is a constant re-
lated to the noise, σs is the standard variance of noise from the
s’th data source, then the standard variance of the estimated
σ 2

s is:

σ
(
σ̂ 2

s

)
≈ σ 2

s(2 d
d

)
(n − d )

×

√√√√√4
∑

n≥ j>i≥1

[
n−d∑
t=1

(
d

i − t

)(
d

j − t

)]2

+ R − 1

(18)

The proof is given in appendix.
The theorem can guide us to choose an appropriate differ-

ence order d . As d increases, the variance of the estimation
will also increases. If σ (σ̂ 2

s ) ≤ εσ 2
s is required, d should be

chosen to satisfy the following inequality:

1(2 d
d

)
(n−d )

√√√√√4
∑

n≥ j>i≥1

[
n−d∑
t=1

(
d

i − t

)(
d

j − t

)]2

+R−1≤ε

C. DETERMINING THE WEIGHT FUNCTION w(·)
Due to the smoothness property, it is reasonable to assume
that the truth series contains no noise. Therefore, weight func-
tions should be determined in a way that minimizes the noise
present in the estimated truth. According to (1), noise in the
estimated truth can be represented by:

σ 2 (V̂t
) = σ 2

(
m∑

i=1

w
(
σ 2

i

)× Si,t

)

= σ 2

(
m∑

i=1

w
(
σ 2

i

)× (vt + Ni,t )

)

=
m∑

i=1

w2(σ 2
i

)× σ 2
i (19)

Then, weight functions can be determined by the following
noise minimization model:

min
m∑

i=1

w2(σ 2
i

)× σ 2
i

s.t.
m∑

i=1

w
(
σ 2

i

) = 1

w
(
σ 2

i

) ≥ 0, i = 1, 2, . . ., m (20)

Because σ 2
i is unknown, we use σ̂ 2

i to approximate σ 2
i using

(11), and w(σ̂ 2
i ) can be calculated with Lagrange Multiplier

method:

w
(
σ̂ 2

i

)
=

1
σ̂ 2

i∑m
l=1

1
σ̂ 2

i

(21)

Finally, the estimated ground truth is:

V̂ =
m∑

i=1

w
(
σ̂ 2

i

)
× Si (22)

In the above optimization model, the noise of the estimated
truth is transformed into a weighted sum of the noise in the
observations, as can be seen from (19). Alternatively, we can
directly represent the noise with the d-order difference of the
estimated truth using (11). Then, the optimization model can
be formulated as:

min σ 2
(
V̂ (d )

)
= 1

(n − d )
(2 d

d

) n−d∑
j=1

(
m∑

i=1

wi × S(d )
i, j

)2

s.t.
m∑

i=1

wi = 1

wi ≥ 0, i = 1, 2, . . ., m (23)

Define

D j =
[
S(d )

1, j , S(k)
2, j, . . ., S(d )

m, j

]T

w = [w1,w2, . . .,wm]T

Then, (23) converts to

min wT

⎛⎝n−d∑
j=1

(
D j × DT

j

)⎞⎠w

s.t.
m∑

i=1

wi = 1

wi ≥ 0, i = 1, 2, . . ., m (24)

The optimization is quadratic and convex, so it can be easily
solved. We use QuadProg++ library [30] to solve this opti-
mization problem.
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Algorithm 1: Iterative Optimization Truth Discovery.
Input: difference order d; observations
S = {S1, S2, . . ., Sm} from m data sources

Output: truth estimation V̂
1: for i = 1 to m do
2: calculate σ̂ 2

i using (11)
3: end for
4: for i = 1 to m do
5: calculate w(σ̂ 2

i ) using (21)
6: end for
7: calculate initial estimation V̂ (0) using (22)
8: while energy of the estimated V̂ (k) decreases do
9: for i=1 to m do

10: update w
(k+1)
i according to (26) and (21)

11: end for
12: update V̂ (k+1) by (22)
13: end while
14: return V̂ (k)

Finally, the estimated ground truth can be calculated using:

V̂ =
m∑

i=1

wi × Si (25)

V. REFINING
A. ITERATIVE OPTIMIZATION MODEL BASED ON
DIFFERENCED SERIES ENERGY
In noise minimization model (20), σ 2

i is estimated with (11).
But due to randomness of the observation, noise estimation
cannot be equal to its actual value. In addition, performing
differencing operation on the observation may not elimi-
nate the estimation bias completely. So, the estimated truth
with (22) is not optimal, but it can be considered a good
approximation of the ground truth. Based on this estimation,
we can re-estimate the noise of data source using (26).

σ̂ 2
i = 1

n

n∑
t=1

(Si,t − V̂t )2 (26)

Then, we can re-estimate the ground truth using (21) and (22).
These two estimation steps can be performed iteratively.

We give the detail steps of the iterative optimization process
in Algorithm 1.

