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ABSTRACT Metaverse is expected to rely on massive Internet of Things (IoT) connections so it inherits
various security threats from the IoT network and also faces other sophisticated attacks related to virtual
reality technology. As traditional security approaches show various limitations in the large-scale distributed
metaverse, this paper proposes MetaCIDS, a novel collaborative intrusion detection (CID) framework that
leverages metaverse devices to collaboratively protect the metaverse. In MetaCIDS, a federated learning (FL)
scheme based on unsupervised autoencoder and an attention-based supervised classifier enables metaverse
users to train a CID model using their local network data, while the blockchain network allows metaverse
users to train a machine learning (ML) model to detect intrusion network flows over their monitored local
network traffic, then submit verifiable intrusion alerts to the blockchain to earn metaverse tokens. Security
analysis shows that MetaCIDS can efficiently detect zero-day attacks, while the training process is resistant
to SPoF, data tampering, and up to 33% poisoning nodes. Performance evaluation illustrates the efficiency
of MetaCIDS with 96% to 99% detection accuracy on four different network intrusion datasets, supporting
both multi-class detection using labeled data and anomaly detection trained on unlabeled data.

INDEX TERMS Blockchain, collaborative intrusion detection, federated learning, metaverse, semi-
supervised learning.

I. INTRODUCTION
Metaverse is emerging as the next-generation Internet, which
is empowered by a variety of advanced technologies including
the Internet of Things (IoT), blockchain, digital twins (DT),
augmented/virtual reality (AR/VR), artificial intelligence
(AI), 5G/6G wireless networks, and edge/cloud computing.
It realizes a virtual world where users take part in via a digital
representative called avatar, then immerse themselves into the
3D virtual environment using AR/VR wearable devices with a
wide range of virtual activities and services such as working,
playing, education, healthcare, and social services [1]. This
virtual world synchronizes and operates in parallel with the
physical world thanks to the virtual-physical mapping process
of DT, in which real-world events are continuously reflected
into the virtual world, while any changes in the virtual world
are also synchronized to its physical counterpart.

To realize the virtual-physical synchronization, real-
world data must be collected seamlessly by numerous IoT
devices, sensors, and unmanned aerial vehicles (UAVs) to
build the virtual environment, while user’s personal data
such as appearance, facial expression, voice, digital footprint,
and behaviors are collected by AR/VR wearable devices to
construct the digital avatars. Consequently, different security
techniques must be deployed in the metaverse to protect these
sensitive data from malicious actors. For example, access
control mechanisms can prevent attackers from illegitimately
accessing metaverse computational and data resource, while
identity authentication systems can filter out sybil entities and
proactively hinder phishing scam, impersonation, and other
social engineering attacks in the metaverse.

Among various security solutions, intrusion detection sys-
tem (IDS) [2] provides efficient countermeasures to deal with
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a wide variety of threats in the metaverse such as denial of
service (DoS), distributed denial of service (DDoS), botnet,
malware, and malicious data injection. In terms of IDS struc-
ture, there are two main types of IDS which are network
intrusion detection system (NIDS) and host-based intrusion
detection system (HIDS). While NIDS monitors and analyzes
network traffic being transmitted to a local metaverse network
to recognize suspicious activity, HIDS programs are installed
in individual metaverse host/device to detect abnormal behav-
ior targeting on the host that they are serving.

However, as a centralized system, they both face various
challenges when being adopted into the metaverse. Firstly,
the centralized NIDS/HIDS server might be attacked, or they
could act dishonestly to earn illegal benefit, thus manipulating
the system and causing single point of failure (SPoF). Sec-
ondly, they suffer from the scalability issue as the number of
metaverse devices is very large, e.g., millions or even billions
of nodes. As a result, the NIDS server must process massive
volume of metaverse network traffic, while the HIDS program
must be installed and managed on numerous metaverse hosts
and devices, making it exceeds the capacity of the central-
ized IDS. Thirdly, attackers can interfere in IDS storage or
transmission to modify the detection results and logs, thus
threatening the integrity of the system.

To tackle these problems, this paper proposes MetaCIDS,
a CID framework for the metaverse that utilizes blockchain
to decentralize the process of intrusion detection manage-
ment. Instead of relying on a central authority, MetaCIDS is
maintained by a blockchain network with multiple nodes tak-
ing responsibility for alert verification and decision making,
thereby eliminating SPoF and manipulation, while improving
the scalability enormously. Besides, detection results and logs
are recorded on-chain with blockchain’s immutable property
to ensure the integrity of detection data.

In terms of intrusion detection approaches, although ma-
chine learning (ML) models have shown outstanding per-
formance compared to traditional IDS techniques [3], the
centralized training scheme is vulnerable to privacy risks
since network data of metaverse users must be collected in
a central server for training the model. Federated learning
(FL) [4] has emerged as a feasible solution to address this
issue, which allows local devices to train the model locally
on their own collected data, then submit only the gradient
updates to the central server for aggregation without reveal-
ing the data. However, there remains certain challenges if
the conventional FL scheme is applied to train an intrusion
detection model for the metaverse. Firstly, most metaverse
users could not label their collected network data to train
the model, since they, without expertise in cybersecurity, can-
not distinguish between normal and malicious network flows.
Secondly, the aggregation process is carried out by a central
server, thus posing various centralization-related risks such as
SPoF, tampering, privacy leakage, and manipulation. Thirdly,
metaverse users lack necessary motivation to contribute their
computational resource to collect data and train the FL
model.

To tackle the first issue of labeling data, MetaCIDS deploys
two different detection modules: i) a multi-class intrusion
classifier trained on labeled data to detect attacks that have
been previously seen in the training data based on the attention
technique [5]; ii) an anomaly detection module trained on
unlabeled data to detect attacks unseen in the training data
(i.e., zero-day attacks) based on deep autoencoder (DAE). For
the second problem of centralization, MetaCIDS leverages
the blockchain network to decentralize the aggregation
process, making it fair and stable even if there are certain
nodes acting maliciously or under attacks. The third issue is
mitigated by a concrete incentive and reputation mechanism
that encourages metaverse users to contribute their available
resources to protect the metaverse and correspondingly earn
blockchain-based token rewards.

A. RELATED WORKS AND RESEARCH GAPS
Prior to our work, the application of IDS for the metaverse has
not been well investigated. Outside of the metaverse context,
there has been several works exploiting the following related
use cases: i) the use of blockchain for CID management [6];
ii) centralized FL and blockchain-based decentralized FL for
training IDS models [7], [8]. This section presents the state-
of-the-art related works, thereby exploring the research gaps
that MetaCIDS aims to address.

1) IDS IN METAVERSE
Regarding IDS for the metaverse, the authors in [9] proposed
a GAN-based IDS model which consists of several ML
techniques such as generative adversarial network (GAN)
for data optimization, DAE for dimension reduction, and
random forest (RF) for classification. Although the proposed
architecture achieves high performance on the InSDN dataset,
its complexity might be a burden hindering it from practical
use cases for the metaverse. Instead of relying on ML models,
the authors in [10] used the sequential probability ratio
test (SPRT) method to detect wormhole attack within the
metaverse context. The work is only limited to wormhole
attack, while other severe threats are not considered.
Moreover, both studies only concentrate on designing a
detection model, while the process of detection management
is not investigated. As mentioned above, these centralized
schemes might be vulnerable to various centralization-related
issues when being adopted into the metaverse.

