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ABSTRACT Twitter is a web application playing the dual role of online social networking and micro-
blogging. The popularity and open structure of Twitter have attracted a large number of automated programs,
known as bots. In this article, we propose a Twitter bot detection model using recurrent neural networks,
specifically bidirectional lightweight gated recurrent unit (BiLGRU), and linguistic embeddings. To the best
of our knowledge, our Twitter bot detection model is the first that does not require any handcrafted features,
or prior knowledge or assumptions about account profiles, friendship networks or historical behavior. The
proposed model uses only textual content of tweets and linguistic embeddings to classify bot and human
accounts on Twitter. Experimental results show that the proposed model performs better or comparably to
state-of-the-art Twitter bot detection models while requiring no feature engineering, making it faster and
easier to train and deploy in a real network. We also present experimental results that show the performance
and computational costs of different types of linguistic embeddings and recurrence network variants for
the task of Twitter bot detection. The results will potentially help researchers design high-performance
deep-learning models for similar tasks.

INDEX TERMS Bot detection, linguistic embeddings, machine learning, neural networks, online social
networks, Twitter bots.

I. INTRODUCTION
Twitter is a popular online social networking and micro-
blogging tool. As a social network, Twitter’s defining charac-
teristic is its simplicity: its community interacts via publishing
text-based posts, known as tweets. Twitter has its own spe-
cial memes, i.e., hashtag (#), mention (@), shortened URL
(http://t.co) and retweet (RT). Hashtags, namely words or
phrases prefixed with a # symbol, allow tweets to be grouped
by topics. For example, #usopen2019 and #SheTheNorth are
two trending hashtags on Twitter in September 2019. The
symbol @ followed by a user name in a tweet enables the
direct delivery of the tweet to that user. Links shared on
Twitter, including links shared in private direct messages, will
automatically be processed and shortened to an http://t.co link.
A retweet is a re-posting of a tweet. Sometimes people type
“RT” at the beginning of a Tweet to indicate that they are
re-posting someone else’s content.

The growing user population and open nature of Twitter
have made itself an ideal target of exploitation by automated

programs, known as bots. Automation is a double-edged
sword for Twitter. On the one hand, legitimate bots generate
a large volume of informative tweets, like news and blog
updates. On the other hand, malicious bots spread spam or
malicious content.

The Twitter bot problem has received substantial attention
from researchers. Existing Twitter bot detection models gen-
erally rely on features obtained from user information such
as profile [1], [2], [3], [4], timestamps [1], [2], [4], friend-
ship [1], [4], behavior [5], [6], and network connection [2],
[7], [8]. However, feature engineering is very time-consuming
and labor-intensive.

In this article, we propose a recurrent neural network
(RNN) model using BiLGRU and linguistic embeddings to
distinguish Twitter bots from human accounts. We name the
proposed model BOTLE (BOT detection using Linguistic Em-
beddings). We define the problem of Twitter bot detection
as a text classification problem with a binary output: bot or
non-bot. We use only the textual content of tweets as the
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input to our RNN model. To the best of our knowledge, our
Twitter bot detection model is the first that does not require
any handcrafted features; or prior knowledge or assumptions
about account profiles, friendship networks or historical be-
havior.

Following are our contributions:
� We propose an RNN model to distinguish Twitter bots

from human accounts. BiLGRU connects two hidden
layers of opposite directions to the same output. With
this form of generative deep learning, the output layer
can get information from past (backward) and future
(forward) states simultaneously. This method can effec-
tively capture textual features across tweets and achieve
competitive classification performance compared to ex-
isting state-of-the-art Twitter bot detection models.

� We use several types of linguistic embeddings to en-
code tweets, namely, word embeddings, character em-
beddings, part-of-speech embeddings, and named-entity
embeddings. We avoid using handcrafted features, which
require time-consuming and labor-intensive feature en-
gineering. This advantage allows for faster and easier
implementation and deployment of the bot detection
scheme.

� We conducted experiments on real-world datasets. Ex-
periments on the cresci-2017 dataset show that BOTLE
performs better or comparably to state-of-the-art Twitter
bot detection models [1], [2], [3], [5], [6], although our
model does not require prior knowledge or assumptions
about users’ profiles, friendship networks, or historical
behavior of the target accounts.