Lines 1–7 implement the optimization model from (20) to
(22). To start the iteration, the weight of data source w

(0)
i

can be initialized by w(σ̂ 2
i ), and ground truth estimation V̂ (0)

be initialized by V̂ . Then, in the (k + 1)th iteration, w
(k+1)
i

can be calculated by σ̂ 2
i , which is derived from V̂ (k) using

(26). Based on w
(k+1)
i , V̂ (k+1) can be calculated with (22).

w
(k)
i and V̂ (k) can be updated iteratively until convergence. In

our setting, iteration continues until d-order difference energy
of V̂ (k) doesn’t decrease. Some other iteration stop conditions
can be used, for example, iteration number reaches a specified
number. However, doing so may lead to the estimated ground

truth being trapped by the nearest neighboring sample, thus
preventing effective algorithm improvement.

It is not hard to obtain that the time complexity of Algo-
rithm 1 is O(dmn + T × (mn + dn)), where T is the number
of iterations, m is the number of data sources, n is the length
of time series, and d is the difference order. It is obvious that
the complexity is linear with the input data size m × n.

VI. EXPERIMENTAL EVALUATION
In our research, all experiments are conducted on a desktop
computer equipped with 16 GB of RAM, a 2.90 GHz Intel
Core i7 CPU, and running Windows 10 operating system. The
programming environment used is Dev-C++ 5.11.

A. DATASET
We perform all experiments on UCR time series classification
dataset [29]. UCR contains 85 data sets in total. Each data set
consists of two parts: TRAIN and TEST, each containing a
set of time series data. Within each time series, the first data
point represents a category label used for classification tasks,
which is not utilized in our experiments. The subsequent data
points represent the actual time series data, which serve as
the ground truth. For each data set, we combine TRAIN and
TEST parts and use all time series to evaluate algorithms. To
simulate observations from data sources, we add Gaussian
noise to the ground truth at each timestamp in every time
series. We generate m observations for each time series. For
each observation, the expectation of the Gaussian distribution
is set to 0 and the standard variance of the distribution is
randomly selected from the range (0,1].

B. EVALUATION METRICS
Mean of Absolute Error (MAE) and Root Mean of Square
Error (RMSE) are used for evaluating algorithm performance.
MAE calculates the mean of absolute difference from the
estimated truths to the ground truths and RMSE calculates the
square root of the mean of square distance between the esti-
mated truths to the ground truths. The less MAE and RMSE
are, the better the algorithm is.

C. BASELINE METHODS
We compare our algorithms with eight commonly used meth-
ods: Mean, Median, OTD [24], RelSen [9], GTM [16],
CRH [20], PTDCorr [22] and CATD [17]. CRH minimizes
the weighted sum of error between the observations and the
ground truths. CATD minimizes the weighted sum of error
variance from data sources. GTM and PTDCorr both maxi-
mize the log likelihood probability of the ground truth, source
qualities and the observations, but PTDCorr considers object
correlation. In our implementation, we assume there exists
temporal correlation among the truths at adjacent timestamps.
Besides considering the weighted error between truths and
observations, RelSen also considers object correlation and
smoothness of time series, while OTD mines the temporal
patterns within the truth series.
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TABLE 1. Error Comparison of Different Algorithms on UCR Dataset

Parameters for the baseline methods are set as follows.
For OTD, parameters are set as (p = 5, P = 5, E = 0, d = 5,

D = 5, M = 5, η = 10, δ = 0.5, λ = 0.001, g = 1). For
RelSen, parameters are set as (l = 2709, γ = 1.0). For GTM,
parameters are set as (α = 1, β = 1, μ0 = 0, σ 2

0 = 1). For
CATD, parameter α is set as 0.05. For PTDCorr, parame-
ters are set as (α = 5, β = 1, θ = 0.2). The number of data
sources is set to 10 for all methods. If not specified otherwise,
difference order d is set to 2.

D. ACCURACY EVALUATION
We compute the average RMSE and MAE for each data set in
UCR. Due to space limitations, we present the results of the

first 20 data sets in Table.1. In this table, DIFF represents our
first optimization model in (20), ITER represents our refining
model incorporating an iterative process, which is shown in
algorithm 1, and QUAD represents our quadratic optimization
model in (24). From Table.1, we can observe that our methods
are highly effective, achieving the best results in 14 out of
20 data sets. This demonstrates the effectiveness of truth dis-
covery framework based on differencing operation and noise
minimization. In comparison, ITER exhibits higher accuracy,
indicating that the iterative process has a significant impact on
the algorithm’s performance.

MAE and RMSE of different methods on all data sets in
UCR are plotted in Figs. 2 and 3. Among our methods, we
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FIGURE 2. MAE comparison on UCR dataset.

FIGURE 3. RMSE comparison on UCR dataset.

FIGURE 4. Relationship between difference order and MAE/RMSE for our
three methods.

choose ITER to compare with the baselines because it per-
forms best in most cases. From the results, we can see that
ITER outperforms all the baseline methods and gets the best
average accuracy in 73 out of all 85 data sets. Among the
baseline methods, Mean and Median methods don’t consider
the relationship between the data source reliability and truth
discovery, so the accuracy of these two methods is not sat-
isfactory. OTD performs worst in most data sets. A possible
reason may be that SARIMA model cannot fit the time series
in UCR dataset well. GTM and PTDCorr obtain comparable
performance with ITER. Because PTDCorr considers object
correlation, it performs slightly better than GTM overall.