To overcome these problems, our previous work [11]
has been designed for both distributed training process and
decentralized intrusion detection management (e.g., alert sub-
mission/verification and incentive, reputation mechanisms).
However, the work does not support training the IDS model
on unlabeled data, making it impractical in the real meta-
verse system. Without training on newly collected unlabeled
data, the framework cannot detect zero-day attacks. Moreover,
when metaverse users submit an intrusion alert, they must also
provide the network flow associated with the alert to verify
its integrity and prevent the DDoS attack. This might cause
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privacy concern as the local data must be disclosed to other
participants. In fact, this work is an extension of our previous
framework [11], which fills all the mentioned gaps thanks to a
novel semi-supervised model with an encoding mechanism to
protect data privacy. Besides, we also supplement intensive
experimental results and analysis to show the efficiency of
MetaCIDS compared to its predecessor.

2) BLOCKCHAIN FOR IDS
The authors in [12] proposed an IDS platform to enable
secure data transfer for the Internet of drones, in which
blockchain and zero-knowledge proof empower the registra-
tion and verification process with decentralization and privacy
preservation. The authors in [13] utilized the long short-term
memory (LSTM) to design a high-performance IDS model,
while blockchain is used to store and share the detection re-
sults. However, both frameworks did not design any incentive
mechanism to motivate the participation of users and prevent
them from submitting dishonest alerts. The authors in [14] not
only used blockchain for storing detection results, but also de-
signed a blockchain-based incentive mechanism for their CID
framework in multi-microgrid (MMG) systems. As a result,
the collaborative scheme helps reducing false negative rate
(FNR), while eliminating SPoF in data storage. The authors
in [15] proposed a CID architecture that attempts to improve
user privacy and the integrity of detection via blockchain-
based storage and encryption techniques. Dishonest alerts
are stated to be filtered out in the consensus process of the
blockchain network. However, this only provides a generic
architecture at a conceptual level without practical or detailed
system design.

Furthermore, all of the above blockchain-based CID frame-
works have not taken into account the training process of IDS
models. Consequently, these centralized training schemes are
prone to data leakage, SPoF, and model tampering, while their
pre-trained model is not able to detect zero-day attacks that are
unseen in the fixed training dataset.

3) FEDERATED LEARNING FOR IDS
There is a wide range of studies exploring the use of FL-
based IDS in the IoT and industrial IoT (IIoT) sectors [16],
[17], [18], [19], [20], [21], [22]. For example, the authors
in [17] used gated recurrent unit (GRU) combined with con-
volutional neural network (CNN) to design an IDS model for
cyber-physical systems (CPSs), while FL enables a privacy-
preserving training scheme. Similarly, the work in [20] also
utilized FL for the training process, while the ML model is a
combination of LTSM, GRU, and DT. However, most IoT de-
vices, in practice, could not label their collected network data
to train the IDS model, thus posing significant challenges to
apply the frameworks in the above works. To mitigate the la-
beling issue, the studies in [19] and [22] offer semi-supervised
FL designs based on AE and knowledge distillation, respec-
tively. The main idea is to utilize unlabeled data to train an

encoder module that extracts only important features of data,
then feed the optimized data into a classifier to detect intru-
sion. To maximize privacy in training IDS models, the authors
in [21] supplement differential privacy (DP) [26] techniques in
the FL training process to prevent an inference attack (i.e., the
central server infers sensitive information from the submitted
gradient updates).

Nevertheless, all above FL-based IDS frameworks imple-
ment the aggregation process via a single central server,
making it vulnerable to SPoF, manipulation, and poisoning at-
tack (i.e., certain local devices send dishonest gradient updates
to the server). Furthermore, the scope of these frameworks
is only limited to training an IDS model, while the detection
management process is not taken into account.

4) BLOCKCHAIN-BASED FEDERATED LEARNING FOR IDS
To make FL more secure and stable during the training pro-
cess of IDS models, several works [23], [24], [25] integrated
blockchain into the FL training process. For instance, the
authors in [24] designed an FL-based CID framework for
UAV networks that uses blockchain to store and share the
training models, thereby enhancing the security and integrity
of the IDS models. Although blockchain is used in training,
the aggregation process is still centralized in [24]. The two
works [23] and [25] proposed to decentralize the aggregation
process by blockchain-based consensus mechanisms. Specifi-
cally, instead of relying on a central server, multiple consensus
nodes (e.g., miners) take responsibility for aggregating local
gradient updates into a global model. Thereby, the global
model is aggregated properly even if certain hosts are mali-
cious or under attacks.

Although decentralization is supported in these frame-
works, none of them offers a proper incentive mechanism to
encourage users to train the IDS model. The frameworks could
not exploit unlabeled data, while the zero-day attack is still an
unsolved challenge. Also, the authors only focus on training
FL models without considering CID management.

B. MOTIVATIONS AND KEY CONTRIBUTIONS
Our goal is to design a decentralized metaverse CID frame-
work that fills the presented research gaps. The novel contri-
butions achieved by MetaCIDS compared to existing frame-
works are illustrated in Table 1, which can be summarized as
follows:
� MetaCIDS offers a comprehensive training scheme that

enables privacy preservation and resists to inference at-
tack thanks to FL and DP technique. The FL aggregation
process is decentralized by blockchain to ensure model
integrity and resistance to SPoF and poisoning attack.

� A semi-supervised model is designed based on the DAE
and attention technique that utilizes both labeled and un-
labeled data. Thereby, MetaCIDS offers both multi-class
intrusion detection and zero-day attack detection.
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TABLE 1. Comparison Between MetaCIDS and Other Existing Frameworks Regarding Intrusion Detection

� MetaCIDS provides a complete workflow for the process
of intrusion detection management based on blockchain
and smart contracts. Metaverse users can download the
IDS model from blockchain, use it to collaboratively
detect intrusion, then submit alerts to the blockchain.

� A concrete incentive mechanism and reputation system
are designed to motivate metaverse users to contribute
their available resource to protect the metaverse, while
eliminating malicious actors and sybil avatars.

The rest of the paper is structured as follows. Section II
presents the system model with threat formulation and
an overview of the MetaCIDS architecture. Section III
proposes the detailed design of MetaCIDS, including the
semi-supervised IDS model, FL-based training, and
blockchain-empowered CID management. Section IV
analyzes the security and performance of MetaCIDS with
various experiments, while Section V concludes the paper.

II. SYSTEM AND THREAT MODELS
In this section, we first present the system model, threat
model, and our design goal. Then, we provide an overview of
MetaCIDS whose details are given in the following section.

A. SYSTEM MODEL
The metaverse is based on the deployment of a massive num-
ber of devices in different types and capacities (e.g., IoT
sensors, AR/VR devices, wearable haptic devices, smart vehi-
cles, and edge/cloud servers) as shown in Fig. 1. These devices
frequently communicate with each other and with edge/cloud
servers to maintain the metaverse operation. Consequently,
attackers can manipulate metaverse devices by interfering to
their communication or through malicious software installed
on the devices. These attacks often make the network flows
sent from/to the targeted devices become abnormal compared
to usual traffic patterns. As metaverse devices possess increas-
ingly computational capacity, these devices can be exploited
to build a CID scheme, in which they can join a consor-
tium blockchain to collaboratively train an intrusion detection
model, then leverage such the model to protect themselves as
well as the metaverse.

FIGURE 1. FL training process for the IDS model in MetaCIDS. Gradient
updates and the global model are stored on IPFS, in which “URL” is the
IPFS link to download the data.

Since the training task requires significant computation,
it should be carried out by edge/cloud servers or powerful
devices such as AR/VR headsets. Other weaker devices (e.g.,
IoT sensors and haptic devices) can still contribute to de-
fend the metaverse by monitoring their local network traffic
to detect intrusion based on the IDS model stored on the
blockchain. The key elements of MetaCIDS is illustrated in
Fig. 2.

B. THREAT MODEL AND DESIGN GOAL
1) THREATS IN TRAINING IDS MODEL
The training process of IDS models pose various security and
privacy risks, which can be summarized as follows.

Data Privacy Leakage: The safety of metaverse users can
be threatened if their network traffic data is leaked to any other
party during the training process.