� We validate the effectiveness of various linguistic em-
beddings and recurrent variants for the task of Twitter bot
detection. The results will potentially help researchers
design high-performance deep-learning models for sim-
ilar tasks.

� In addition to the classification performance, we also
provide the running time (for training and inference) and
memory usage of the proposed model, which show the
model is feasible to deploy in real life.

The remainder of the article is organized as follows. We
discuss related work in Section II. The proposed model is de-
scribed in Section III. In Section IV, we present experimental
results, comparing the performance of our proposed model
with that of existing state-of-the-art systems. Sections V
and VI validate the effectiveness of a variety of linguistic em-
beddings and recurrent variants, respectively, on the proposed
neural model for Twitter bot detection. Section VII concludes
the article and outlines our future work.

II. RELATED WORK
We discuss existing techniques of Twitter bot detection and
datasets available for this task.

A. TWITTER BOT DETECTION METHODS
Existing methods of Twitter bot detection can be divided into
two main approaches: supervised learning and unsupervised
learning.

1) SUPERVISED LEARNING
Lee et al. [9] implemented 30 classification algorithms and
tested their performance. Tree-based supervised classifiers
showed the highest accuracy results. In particular, random
forest produced the highest accuracy. In order to improve
the random forest classifier, standard boosting and bagging
techniques have been applied additionally. The authors trained
the content polluter classifier based on different feature com-
binations.

The system by Yang et al. [2] provides a supervised ma-
chine learning classifier that infers whether a Twitter account
is a human account or a bot by relying on relationships
among accounts, tweet timestamps and level of automation.
In addition, they designed ten new behavior-based features.
According to their evaluation, the detection rate using their
new feature set is significantly higher than that of existing
work.

Alsaleh et al. [10] presented a system that utilizes feedfor-
ward neural networks (FFNN) to dynamically detect Twitter
bot accounts. The classification results show satisfying de-
tection rates. But it still requires complicated handcrafted
features.

Davis et al. [1] grouped features into six main classes: net-
work, user, friends, temporal features, content and sentiment,
and employed random forest.

Varol et al. [4] proposed a supervised machine learning sys-
tem that extracts more than a thousand features in six different
classes: users, friends meta-data, tweet content, sentiment,
network patterns and activity time series.

Guo et al. [11] introduced, BGSRD, a model that symmet-
rically combines BERT [12] and graph convolutional network
for Twitter bot detection. The model constructs a heteroge-
neous graph over the dataset and represents Twitter as nodes
using BERT representations.

More recently, Feng et al. [7] introduced a bot detec-
tion framework that leveraged the topological structure of
user-formed heterogeneous graphs. To evade detection, new
emerging Twitter bots steal genuine users’ tweets and dilute
malicious content with benign tweets. Lei et al. [8] proposed
a model that makes the text and graph modalities inter-
active and detects tweet semantic inconsistency. Periasamy
et al. [13] introduced a transformer-based model for Twitter
bot detection. Mohanty et al. [14] applied three boosting-
based ensemble learning methods (i.e., adaptive boost, gra-
dient boosting, extreme gradient boosting) to detect Twitter
bots. Tan et al. [15] presented, BotPercent, a multi-dataset
multi-model community-oriented bot detection pipeline to
overcome generalization issues in existing individual-level
models. BotPercent consists of two parts: training data and
model architecture. Yang et al. [16] introduced, FedACK,
a federated adversarial contrastive knowledge distillation
framework for Twitter bot detection. The authors devise a
GAN-based federated knowledge distillation mechanism for
efficiently transferring knowledge of data distribution among
clients. Chawla et al. [17] presented a hybrid technique utiliz-
ing digital DNA as a base approach and augmenting it with
the state-of-the-art BERT model pre-trained on the sentiment
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classification task. Wu et al. [18] introduced, BotTriNet, a uni-
fied embedding framework that utilizes textual content posted
by accounts for Twitter bot detection. The authors designed
a triplet network to tune the raw embeddings, which are pro-
duced by traditional natural language processing techniques,
for improving classification performance. Di et al. [19] intro-
duced an algorithm to transform sequences of digital DNA
into images and applied pre-trained convolutional neural net-
works (CNNs) models over the generated images for Twitter
bot detection. DNA sequences are extracted from Twitter ac-
count profiles.