To explore the impact of difference order on the proposed
methods, we range difference order d from 0 to 20 and cal-
culate average MAE and RMSE of all time series for each
difference order. Fig. 4 shows the relationship between dif-
ference order and MAE/RMSE. From the results, we can

FIGURE 5. Relationship between number of data sources and error for
ITER method.

FIGURE 6. Time performance comparison for different methods.

observe that when the difference order equals zero, i.e., when
no differencing operation is performed on the observations,
the accuracy of each algorithm is worse compared to when
the differencing operation is performed. The phenomenon
shows the differencing operation can reduce the bias of noise
estimation. Meanwhile, it can be observed that the differ-
ence order doesn’t have a significant impact on the accuracy
of the algorithms. When the difference order ranges from 1
to 20, the relative estimation errors are very small, which is
a significant advantage compared to other baseline methods.
Many existing methods require setting various parameters,
and different parameter settings often heavily impact perfor-
mance. In addition, we can observe that ITER is always better
than DIFF. However, as the difference order increases, the
performance of QUAD is not as good as that of the other two
methods.

To explore the impact of the number of data sources on
accuracy, we vary m from 2 to 20 and compute the average
MAE and RMSE for each m. Results are shown in Fig. 5.
We can observe that as m increases, the algorithm can acquire
more information related to the truth, resulting in a decrease
in the estimation error.

E. TIME PERFORMANCE EVALUATION
Besides the accuracy, we also compare time performance of
different methods. We measure the total execution time of
different methods separately when the number of data sources
is 5, 10, and 15. We use qsort function in C standard library
to implement Median method. Results are shown in Fig. 6.
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FIGURE 7. Relationship between running time and length of series for our
three methods.

From the results, we can observe that our methods exhibit
excellent time performance. Although GTM and PTDCorr get
less estimation error in a small portion of data, they need much
more execution time. For QUAD, the time cost increases more
rapidly than DIFF and ITER because it requires performing
complex matrix decomposition operations. In addition, as the
number of data sources increases, the size of the Hessian
matrix in quadratic optimization also increases.

Further, we explore the relationship of the time cost with
the length of series for our three methods. We synthesize
truth series of lengths ranging from 100 to 1000, increasing
by 100 each time. The first element is set to 0, and each
subsequent element is set to a Gaussian random variable with
an expectation equal to the value at the previous timestamp
and a variance equal to 1. Observations of the data sources
are simulated by the same method as before. For each length,
we build 10 0000 truth series. We test each algorithm 10 times
and take the average as the execution time. Test results are
shown in Fig. 7. It can be found that there are strong linear
relationship between the length of series and the time cost.
Pearson correlation coefficients are 1, 0.99996 and 0.99999
for DIFF, ITER and QUAD respectively.

VII. DISCUSSION
Compared to the baseline methods, the benefits of our algo-
rithms lay in the following aspects:

1) Many existing methods combine truth discovery and es-
timation of data source weights into a joint framework,
but the source weights are often initialized equally or
set based on the error between the observations and
the initial truths before iteration [9], [17], [20], [22]. In
contrast, in our paper, weights of data source are com-
puted based on estimating the noise of data source by
performing differencing operations on the observations.
Through differencing, the smooth signal in the time
series can be greatly attenuated while preserving the
noise signal effectively, thereby reducing interference
from the true values in noise estimation. To the best of
our knowledge, this method is novel and can be applied
to other time series analysis tasks.

2) Our methods only require setting one parameter, which
is the difference order, and different parameter setting

has a small impact on the performance of the algorithm.
In contrast, many existing algorithms [9], [22], [24]
have several parameters that need to be set. Different pa-
rameter setting has heavily impact on the performance
of the algorithm, making these algorithms more com-
plex to use.

3) We use probabilistic methods to theoretically demon-
strate the relationship between parameter setting and
stability of the noise estimation. Therefore, stability of
our algorithms can be theoretically guaranteed.

Among the proposed three models, DIFF performs most
efficiently and the algorithm’s accuracy is also satisfactory.
ITER incorporates an iterative process into DIFF, obtaining
higher accuracy with only a slight increase in execution time.
Therefore, it can be seen as an improved version of DIFF.
QUAD can be seen as an alternative to DIFF. It shares the
same optimization objective as DIFF, but the form of their
objective functions is different. QUAD is a quadratic opti-
mization model that incurs higher computational costs when
the difference order is large. It involves matrix decomposition
operations during the algorithm execution. In addition, as the
difference order increases, the computational stability may
decrease. However, it is worth noting that in cases with lower
orders (e.g., order 1,2), QUAD can achieve better performance
than DIFF. Therefore, in low-order scenarios, QUAD can be
chosen, while ITER can be chosen in most cases. If there is a
high requirement for time performance, DIFF can be used.

The main drawback of our methods is they can’t perform
truth discovery in online manner. On the other hand, our
methods are designed for single object, not considering multi
object correlations. In future work, we will integrate data
preprocessing into the truth discovery framework and improve
algorithm performance further.
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