Zero-day Attack: IDS model which is trained on a fixed
dataset would not be able to detect a novel attack pattern that
is unseen in the training dataset.
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FIGURE 2. Overall architecture and operation of MetaCIDS.

Lack of Labeled Data: In practice, most metaverse users are
not able to label their network traffic to train the IDS model.
Only a small proportion of users are expected to possess
expertise in cybersecurity to do this task.

Inference Attack: In FL training, although the local data of
users is not revealed, sensitive information can still be inferred
from the submitted local gradient updates.

SPoF in Aggregation: If FL model aggregation is processed
by a single central server, the entire training system can be
collapsed when the server is attacked by hackers.

Model Tampering: Attackers might interfere in the trans-
mission or storage environment to tamper the IDS model
during its training, threatening the integrity of model.

Poisoning Attack: Some malicious metaverse users can in-
tentionally send wrong gradient updates to distort the training
process. Consequently, the IDS model cannot converge to an
efficient solution under poisoning conditions.

2) THREATS IN CID MANAGEMENT
In terms of CID management, several challenges can be listed
as follows.

SPoF in Detection: IDS might be less efficient if the de-
tection result is decided by only a single authority. This can
raise trust issues and SPoF, especially in a large-scale and
distributed environment like the metaverse.

Fake Alert Submission: In a distributed CID system, some
participants can submit fake alerts to earn rewards without
truly contributing any effort. Moreover, hackers might do this
to disrupt the IDS operation, thus facilitating their attacks.

Privacy Leakage in IDS: CID systems often require users
to attach the suspicious network flow associated with the in-
trusion alert to prevent fake alert. However, this can lead to
privacy leakage as the local data must be disclosed.

FIGURE 3. Architecture of the lightweight semi-supervised IDS model.

Tampering of Detection Result: Attackers can launch at-
tacks targeting on IDS storage infrastructure to modify the
detection results and logs, thus bypassing the detection sys-
tem.

Scalability Issue: A centralized IDS in which the central
server must monitor and analyze all network data to detect
intrusion will inevitably face scalability problem, especially
in the metaverse with millions or even billions of devices.

Sybil Attack: Attackers can create numerous sybil avatars to
obtain illegitimately high impact on the overall system.

C. DESIGN OVERVIEW
We propose that MetaCIDS conducts online learning to train
the model continuously on newly collected network data in-
stead of relying on a specific available dataset. The model
architecture is illustrated in Fig. 3, which consists of a super-
vised classifier for multi-class detection and an unsupervised
autoencoder (AE) for zero-day attack detection.

The consortium blockchain in MetaCIDS is responsible for
managing both the training process and the detection task. It
uses practical Byzantine Fault Tolerance (pBFT) [27] consen-
sus algorithm, in which the blockchain operation is divided
into rounds, while a committee consisting of multiple con-
sensus nodes is newly elected in every round. The committee
regulates the blockchain operation by verifying all transac-
tions submitted to the blockchain, proposing a new block, and
reaching consensus on the block before adding it into the main
chain. We choose pBFT since this consensus algorithm can
tolerate up to 33% byzantine nodes in the committee thanks to
its majority-voting-based protocol, while it also achieves fast
finality, thus avoiding blockchain forking [27]. Specifically,
the framework includes the following entities.

Unsupervised Trainers: They are able to collect network
data and have computation resource to train the IDS model.
However, they do not possess cybersecurity expertise to label
the collected data. Thus, they can utilize available and unused
resource of their devices to train the unsupervised autoen-
coder.
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Supervised Trainers: They are experts or cybersecurity
companies that want to participate in MetaCIDS to secure the
metaverse, thereby earning metaverse tokens. They can label
network data and use it to train the supervised classifier.

Aggregators: They play the role of consensus nodes in the
blockchain committee, who take responsibility for aggregat-
ing local gradient updates into a global model. Aggregators
also verify intrusion alerts and all blockchain transactions to
generate a new block and append it into the blockchain.

Detectors: They are devices without strong capacity for
training the IDS model. Instead, they download the on-chain
model to analyze the monitored network traffic, thereby de-
tecting intrusion and submitting alerts to the blockchain.

CID Smart Contract: This smart contract receives intrusion
alerts from detectors, then verifies the alerts based on the
associated suspicious network flows. It also emits events to
inform participants about the verified attacks.

IPFS Storage: To mitigate the storage burden of
blockchain, all data related to the IDS model and local gra-
dient updates are stored on InterPlanetary File System (IPFS).
To download some specific data from IPFS, only a simple
URL is required.

For simplicity, we use the term “trainers” in this paper
for both supervised and unsupervised trainers if no specific
information is supplemented.

1) OVERVIEW OF FL TRAINING PROCESS
The training task in MetaCIDS is based on stochastic gradient
descent (SGD) updates, in which each training round corre-
sponds to a certain number of SGD epochs. In the first round,
trainers download the global IDS model from the IPFS URL
available on the blockchain. Next, they use their collected
network data to locally train the model, thereby obtaining the
SGD updates for that round. To prevent the inference attack,
trainers perturb their SGD updates by a DP noise [26] before
sending it to the blockchain committee for aggregation. The
aggregators in the committee use Multi-Krum [28], an aggre-
gation algorithm that can tolerate up to 33% poisoning attack,
to compute the global model based on the received updates.
Then, the committee executes pBFT to reach consensus on
the aggregated model and publishes a new block containing
the IPFS URL of that model. In the next round, trainers
download the new global model and repeat the training pro-
cess continuously on their newly monitored network data.
The aggregators are rewarded certain metaverse tokens for
each block appended onto the blockchain, while the trainers
would receive reputation scores for their contribution, which
help them increasing the possibility of being chosen to the
committee in the next rounds.

2) OVERVIEW OF CID MANAGEMENT
As the global model’s URL is transparent on the blockchain,
detectors can download it to detect intrusion over their local
network. Firstly, the detector uses the AE’s encoder module to
encode the network flow that they suspect to be malicious. The

encoded flow is then submitted to the blockchain as an alert
transaction, which triggers the CID smart contract’s function.
Consequently, the smart contract automatically verifies the va-
lidity of the submitted intrusion alert. If the alert is verified to
be honest, the CID smart contract emits an even informing all
nodes in registered metaverse networks about the intruder. The
detector is then rewarded certain metaverse tokens for their
contribution. Otherwise, the detector is slashed that number of
tokens due to their dishonest alert. Throughout this process,
data privacy is ensured since the suspicious network flow is
encoded by the AE’s encoder module before committing.

III. METACIDS: BLOCKCHAIN-EMPOWERED METAVERSE
CID WITH PRIVACY-PRESERVING FEDERATED LEARNING
Detailed design of MetaCIDS is presented in this section.
Our design combines semi-supervised FL with blockchain to
enable online model training for efficient privacy-preserving
intrusion detection.

A. SEMI-SUPERVISED IDS MODEL
MetaCIDS integrates an IDS model that consists of two
sub-models, an unsupervised AE and an attention-based su-
pervised classifier, which is illustrated in Fig. 3 with “FC
layer” stands for a fully-connected layer.

1) UNSUPERVISED AUTOENCODER
AE is an unsupervised neural network model that consists
of two main components, an encoder and a decoder. The
encoder takes a network flow as the input, then maps it into
a low-dimensional representation (i.e., the compressed code).
On the other hand, the decoder tries to reconstruct the original
network flow from the compressed code. The AE is trained
to minimize the difference between the original flow and the
reconstructed flow based on a loss function such as mean
squared error (MSE). In MetaCIDS, the AE model has the
following roles:

Zero-day Attack Detection: Since the AE is continuously
trained on massive volume of network data to minimize the
MSE loss, it is expected to reconstruct any regular network
flows with a negligible reconstruction error (RE). When the
AE fails to reconstruct a flow (i.e., the reconstructed flow has
an abnormally high error), it often indicates the presence of a
new attack pattern that is unseen in the training data. There-
fore, the AE model is used in MetaCIDS to detect zero-day
attacks which could not be recognized by the classifier.