2) UNSUPERVISED LEARNING
The method by Miller et al. [3] considers vectors made of 126
features, extracted from both accounts and tweets, as input to
modified versions of the DenStream [20] and StreamKM++
[21] clustering algorithms, to cluster feature vectors of a set of
unlabeled accounts. The classifier by [6] exploits a set of 14
generic statistical behavior features related to URLs, hashtags,
mentions and retweets. Feature vectors generated in this way
are then compared with one another via a Euclidean distance
measure. Chavoshi et al. [22] developed an unsupervised
method, named DeBot, which calculates cross-user activity
correlations to detect bot accounts in Twitter. DeBot detects
thousands of bots per day with a 94% precision and generates
reports online every day. Cresci et al. [5] proposed an unsuper-
vised method to detect bots, by comparing their behavior with
the aim of finding similarities between automated accounts.
They introduced a bio-inspired technique to model online
user behaviors using so-called “digital DNA” sequences. Ex-
tracting digital DNA for an account means associating that
account with a string that encodes its behavioral information.
Although it achieves good detection performance, numerous
handcrafted behavioral features are still required.

A recent research direction is to test the limits of current
bot detection frameworks in an adversarial setting. The goal
is to create bots that are difficult or impossible to detect.
Cresci et al. [23] proposed the use of evolutionary algorithms
to improve social bot skills. Grimme et al. [24] employed a
hybrid approach involving automatic and manual actions to
create bots that would be classified as human by a supervised
bot detection system.

B. DATASETS FOR TWITTER BOT DETECTION RESEARCH
Cresci et al. [25] provided a widely used dataset for Twitter
bot detection. It contains 3,474 human accounts and 10,894
bot accounts. The dataset is composed of both user informa-
tion and tweets.

Feng et al. [26] introduced TwiBot-20, the first publicly
available bot detection dataset that includes user follow
relationships. The dataset contains 229,573 Twitter users,
8,723,736 user property items, 33,488,192 tweets and 455,958
follow links.

Feng et al. [27] presented TwiBot-22, a comprehensive
graph-based Twitter bot detection dataset. It provides diverse

entities and relations on the Twitter network, and has consider-
ably good annotation quality. The dataset contains 1,000,000
Twitter users and 88,217,457 tweets.

For a more comprehensive review of Twitter bot detection
methods/techniques, readers are referred to [28], [29], [30],
[31], [32].

To the best of our knowledge, our work is the first that
does not require sophisticated or labor-intensive handcrafted
feature engineering but performs comparably to or better than
state-of-the-art bot detection models/systems.

An earlier version of our neural model and preliminary
results were reported in [33]. The earlier model and results
in [33] were based on GloVe [34] word embeddings and
BiLSTM. Compared with [33], in this article,
� we incorporated more linguistic embeddings into the

new model, namely, character embedding, part-of-
speech embedding, and named-entity embedding.

� we experimented with different recurrent variants,
namely GRU, MGU, LSTM and LGRU, to select the best
performer, which is bi-directional LGRU.

� we conducted extensive experiments to study the detec-
tion performance, running time and memory consump-
tion of the different types of linguistic embeddings and
recurrent variants.

� based on the above experiments, we selected BiLGRU
for the bot detection task. Compared with the BiLSTM
model presented in [33], the new model provides better
detection performance, faster inference time and lower
memory consumption.

III. OUR PROPOSED MODEL
In this section, we discuss different types of linguistic embed-
dings, BiLGRU, and our proposed Twitter bot detection model
BOTLE.

A. LINGUISTIC EMBEDDINGS
We discuss different types of linguistic embeddings, namely,
word embeddings, character embeddings, part-of-speech em-
beddings, and named-entity embeddings.

1) WORD EMBEDDINGS
Word embeddings, also known as distributed word representa-
tion, is an important research topic in NLP. In recent years, it
has been widely used in various NLP tasks, including informa-
tion retrievals [35], [36], [37], text classification [38], machine
translation [39] and machine comprehension [40]. The suc-
cess of word embedding [34], [41] encourages researchers
to focus on machine-learned representation instead of heavy
feature engineering in NLP. By using word embeddings as
the typical feature representation for words, neural networks
become more competitive compared to traditional approaches
in NLP.