Dimensionality Reduction: The collected network flows of-
ten consist of a huge number of features, while not all of them
contain useful information for intrusion detection. Therefore,
in MetaCIDS, the low-dimensional code produced by the en-
coder module is used as input for the classifier (presented in
Section III-A2) instead of using the original network flow.
This can help reducing computation, while improving the
classifier’s performance.

Privacy Preservation: It is often required to provide the
original network flow when committing an intrusion alert for
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verification. However, this leads to privacy concern as the net-
work data is exposed widely. In MetaCIDS, only the encoded
representation of the flow is required when submitting alerts.
As a result, data privacy is ensured since the network flow
has been hidden, while the decoder cannot reconstruct the
encoded attack flow with an acceptably low error.

To detect intrusion based on the AE model, MetaCIDS
computes the distance between the reconstructed flow and
the original flow (i.e., the reconstruction error). If the error
exceeds a statistic-based threshold presented in (8), its corre-
sponding network flow is determined to be malicious.

2) ATTENTION-BASED SUPERVISED CLASSIFIER
The presented unsupervised AE model can offer only binary
prediction instead of multi-class detection, while its perfor-
mance is often lower than other supervised models which
are trained on labeled data. Thus, MetaCIDS also provides
a supervised intrusion classifier based on the attention tech-
nique [5]. Specifically, the classifier consists of two different
modules:

Attention-Based Weighting Module: As mentioned above,
the classifier’s input is the encoded flow acquired from the
AE’s encoder. This means that the feature list has been per-
turbed uncontrollably, while it is also challenging to deploy
any feature engineering techniques in a distributed system
like MetaCIDS. Therefore, this weighting module allows the
classifier to flexibly pay attention to important features of
the encoded flow without requiring additional data processing
from the trainers. It assigns each feature a weight so that a
higher-weighted feature is considered more impactful.

Classification Module: This module is a light-weight neural
network with a SoftMax layer to produce multi-class intrusion
detection. Since important information has been extracted
thanks to the AE’s encoder and the weighting module, the
classification module does not have to be complex while still
achieves high performance. This helps reducing the commu-
nication overhead significantly.

B. BLOCKCHAIN-BASED ONLINE FEDERATED LEARNING
We propose to employ online FL to train our devised semi-
supervised model for intrusion detection where local trainers
collaborate with a set of aggregators to achieve an efficient
trained model. The training process is illustrated in Fig. 1,
while detailed design is given in the following.

1) PRIVACY-PRESERVING LOCAL TRAINING
The local training task is described in Algorithm 1, where N is
the total number of trainers registered to join the consortium
blockchain. Specifically, trainers firstly download the global
model (denoted by wglobal) from the latest block. The global
model wglobal consists of two sub-models, which are an AE
model wae and a classifier wcls. The sub-model wae includes
an encoder wencoder

ae and a decoder wdecoder
ae . Once entering

the training, trainers start collecting network data and train
the model locally on their collected dataset. If a trainer is

an unsupervised trainer (i.e., she cannot label the network
data), she only trains the wae on her unlabeled data, while the
classifier wcls remains unchanged. On the other hand, each
supervised trainer T sup

i only trains the classifier. To do so, she
encodes the data:

X code
i = f (Xi,w

encoder
ae ), (1)

where Xi is the network data of the supervised trainer T sup
i ,

wencoder
ae is the latest AE’s encoder, X code

i is the encoded low-
dimensional data, and f (·) is a feedforward function.

T sup
i uses the encoded data X code

i to train the classifier wcls.
As a result, each trainer Ti obtains a gradient update �wi for
the global model. The untrained part of �wi is set to all zeros.
For example, unsupervised trainers set the gradient update of
the classifier to all zeros as they do not train the classifier.

To prevent inference attack, each Ti also add a (ε, δ)-DP
noise [26] into their gradient update to perturb the update:

�wDP
i = �wi + ξi, (2)

where ξi is the DP noise and �wDP
i is the perturbed update.

This noise is sampled from a zero-mean Gaussian distribution,
thus minimizing the overall impact on the global model’s per-
formance when the number of trainers is large. The detailed
impact of DP noise can be found in [26].

Next, each trainer Ti uploads their gradient update to IPFS
to acquire an URL link, denoted by Ui. When the training pe-
riod ends, Ti sends the perturbed local update to the committee
for global aggregation via a blockchain transaction:

txtrain = {nonce,Ui, is_supervised, Sigsk (txtrain)}, (3)

where “nonce” is an incrementing counter that prevents dou-
ble submission, is_supervised is a binary value indicating the
trainer’s type (supervised or unsupervised), Ui is the IPFS link
of the local gradient update, and Sigsk (txtrain) is the digital
signature signed by the trainer’s secret key.

MetaCIDS requires trainers to submit the gradient updates
through IPFS to decline the communication and storage bur-
den since IPFS URLs are much smaller than the gradient
updates, especially when there are a huge number of trainers
involved.

2) DECENTRALIZED GLOBAL AGGREGATION
All transactions for gradient submission are collected into
a transaction pool. The committee conducts an additional
communication round to ensure that the transaction pools
of all aggregators are synchronized with each other before
entering the aggregation period. Algorithm 2 illustrates the
aggregation process, where M is the committee size (i.e., the
total number of aggregators, including the leader). Firstly, the
leader and aggregators download all gradient updates from
IPFS based on the provided URLs. Then, the leader executes
Multi-Krum [28] to aggregate these gradients into a single up-
date with poisoning tolerance. Specifically, each local update
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Algorithm 1: Local Training.
Input: Set of trainers T = {T1, T2, . . ., TN }, the

corresponding local datasets X = {X1, X2, . . ., XN }
Output: IPFS URLs of local updates

U = {U1,U2, . . .,UN }
1: for Ti ∈ T do
2: Download the global model wglobal from

blockchain;
3: if Xi is unlabeled then
4: Train the autoencoder wae ∈ wglobal on the

local dataset Xi to obtain the local gradient
update �wi;

5: else if Xi is labeled then
6: Encode the local dataset Xi by the AE’s

encoder module to obtain the compressed data:
X code

i = f (Xi,w
encoder
ae );

7: Train the classifier wcls ∈ wglobal on X code
i to

obtain the local gradient update �wi;
8: end if
9: Perturb �wi by a Gaussian DP noise:

�wDP
i = �wi + ξi;

10: Upload �wDP
i to IPFS, thus obtaining the URL

link Ui;
11: end for
12: return U = {U1,U2, . . .,UN }.

�wDP
i is assigned a score Si:

Si =
∑
i→k

||�wDP
i −�wDP

k ||2, (4)

where i→ k denotes the fact that �wDP
k belongs to the (N −

f − 2) gradient updates that are closest to �wDP
i , with f is

the number of poisoning trainers.
As a result, the leader acquires a scoring list according to N

gradient updates of N trainers: S = {S1, S2, . . ., SN }. A high
Multi-Krum score indicates that the gradient update is greatly
different from the rest of updates, implying the presence of
a poisoning attack. Therefore, f updates with highest scores
are filtered out, while the rest are aggregated into a single
update �wglobal. Next, the leader updates the global model
as follows:

wglobal = wglobal + η�wglobal, (5)

where η is a predefined learning rate.
Finally, the leader creates a new block B and adds the

aggregated model wglobal, the scoring list S , and all other
necessary information into the block. If the committee reaches
an agreement on the block B via the consensus mechanism
presented in Section III-E, it is guaranteed that the global
model wglobal has been aggregated correctly.

Algorithm 2: Global Aggregation.
Input: The leader Aleader, aggregator set

A = {A1, A2, . . ., AM−1}, IPFS URLs of local updates
U = {U1,U2, . . .,UN }, learning rate η

Output: The global aggregated model wglobal, a scoring
list of local updates S = {S1, S2, . . ., SN }

1: for Ui ∈ U do
2: Aleader downloads model �wDP

i from the IPFS
link Ui;

3: for A j ∈ A do
4: A j downloads model �wDP

i from the IPFS link
Ui;

5: end for
6: end for
7: Aleader executes Multi-Krum algorithm on all local

gradient updates to obtain the aggregated update
�wglobal and the scoring list: 〈�wglobal,S〉 ←
MultiKrum(�wDP

1 ,�wDP
2 , . . . ,�wDP

N )
8: Aleader updates the global model:

wglobal = wglobal + η�wglobal;
9: Aleader and all Ai ∈ A execute pBFT protocol to

reach consensus on the model wglobal and the
scoring list S;

10: return wglobal, S .

3) INCENTIVE FOR TRAINING IDS MODEL
To encourage metaverse users to contribute their resource
for training the model, the following rewards are offered to
trainers and aggregators:

Aggregation Reward: If the committee reaches consen-
sus on an aggregated model, the leader and all aggrega-
tors are rewarded certain metaverse tokens, which can be
used to purchase digital assets and virtual services in the
metaverse.

Unsupervised Training Reward: All unsupervised trainers
whose gradient update is selected for aggregation are re-
warded 1 reputation score, which helps them increasing the
probability of being elected to the committee in the next
rounds. Those who are filtered out by Multi-Krum algorithm
are slashed 1 reputation score due to their low-quality gradient
updates.

Supervised Training Reward: As labelling network data
is a sophisticated task that requires additional computation
and expertise, validated supervised trainers are rewarded
2 reputation scores, while the rejected ones are punished
1 score.

Reputation scores are also represented as blockchain to-
kens. However, unlike native metaverse tokens, reputation
tokens are not transferable among metaverse users. While
the main purpose of reputation is for committee election
(presented in Section III-D), it can also be considered as a
reference indicating whether a user is reliable in the virtual
world.

260 VOLUME 4, 2023



FIGURE 4. Collaborative intrusion detection management in MetaCIDS. In
this example, the camera in the local network 2 is being attacked. It uses
the IDS model retrieved from the blockchain to successfully detect the
attacking network flow, then submits an intrusion alert transaction into
the blockchain. The CID smart contract verifies the alert transaction, then
emits a global intrusion alert to all nearby local metaverse networks.

C. BLOCKCHAIN-EMPOWERED COLLABORATIVE
DETECTION
Traditional centralized IDS frameworks are often designed
to operate within a specific local network, therefore can-
not detect attacks that originate outside of that environment.
In contrast, MetaCIDS offers a scalable detection scheme
in which numerous users from multiple metaverse local
networks collaboratively detect and report intrusion over a
distributed and large-scale system (illustrated in Fig. 4). An
alert about an attacker from a local network may help other
nearby networks to proactively protect themselves from the
reported intruder. Moreover, compounded alerts from multiple
sources can efficiently increase the detection rate.

1) LOCAL INTRUSION DETECTION
Detectors in MetaCIDS continuously collect local network
flows in every round, then execute Algorithm 3 to detect in-
trusion among these flows. In particular, detectors must down-
load the IDS model from the latest block of the blockchain.
For each collected network flow Fi, a detector firstly encodes
the flow by the AE’s encoder (i.e., wencoder

ae ) to obtain the
low-dimensional code F code

i , then input F code
i to the classifier

for multi-class detection:

Labeli = f (F code
i ,wcls), (6)

where f (·) is a feedforward function, wcls is the classifier’s
parameters, Labeli is the network flow’s predicted label, and
F code

i denotes the encoded flow.
If Labeli specifies an attack (e.g., DoS, DDoS, botnet), the

detector appends the corresponding flow into a suspicious list
for later submission. On the other hand, a negative label (i.e.,
“benign”) may indicate that there is no attack associated with

Algorithm 3: Local Intrusion Detection.
Input: Set of collected network flows
F = {F1, F2, . . ., Fn}, a RE threshold for
autoencoder-based detection Terror

Output: List of suspicious network flows F s

1: Download the global IDS model wglobal from
blockchain;

2: for Fi ∈ F do
3: Use the AE’s encoder module wencoder

ae to encode
the network flow: F code

i = f (Fi,w
encoder
ae );

4: Use the classifier wcls ∈ wglobal to classify the
network flow: Labeli = f (F code

i ,wcls);
5: if Labeli �= “Benign” then
6: Adds the network flow Fi into the suspicious

list F s;
7: else
8: Use the AE’s decoder module wdecoder

ae to
reconstruct the network flow:
F reconstr

i = f (F code
i ,wdecoder

ae )
9: Compute the L2 distance between the original

flow and the reconstructed flow:
REi = L2_Distance(Fi, F reconstr

i )
10: if REi > Terror then
11: Adds the network flow Fi into the suspicious

list F s;
12: end if
13: end if
14: end for
15: return F s.

that network flow, or this is a zero-day attack that is unseen in
the supervised training data. Therefore, in this case, the detec-
tor continues to input F code

i into the AE’s decoder wdecoder
ae to

reconstruct the network flow, thereby obtaining F reconstr
i . The

reconstruction error is then calculated as follows:

REi = L2_Distance(Fi, F reconstr
i ), (7)

where L2_Distance(·) is to compute the L2 distance between
two vectors, and F reconstr

i represents a reconstructed flow.
If REi exceeds a predefined threshold, the network flow Fi

is considered malicious and appended into the suspicious list.
While the threshold can be estimated based on experiments,
MetaCIDS uses the following statistical threshold:

Terror = RE+ α ·
√∑n

i=1(REi − RE)2

n− 1
, (8)

where RE is the mean of reconstruction errors of all collected
network flows, n is the number of collected network flows,
and α is a parameter controlling the impact of RE’s standard
deviation on the overall threshold. A larger α results in a
higher threshold, thus reducing false positive alarms, but it
may increase the number of false negative predictions.
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2) ALERT SUBMISSION AND VERIFICATION
If the suspicious list of a detector is not empty, the detector
can submit intrusion alerts to the CID smart contract via an
alert transaction:

txalert = {amount = �, addrsrc, F code, Sigsk (txalert )}, (9)

where addrsrc is the IP address and port number of the sus-
picious attacker, F code is the encoded representation of the
suspicious network flow, and � is certain number of meta-
verse tokens deposited to the smart contract, which will be
slashed if the alert is verified to be dishonest.

Once receiving the intrusion alert, the CID smart contract
automatically inputs F code to the CID model to verify the
alert. If both the AE and the classifier output a negative re-
sult (or a “benign” label), the detector’s stake of � tokens is
slashed due to her fake alert. Otherwise, the alert is accepted
and the CID smart contract will emit an intrusion event to the
participants of all nearby local metaverse networks.

3) INCENTIVE FOR INTRUSION DETECTION
If an intrusion alert is accepted by the CID smart contract,
the detector who submitted the alert will receive a detection
reward, which results in � metaverse tokens. Besides, the
smart contract also sends back the deposited tokens to the
detector.