An important advantage of word embeddings compared to
conventional NLP techniques of representation (e.g., bag-of-
words [42], part-of-speech tagging [43]) is that it achieves a
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significant dimensional reduction of the feature set needed
to represent tweets, resulting in a reduction in training and
inference time of an NLP model.

In this work, we adopt pre-trained GloVe [34] word vectors
on Twitter. It is based on two billion tweets, including 27
billion tokens, with a vocabulary size of 1.2 million words.
We define our vocabulary as the intersection between the
words in all training samples and those in the pre-trained
200-dimensional GloVe. Given a word w, if it is in the vocab-
ulary, we set its word-level embedding αw to its GloVe word
vector, which is fixed during the training; otherwise we have
αw = αo ∈ R200, where αo is a trainable parameter serving
as the shared word vector of all out-of-vocabulary (OOV)
words. Each tweet is sent to the Stanford CoreNLP [44] toolkit
for sentence splitting and tokenization. All words containing
Twitter special memes, i.e., hashtag (#), mention (@) and
shortened URL (http://t.co), are mapped to several pre-defined
tokens individually, i.e., 〈HASHTAG〉, 〈USER〉 and 〈URL〉,
using regular expression matches.

2) CHARACTER EMBEDDINGS
Kim et al. [45] introduced a character-level embedding to
provide additional features in dealing with unknown or out-
of-vocabulary (OOV) words in NLP tasks. Robust approaches
for obtaining shape and morphological knowledge from words
need to consider all characters of the word and choose the sig-
nificant characteristics for the task to be carried out [46]. For
instance, in the task of Twitter bot detection, abbreviations,
spelling errors, and special characters (‘#’), are very common.
Moreover, important information can appear in different parts
of a hashtag (e.g., “#ComingSoon”, “#ILikePRODUCT”).
Since character information can provide knowledge on struc-
tural differences between words, character embeddings are
beneficial to a Twitter bot detection model from learning
unknown and uncommon words [47]. Additionally, charac-
ter embeddings can improve the detection performance using
suffixes and prefixes such as ‘-able’ and ‘dis-’, which carry
semantic knowledge [48].

In this experiment, we incorporate convolutional-based
character embeddings (CharCNN) [45] to our Twitter bot de-
tection model. Specifically, let V be the vocabulary size of
words, C be the vocabulary of characters. Given a word w ∈ V
composed of sequential characters {c1, c2, . . . , cn}, where n is
the length of the word w, the character embedding of w is
denoted as Cw ∈ Rd×n. A feature map f w ∈ Rn−h+1 is ob-
tained after applying a convolution between Cw and a kernel
K ∈ Rd×h of width h. Then, max-pooling is performed over
each feature map. Finally, the character-level representation of
the word w is obtained as Ew = [ew

1 , ew
2 , . . . , ew

k ], with a total
of k kernels. Following [49], we set k to 100 and h to 5 in this
experiment.

Learned Character Embedding: According to [45], every
CharCNN filter learns to identify certain character n-grams.
In order to obtain a better visualization of what the character
embedding is learning, the learned character representations

FIGURE 1. Plot of character n-gram representations via PCA. Colors
correspond to prefixes (blue), suffixes (grey), hyphenated (green), and all
others (red). Prefixes refer to character n-grams that start with the
start-of-word character. Suffixes likewise refer to character n-grams which
end with the end-of-word character.

via principal components analysis (PCA) are plotted as shown
in Fig. 1. Each character is fed into the CharCNN and the
CharCNN’s output is used as the fixed dimensional represen-
tation for the corresponding character n-gram. From Fig. 1,
we can observe that the learned model is able to distinguish
between suffixes (grey), prefixes (blue), and others (red). Note
that the embeddings are particularly sensitive to character
n-grams containing hyphens (green) in that this is a solid
indication of a word’s part-of-speech property (e.g., hyphen
used if the two words work together as an adjective before the
noun they illustrate.) [45].

3) PART-OF-SPEECH EMBEDDINGS
Words are typically ambiguous in their part of speech. In a
sentence, the context of a word could address this vague-
ness [50]. For example, work can be either a noun or a verb.
In the sentence “There is plenty of work to be done in the
garden.”, work can only be a noun.