D. REPUTATION-BASED COMMITTEE ELECTION
MetaCIDS randomly elects committee members for the next
round based on a reputation-based election mechanism pre-
sented in Algorithm 4. Specifically, the current leader uses
verifiable random function (VRF) [29] to generate a random
number φ0 and a proof π . The proof can be used to verify
whether φ0 was truly randomized. The seed of VRF is the
hash of the previous block so that the random process can-
not be manipulated. The leader hashes this random number
M − 1 times to finally obtain a set of M random numbers
� = {φ0, φ1, . . ., φM−1}. Each random number φi ∈ � is then
used to elect one aggregator from the current trainers for the
committee in the next round. In particular, the current leader
uses φi to compute a random index as follows:

idxelect = k · φi

2||φi|| − 1
, (10)

where k is the total number of available reputation tokens of
all trainers, and ||φi|| is the bit-length of φi (e.g., 256 bits).

Consequently, the trainer who owns the reputation token
at index idxelect is elected to the next-round committee. Intu-
itively, the more reputation tokens a trainer owns, the higher
probability that one of her reputation tokens is selected, mak-
ing her being an aggregator in the next round. When all M
aggregators have been chosen, the one with highest reputation
among them is elected as the next-round leader. If more than
one aggregators have the same highest score, the one with
lowest φi is chosen to be the leader.

FIGURE 5. Structure of a block in MetaCIDS blockchain.

Algorithm 4: Committee Election.
Input: Set of all existing reputation tokens {r1, . . ., rk},

set of trainers T = {T1, T2, . . ., TN }, committee size
M, previous block Bt−1

Output: Next round aggregator set At+1, next round
leader At+1

leader, proof of randomness π

1: Generate a seed for VRF: vrf_seed← hash(Bt−1);
2: Generate a VRF-based random number φ0 and the

corresponding proof π :
〈φ0, π〉 ← VRF(vrf_seed, secret_key);

3: Generate M − 1 more random numbers by hashing
M − 1 times the random number φ0. Consequently,
the current leader obtains a total of M random
numbers: � = {φ0, . . ., φM−1};

4: for φi ∈ � do
5: Use φi to select a random index:

idxelect = k · φi
2||φi ||−1

;
6: Elect the aggregator who currently owns the

reputation token at index “idxelect” into the next
round committee At+1;

7: end for
8: Elect the highest-reputation aggregator in At+1 to be

At+1
leader;

9: return At+1, At+1
leader, π .

E. BLOCK PROPOSAL AND CONSENSUS MECHANISM
Once entering the consensus process, the leader encapsulates
all necessary information into a new block, which is illustrated
in Fig. 5. In the block’s metadata, the next committee field
specifies who are elected to be aggregators/leader in the next
round, while the VRF seed and proof are provided to allow
every participant to verify the randomness of the commit-
tee election process. The metadata also includes the global
model’s URL, a list of Multi-Krum-based gradient scores, and
all accepted intrusion alerts. On the other hand, the block’s
body consists of submitted blockchain transactions.

Finally, the committee executes pBFT consensus mecha-
nism to reach agreement on the new block with three phases:
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Preprepare: The leader broadcasts the new block to all ag-
gregators in the committee via a signed preprepare message.

Prepare: Aggregators re-compute all information included
in the block (e.g., Multi-Krum aggregation, committee elec-
tion, and transaction validation). If the re-computed informa-
tion is all matched with the block attached in the received
preprepare message, aggregators broadcast a prepare message
within the committee to confirm the block’s validity.

Commit: When the leader and aggregators receive at least
50% of prepare messages, they continue to broadcast a commit
message to confirm that the majority of committee members
have reached an agreement. Finally, the committee reaches
consensus when receiving the majority of commit messages.

Once the final consensus is reached, the new block is ap-
pended into the blockchain. All metaverse users in MetaCIDS
download the new block and continue their training/detection
tasks in the next round.

F. SECURITY ANALYSIS
With the presented architecture, it can be shown that
MetaCIDS is resistant to all threats formulated in Section II-B.

1) SECURITY IN MODEL TRAINING
Data privacy is completely ensured in MetaCIDS’s training
process since the trainers only submit the gradient updates
without disclosing their data, while inference attack is miti-
gated by the DP noise. Furthermore, the aggregation process
is decentralized thanks to blockchain consensus, making it
robust to SPoF and manipulation. Multi-Krum is used to
offer poisoning resistance for model aggregation, while the
integrity of model is ensured as the global model is stored
on-chain with blockchain-enabled transparency, immutability,
and auditability. MetaCIDS is also robust to zero-day attack
thanks to the unsupervised AE model that utilizes the abun-
dant source of unlabeled network data.

2) SECURITY IN CID MANAGEMENT
Fake alerts in MetaCIDS are filtered out automatically by
the CID smart contract in a decentralized manner, thereby
mitigating SPoF in detection. On the other hand, malicious
detectors will be eliminated from the system via the incen-
tive/punishment mechanism, while sybil identities would gain
no impact thanks to the employed reputation system. All
detection results are stored on the blockchain to ensure trans-
parency and tamper-proof. Besides, privacy leakage in alert
submission is totally solved in MetaCIDS since the detectors
do not have to reveal the original network flows when submit-
ting the alerts.

IV. PERFORMANCE EVALUATION
A. EXPERIMENTAL SETUP
MetaCIDS utilizes a consortium blockchain framework
based on Hyperledger Fabric, a well-established open-source
blockchain development platform [32]. The blockchain net-
work comprises 100 nodes, of which 20 are designated as

aggregators (i.e., consensus nodes) in each round based on
their simulated reputation profiles. The remaining nodes con-
sist of 60 unsupervised trainers, 10 supervised trainers, and
10 detectors. Each node runs a Docker container to partici-
pate in the network and carry out various tasks, such as FL
training, Multi-Krum-based model aggregation, and intrusion
detection.

The experiments and simulations were conducted on an
Intel Core i9-13900 K CPU (3.2 GHz) with 64 GB of
RAM. Hyperledger Caliper, a blockchain benchmarking tool
that generates transaction workloads and monitors blockchain
performance, was used to evaluate the blockchain’s perfor-
mance. To assess the IDS model and FL training process,
four network intrusion datasets were employed, including
CSE-CIC-IDS2018 [33], CIC-IDS2017 [33], NSL-KDD [34],
and UNSW-NB15 [35]. Each dataset contains a substantial
number of network flows, with each flow comprising 70 to
80 network traffic features.

B. MULTI-CLASS DETECTION PERFORMANCE
To account for the unbalanced nature of IDS datasets, we
evaluated the multi-class detection performance of MetaCIDS
based on precision and recall in addition to accuracy.
Table 2 presents a comparison of MetaCIDS’s classifier model
to other supervised models such as SVM, MLP, KNN, Naive
Bayes, LightGBM [30], and Tabnet [31]. Despite being signif-
icantly lightweight, our classifier outperforms these models on
all four IDS datasets. Specifically, it achieves accuracy, pre-
cision, and recall figures of nearly 99% for the UNSW-NB15
dataset and around 95–97% for the two CIC-IDS datasets. The
performance on the NSL-KDD dataset is lower at 82.25% ac-
curacy since the benign flows in this dataset have already been
downsampled by the publisher to mitigate data unbalance.

Overall, the MetaCIDS’s classifier achieves the highest per-
formance in most cases. This improvement is attributed to the
AE’s encoder for dimensional compression and the attention-
based weighting module for feature importance.

C. ZERO-DAY DETECTION PERFORMANCE
This experiment evaluates the MetaCIDS’s unsupervised AE
model in terms of zero-day attack detection. Specifically, we
train the AE model on unlabeled data derived from the four
mentioned datasets. For each dataset, we reserve the data of
two different attack types, while training the model on the
remaining data. Consequently, the data of the two reserved
attacks are considered zero-day attacks as they are unseen
during the training process. Then, the unsupervised model is
used to reconstruct both regular network flows and zero-day
attack flows. To determine the RE threshold for distinguish-
ing between regular and zero-day attack flows, we used the
formula presented in (8).

As depicted in Fig. 6, MetaCIDS’s unsupervised model can
efficiently detect zero-day attacks with a superior detection
rate in most cases. In particular, the model achieved a 100%
detection rate for DoS GoldenEye and SSH Bruteforce attacks
on the CSE-CIC-IDS2018 dataset, where the reconstruction
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TABLE 2. Multi-Class Detection Performance of MetaCIDS Compared to Other Classification Models on Different IDS Datasets

FIGURE 6. Zero-day attack detection on four different datasets. Network flows with reconstruction error greater than the threshold are considered
malicious.

errors of zero-day attack flows were clearly distinguishable
from the regular flows. However, in certain cases such as
DDoS and DoS Hulk attacks on the CIC-IDS2017 dataset, the
false positive rate was still significant, ranging from 8-12%.

D. BLOCKCHAIN PERFORMANCE
When the committee size increases, it takes more time for the
committee to reach consensus due to additional communica-
tion. According to Fig. 7(a), with a transaction arrival rate of
600 TPS, the blockchain’s throughput decreases from nearly
600 transactions per second (TPS) to just 100 TPS when
the committee size increases from 2 to 50, while the latency
increase from 4 seconds to 6 seconds. MetaCIDS selects a
committee size of about 20–30 aggregators for a balanced
trade-off between performance and decentralization.

Fig. 7(b) illustrates the blockchain’s performance when the
transaction arrival rate varies from a low workload of less
than 100 TPS to a high or even extreme workload of more
than 1,000 TPS. The general trend shows that the transaction
processing rate decrease while the transaction average latency

FIGURE 7. Performance corresponding to committee sizes and workloads.

climbs up for higher workload. This trend becomes more
significant when there are more than 800 transactions sub-
mitted every second. Besides, another experiment is carried
out to investigate the impact of block size to the blockchain’s
processing performance. In theory, a larger block can store
more transactions submitted by metaverse users. According to
Fig. 8, when the workload is low, there is almost no significant
difference in blockchain performance for different block sizes.
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FIGURE 8. Blockchain performance corresponding to different block sizes.

However, when the workload increases to more than 800 TPS,
the blockchain with 1 MB block size reaches its limitation and
becomes less efficient than the others.

E. FL CONVERGENCE AGAINST POISONING ATTACKS
This experiment investigates the convergence of the FL
training process in MetaCIDS under different poisoning con-
ditions. The training process is monitored over 50 blockchain
rounds, while each round corresponds to 16 SGD epochs. In
each round, trainers collect a new batch of local data which is
derived from the CIC-IDS2017 dataset. In terms of poisoning
attacks, 33% of trainers are designated as poisoners, while the
poisoning types include the following strategies:

Back Gradient: The poisoners reverse the direction of the
updates before submitting them to the committee.

Gradient Scaling: The poisoners randomly scale up/down
the gradient updates by a random value ∈ (0, μ]. In this ex-
periment, μ is set to 3.

Random Gradient: Instead of training the IDS model, the
poisoners just randomly generate the gradient updates by cer-
tain values ∈ [α, β]. We select α = −β = −0.5.

Label Reversal: The poisoners distort the label of every
network flow before training the IDS model on it.

As depicted in Fig. 9, MetaCIDS can effectively converge
within rounds 10 to 15 for all tested poisoning attack strate-
gies. In contrast, the FL baseline that utilizes FedAvg [4] for
aggregation fails to reach the same level of loss achieved by
MetaCIDS under the same poisoning conditions.

V. CONCLUSION
In this paper, we propose MetaCIDS, a novel CIDS frame-
work for the metaverse based on blockchain and online FL
using an attention mechanism and semi-supervised learning
with privacy preservation. Metaverse users can take part in
the system to collaboratively train a ML model for intru-
sion detection, then use such the model to detect attackers
over the global network, thereby earning metaverse tokens
and reputation scores. The detection model in MetaCIDS is
efficient for both multi-class and zero-day attack detection
with 95–99% accuracy and detection rate in most test cases,

FIGURE 9. Convergence of MetaCIDS compared to a FL baseline on the
CIC-IDS2017 dataset against different poisoning attacks, with 33% of
poisoners.

which outperforms various ML models such as LightGBM
and Tabnet. Security analysis shows that MetaCIDS’s train-
ing process is robust against data leakage, model tampering,
SPoF, poisoning, and inference attack, while the collaborative
detection task is highly scalable and resistant to fake alerts and
other trust-related issues. However, in practice, the attacks to
different types of devices might be different, which potentially
leads to a lower detection accuracy of the model. Therefore,
our future work will investigate this impact to improve the
performance of the IDS model accordingly.

REFERENCES
[1] V. T. Truong, L. Le, and D. Niyato, “Blockchain meets metaverse

and digital asset management: A comprehensive survey,” IEEE Access,
vol. 11, pp. 26258–26288, 2023.

[2] I. Butun, S. D. Morgera, and R. Sankar, “A survey of intrusion detec-
tion systems in wireless sensor networks,” IEEE Commun. Surv. Tuts.,
vol. 16, no. 1, pp. 266–282, First Quarter 2014.

[3] P. Mishra, V. Varadharajan, U. Tupakula, and E. S. Pilli, “A de-
tailed investigation and analysis of using machine learning techniques
for intrusion detection,” IEEE Commun. Surv. Tut., vol. 21, no. 1,
pp. 686–728, Firstquarter 2019.

[4] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. Y. Arcas,
“Communication-efficient learning of deep networks from decentral-
ized data,” in Proc. Artif. Intell. Statist., 2017, pp. 1273–1282.

[5] A. Vaswani et al., “Attention is all you need,” in Proc. Int. Conf. Adv.
Neural Inf. Process. Syst., 2017, pp. 5998–6008.

[6] W. Meng, E. W. Tischhauser, Q. Wang, Y. Wang, and J. Han, “When
intrusion detection meets blockchain technology: A review,” IEEE Ac-
cess, vol. 6, pp. 10179–10188, 2018.

[7] M. Alazab, S. P. RM, P. M, P. K. R. Maddikunta, T. R. Gadekallu,
and Q.-V. Pham, “Federated learning for cybersecurity: Concepts, chal-
lenges, and future directions,” IEEE Trans. Ind. Informat., vol. 18, no. 5,
pp. 3501–3509, May 2022.

[8] S. A. Rahman, H. Tout, C. Talhi, and A. Mourad, “Internet of Things in-
trusion detection: Centralized, on-device, or federated learning?,” IEEE
Netw., vol. 34, no. 6, pp. 310–317, Nov./Dec. 2020.

[9] S. Ding, L. Kou, and T. Wu, “A GAN-based intrusion detection model
for 5G enabled future metaverse,” Mobile Netw. Appl., vol. 27, no. 6,
pp. 2596–2610, Jan. 2023.

VOLUME 4, 2023 265



TRUONG AND LE: METACIDS: PRIVACY-PRESERVING CID FOR METAVERSE BASED ON BLOCKCHAIN AND ONLINE FEDERATED LEARNING

[10] S.-Y. Kuo, F.-H. Tseng, and Y.-H. Chou, “Metaverse intrusion detection
of wormhole attacks based on a novel statistical mechanism,” Future
Gener. Comput. Syst., vol. 143, pp. 179–190, Jun. 2023.

[11] V. T. Truong, V. T. Nguyen, and L. Le, “MetaCIDS: A metaverse col-
laborative intrusion detection system based on blockchain and federated
learning,” TechRxiv, May 2023, doi: 10.36227/techrxiv.22816568.v1.

[12] A. Heidari, N. J. Navimipour, and M. Unal, “A secure intrusion de-
tection platform using blockchain and radial basis function neural
networks for Internet of Drones,” IEEE Internet Things J., vol. 10,
no. 10, pp. 8445–8454, May 2023.