Part-of-speech (POS) tagging is a process that assigns the
part of speech (e.g., adjective, verb) to words using their con-
textual information. In order to be effectively applied to neural
networks, POS tags are converted into vectors of fixed length,
and considered as trainable variables that are randomly ini-
tialized. Applications of POS embedding exist in many NLP
tasks such as information extraction, and machine reading
comprehension [51].

Following [51], we use 9-dimensional POS embedding for
a total of 56 distinct types of POS tags.
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TABLE 1. Example Illustrating Named-Entity Identification

FIGURE 2. (a) Recurrent neural network and (b) recurrent neural network
unfold. Adapted from [53].

4) NAMED-ENTITY EMBEDDINGS
‘Named entity’ (NE) is a term widely used in natural language
processing (NLP). A named entity refers to an entity such
as a location, organization, product or person that can be
named using a proper noun. Table 1 illustrates the necessity
of identifying named entities in a wide variety of NLP tasks.
In the absence of contextual information, it would be difficult
or impossible to know that “Bulls” is an organization. Like-
wise, the term “White Sox” mentioned in the example is an
organization, not a type of clothing.

Named-entity embedding of context words can improve
the accuracy of machine reading comprehension [52]. The
method of encoding named-entity tags is similar to that of
POS tags. Named-entity tags are mapped into a fixed-size ma-
trix, and considered as learnable variables in neural models.

Following [51], we use 8-dimensional named-entity em-
beddings for a total of 18 distinct types of named-entity tags.

B. BILGRU NEURAL NETWORKS
We briefly describe RNN, LGRU, BiLGRU, and then our
proposed Twitter bot detection model.

RNN [54] is a class of artificial neural sequence models,
as shown in Fig. 2, where connections between units form
a directed cycle. It takes arbitrary embedding sequences x =
(x1, . . ., xT ) as input, and uses its internal memory network
to exhibit dynamic temporal behavior. It consists of a hidden
unit h and an optional output y. T is the last time step and
is also the length of the input sentence in this text sequence
learning task. At each time step t , the hidden state ht of the
RNN is computed based on the previous hidden state ht−1 and
the input at the current step xt :

ht = g(Uxt +W ht−1) (1)

where U and W are weight matrices of the network; g(·) is a
non-linear activation function, such as an element-wise logis-
tic sigmoid function. The output at time step t is computed as
yt = sof tmax(V ht ), where V is another weight parameter of
the network; sof tmax is an activation function often imple-
mented at the final layer of a network.

There are several types of RNNs, such as long short-term
memory (LSTM), gated recurrent unit (GRU), and minimal
gated unit (MGU).

LSTM is a variant of RNN designed to deal with the van-
ishing gradients problem. Hochreiter and Schmidhuber [55]
found that the LSTM, which uses purpose-built memory cells
to store information, is better at finding and utilizing long-
range context.

GRU [56] is introduced to avoid the issues of vanishing
or exploding gradients suffered by a vanilla recurrent neural
network. Compared to LSTM, GRUs have fewer memory
cells in their architecture, which results in lower memory
requirements. In GRUs, recurrent units adaptively capture the
dependencies of various time scales. There are two gating
units, namely, the reset gate and the forget gate, that modulate
the flow of information inside the GRU. Unlike LSTM, GRUs
do not have separate memory cells; furthermore, GRUs have
no mechanism to control the degree to which its state or
memory content is exposed, while LSTM can control how
much memory content it wants to reveal [57].

Minimal Gated Unit (MGU) [58] is an alternative to GRU.
MGU is composed of one gate, namely, the forget gate, and
does not utilize the complex peephole connection [59]. This
leads to fewer parameters compared to LSTM and GRUs. As
a result, MGUs can obtain comparable classification perfor-
mance but need less training time than GRUs for the tasks of
sentiment analysis, image classification, and language mod-
elling [58].

LGRU [60] is a recently introduced recurrent structure that
is simpler than but as effective as LSTM. Like LSTM, LGRU
relies on gating mechanisms to obtain long-term dependencies
in sequential data:

ft = σ (w f [ht−1, xt ]+ b f ) (2)

h̃t = φ(Wh[ ft · ht−1, xt ]+ bh) (3)

ht = (1− ft ) · ht−1 + ft · h̃t (4)

where ft denotes forget gate; w f is weight vectors of the
network; the symbol · stands for scalar multiplication.