[13] O. Alkadi, N. Moustafa, B. Turnbull, and K.-K. R. Choo, “A deep
blockchain framework-enabled collaborative intrusion detection for
protecting IoT and cloud networks,” IEEE Internet Things J., vol. 8,
no. 12, pp. 9463–9472, Jun. 2021.

[14] B. Hu, C. Zhou, Y.-C. Tian, Y. Qin, and X. Junping, “A collabora-
tive intrusion detection approach using blockchain for multimicrogrid
systems,” IEEE Trans. Syst., Man, Cybern., Syst., vol. 49, no. 8,
pp. 1720–1730, Aug. 2019.

[15] N. Alexopoulos, E. Vasilomanolakis, N. R. Ivánkó, and M. Mühlhäuser,
“Towards blockchain-based collaborative intrusion detection systems,”
in Proc. Int. Conf. Crit. Inf. Infrastructures Secur., 2018, pp. 107–118.

[16] Y. Liu et al., “Deep anomaly detection for time-series data in in-
dustrial IoT: A communication-efficient on-device federated learning
approach,” IEEE Internet Things J., vol. 8, no. 8, pp. 6348–6358,
Apr. 2021.

[17] B. Li, Y. Wu, J. Song, R. Lu, T. Li, and L. Zhao, “DeepFed: Feder-
ated deep learning for intrusion detection in industrial cyber–physical
systems,” IEEE Trans. Ind. Informat., vol. 17, no. 8, pp. 5615–5624,
Aug. 2021.

[18] S. I. Popoola, R. Ande, B. Adebisi, G. Gui, M. Hammoudeh, and
O. Jogunola, “Federated deep learning for zero-day botnet attack de-
tection in IoT-edge devices,” IEEE Internet Things J., vol. 9, no. 5,
pp. 3930–3944, Mar. 2022.

[19] O. Aouedi, K. Piamrat, G. Muller, and K. Singh, “Federated semisu-
pervised learning for attack detection in industrial Internet of Things,”
IEEE Trans. Ind. Informat., vol. 19, no. 1, pp. 286–295, Jan. 2023.

[20] V. Mothukuri, P. Khare, R. M. Parizi, S. Pouriyeh, A. Dehghantanha,
and G. Srivastava, “Federated-learning-based anomaly detection for IoT
security attacks,” IEEE Internet Things J., vol. 9, no. 4, pp. 2545–2554,
Feb. 2022.

[21] P. Ruzafa-Alcázar et al., “Intrusion detection based on privacy-
preserving federated learning for the industrial IoT,” IEEE Trans. Ind.
Informat., vol. 19, no. 2, pp. 1145–1154, Feb. 2023.

[22] R. Zhao, Y. Wang, Z. Xue, T. Ohtsuki, B. Adebisi, and G. Gui,
“Semi-supervised federated learning based intrusion detection method
for Internet of Things,” IEEE Internet Things J., vol. 10, no. 10,
pp. 8645–8657, May 2023.

[23] H. Liu et al., “Blockchain and federated learning for collaborative intru-
sion detection in vehicular edge computing,” IEEE Trans. Veh. Technol.,
vol. 70, no. 6, pp. 6073–6084, Jun. 2021.

[24] X. He, Q. Chen, L. Tang, W. Wang, and T. Liu, “CGAN-based collabo-
rative intrusion detection for UAV networks: A blockchain-empowered
distributed federated learning approach,” IEEE Internet Things J.,
vol. 10, no. 1, pp. 120–132, Jan. 2023.

[25] M. Abdel-Basset, N. Moustafa, H. Hawash, I. Razzak, K. M. Sallam,
and O. M. Elkomy, “Federated intrusion detection in blockchain-based
smart transportation systems,” IEEE Trans. Intell. Transp. Syst., vol. 23,
no. 3, pp. 2523–2537, Mar. 2022.

[26] M. Abadi et al., “Deep learning with differential privacy,” in Proc. Conf.
Comput. Commun. Secur., 2016, pp. 308–318.

[27] M. Castro and B. Liskov, “Practical byzantine fault tolerance and proac-
tive recovery,” ACM Trans. Comput. Syst., vol. 20, no. 4, pp. 398–461,
Nov. 2002.

[28] P. Blanchard, E. M. El Mhamdi, R. Guerraoui, and J. Stainer, “Machine
learning with adversaries: Byzantine tolerant gradient descent,” in Proc.
31st Int. Conf. Neural Inf. Process. Syst., 2017, pp. 118–128.

[29] S. Micali, M. Rabin, and S. Vadhan, “Verifiable random functions,” in
Proc. IEEE 40th Annu. Symp. Found. Comput. Sci., 1999, pp. 120–130.

[30] G. Ke et al., “LightGBM: A highly efficient gradient boosting deci-
sion tree,” in Proc. 31st Int. Conf. Neural Inf. Process. Syst., 2017,
pp. 3149–3157.

[31] S. Ö. Arik and T. Pfister, “TABNet: Attentive interpretable tabular
learning,” in Proc. AAAI Conf. Artif. Intell., 2021, pp. 6679–6687.

[32] E. Androulaki et al., “Hyperledger fabric: A distributed operating sys-
tem for permissioned blockchains,” in Proc. ACM EuroSys Conf., 2018,
pp. 1–15.

[33] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, “Toward generating
a new intrusion detection dataset and intrusion traffic characterization,”
in Proc. 4th Int. Conf. Inf. Syst. Secur. Privacy, 2018, pp. 108–116.

[34] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, “A detailed
analysis of the KDD cup 99 data set,” in Proc. IEEE Symp. Comput.
Intell. Secur. Defense Appl., 2009, pp. 1–6.

[35] N. Moustafa and J. Slay, “UNSW-NB15: A comprehensive data set for
network intrusion detection systems (network data set),” in Proc. Mil.
Commun. Inf. Syst. Conf., 2015, pp. 1–6.

VU TUAN TRUONG received the B.Eng. de-
gree in electrical and computer engineering from
the Hanoi University of Technology and Tech-
nology, Hanoi, Vietnam, in 2021. He is currently
a Graduate Student with the Institut National de
la Recherche Scientifique, University of Quebec,
Montreal, QC, Canada. His research interests in-
clude cybersecurity, blockchain, machine learning,
and enabling technologies for the metaverse.

LONG BAO LE received the B.Eng. degree in
electrical engineering from the Ho Chi Minh City
University of Technology, Ho Chi Minh City,
Vietnam, in 1999, the M.Eng. degree in telecom-
munications from the Asian Institute of Technol-
ogy, Bangkok, Thailand, in 2002, and the Ph.D.
degree in electrical engineering from the Uni-
versity of Manitoba, Winnipeg, MB, Canada, in
2007. He was a Postdoctoral Researcher with the
Massachusetts Institute of Technology, Cambridge,
MA, USA, from 2008 to 2010 and University of

Waterloo, Waterloo, ON, Canada, from 2007 to 2008. Since 2010, he has
been with the Institut National de la Recherche Scientifique, University of
Quebec, Montreal, QC, Canada, where he is currently a Full Professor. He
is the co-author of books Radio Resource Management in Multi-Tier Cel-
lular Wireless Networks (Wiley, 2013) and Radio Resource Management in
Wireless Networks: An Engineering Approach (Cambridge University Press,
2017). His research interests include smartgrids, radio resource management,
network control and optimization, and emerging enabling technologies for
5G-and-beyond wireless systems and the metaverse. Dr. Le was a Member of
the editorial board of IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS

and IEEE COMMUNICATIONS SURVEYS AND TUTORIALS. He is the Editor of
IEEE TRANSACTIONS ON COMMUNICATIONS and IEEE TRANSACTIONS ON

COGNITIVE COMMUNICATIONS AND NETWORKING.

266 VOLUME 4, 2023

https://dx.doi.org/10.36227/techrxiv.22816568.v1


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