In the above equations, the update gate and the reset gate in
GRU are substituted by a forget gate ft in LGRU. Inspired
by [61], we further simplify LGRU by i) transforming the
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FIGURE 3. Comparison of data flow and operations between (a) GRU and (b) our LGRU. The differences are highlighted in red.

FIGURE 4. Bidirectional LGRU. Adapted from [62].

weight matrices of forget gates into vectors and ii) replacing
element-wise multiplications with scalar multiplications. The
motivation is that applying fewer learnable parameters in ft
and simplifying operations in h̃t and ht can result in lower
complexity in training recurrent models without compromis-
ing the performance. As a result, LGRU is expected to be more
lightweight than all other variants of GRU (including LSTM)
while offering comparable performance. Fig. 3 illustrates the
differences in data flows and operations between GRU and our
simplified LGRU.

BiLGRU uses two LGRUs to learn each token of the se-
quence based on both the past and the future context of the
token. As shown in Fig. 4, one LGRU processes the sequence
from left to right; the other one, from right to left. At each time

step t , a hidden forward layer with the hidden unit function
−→
h

is computed based on the previous hidden state
−→
h t−1 and the

input at the current step xt . Additionally, a hidden backward

layer with the hidden unit function
←−
h is computed based

on the future hidden state
−→
h t+1 and the input at the current

step xt . The forward and backward context representations,

generated by
−→
h t and

←−
h t , respectively, are concatenated into

a long vector. The combined outputs are the predictions of
target sequences.

Our Proposed Model: As shown in Fig. 5, we make use of a
fully connected softmax layer to output posterior probabilities
over labels from two classes, standing for Twitter bots or
humans. The input is a sequence of n tokens, (x1, . . ., xn).
The predictions in both directions are modeled by three-layer

BiLGRUs with hidden states
−→
h i,� and

←−
h i,� for input token

xi at the layer level � = 1,…, L. The final layer’s hidden state

hi,L = [
−→
h i,L;←−h i,L] is used to output the probabilities over bi-

nary labels after softmax normalization. They share the word
embedding layer and the softmax layer, parameterized by �e

and �s, respectively. The model is trained to minimize the
negative log-likelihood in both directions:

L = −
n∑

i=1

(logp(y|x1, . . ., xn;�e,
−→
� LGRU ,�s)

+ logp(y|x1, . . ., xn;�e,
←−
� LGRU ,�s)) (5)

IV. EXPERIMENTAL RESULTS
We first briefly describe the datasets in Section IV-A. In
Sections IV-B, IV-C, and IV-D, the existing systems/models
used for performance comparisons, settings, and evaluation
metrics are described, respectively. Section IV-E presents
experimental results, comparing the performance of the pro-
posed model with that of existing state-of-the-art systems and
analyzing the results in detail.

A. DATASETS
We evaluate our proposed model using the public annotated
dataset cresci-2017 [63], consisting of 3,474 human accounts
that generated 8.4 million tweets and 1,455 bots that generated
3 million tweets. We prepared two test sets following [25].
The test set #1 and test set #2 refer to groups where human
accounts are mixed with accounts from dataset social-bot-1
and dataset social-bot-3, respectively. Social-bot-1 is about
retweeters of an Italian political candidate, while social-bot-3
is about spammers of products on sale on Amazon.com. The
test set #1 is composed of 1,982 accounts and 4,061,598
tweets, while the test set #2 is composed of 928 accounts
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FIGURE 5. An illustration of the proposed BiLGRU neural model with word embeddings for distinguishing Twitter bots from human accounts.

TABLE 2. Statistics of the Datasets Used in the Experiments

and 2,628,181 tweets. The statistics of datasets are shown in
Table 2 in detail.

In order to gain more insight into the datasets, and thus the
effectiveness of our proposed model, we generated a word-
cloud for comparison of the most frequent words in the two
datasets, i.e., human accounts and social-bot-3, as shown in
Fig. 6. Word-cloud is a visualisation method that displays
how frequently words appear in a given body of text, by
making the size of each word proportional to its frequency of
appearing in the text. Note that Amazon social bots on Twitter
usually use exaggerated words such as Check awesome, Read
Fascinating and Creative Writing, to attract people’s attention
in order to advertise their products or services. Furthermore, a
manual analysis of 100 randomly selected tweets in social-
bot-3 showed that a majority of their tweets contain links to

external web pages. This is in contrast to the human accounts
(in the random sample), which describe the accounts’ owners
using words such as love, happy birthday, haha, lol, thank,
and friend, and most of whom seldom tweet links to external
web pages.

B. EXISTING SYSTEMS FOR COMPARISON
We compare the proposed model with the following baseline
models that use the same dataset cresi-2017 [63]:
� Davis et al. [1] generate more than 1,000 features and

group them into six main classes: network, user, friends,
temporal feature, content and sentiment.
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FIGURE 6. Word-cloud comparison of (a) human account dataset and (b) social-bot-3 dataset.

TABLE 3. The Numbers of Handcrafted Features Used in Twitter Bot Detection Methods/Models

� Yang et al. [2] use 25 features and group them into
six categories: profile-based features, content-based fea-
tures, graph-based features, neighbor-based features,
temporal features and automation-based features.

� Miller et al. [3] generate vectors made of 126 features,
extracted from both user accounts and tweets.

� Ahmed et al. [6] use a set of 14 generic statistical be-
havior features related to URLs, hashtags, mentions and
retweets.

� Cresci et al. [5] create two groups of user behavior fea-
tures: tweet type DNA and tweet content DNA.

To obtain the classification performance of the above
methods/systems for a comparison, we extracted the results
reported Cresci et al. [5], which are deemed the best results
the authors could achieve when they evaluated their proposed
methods/systems.

Note that most state-of-the-art algorithms/systems for Twit-
ter bot detection require a large number of data-demanding
features. The above systems require feature engineering based
on six features [5] to more than 1,000 [1], as listed in Table 3.
Feature engineering is very labor-consuming and expensive
in terms of data collection and pre-processing. Our proposed
RNN model does not rely on any feature engineering and uses
only the textual content of the tweets.

C. NEURAL NETWORK MODEL SETUP
Based on the design of the experiments, we tested several
sets of parameters to select one that gave the experiments
the best performance. We applied the grid search method to
obtain the optimal combination of hyperparameters. These
hyperparameters are as follows:

� Learning rate: the model is trained using the stochastic
gradient descent [64] algorithm, while the learning rate
is set to 0.01.

� Network structure: three stacked BiLGRU layers with
200 recurrent units and one fully connected softmax
layer.

� Dropout [65] is adopted during training, initially set to
0.5, slowly decreasing during training until it reaches 0.1
at the end.

� Number of epochs: 30.
� Momentum: 0.9.
� Mini-batch: 64.

D. EVALUATION METRICS
To evaluate the effectiveness of our proposed Twitter bot de-
tection model, we use four standard indicators:
� True Positives (TP): the number of bots correctly recog-

nized;
� True Negatives (TN): the number of human accounts

correctly recognized;
� False Positives (FP): the number of human accounts

erroneously recognized as bots;
� False Negatives (FN): the number of bots erroneously

recognized as human accounts.
For each test set, we use the four standard evaluation

metrics, namely, precision, recall, accuracy, and F1-score, to
compare the performance of the classifiers.

Precision and recall are two widely applied metrics to eval-
uate a Twitter bot detection system. If precision is low, the
system requires manual verification by humans. It is labour
intensive, if the number of false positives is high. However,
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TABLE 4. Performance Comparison of Various Bot Detection methods/models Using the cresci-2017 Dataset

if recall is low, the system fails to catch many bot accounts.
Since the F1-score takes both false positives (precision) and
false negatives (recall) into account, it reflects the balanced
overall performance of the system.

E. RESULTS AND DISCUSSION
Table 4 shows the performance of our proposed neural model
BOTLE along with that of the baseline models reported in [5].
Using the test set #1, BOTLE achieves a new recall score
of 0.977, outperforming the best (Cresci et al. [5]) by 0.5
percentage points (0.977 vs. 0.972). Using the test set #2,
BOTLE achieves a new F1-score of 0.936, surpassing the best
(Cresci et al. [5] and Ahmed et al. [6]) by 1.3 percentage
points (0.936 vs. 0.923); our accuracy score of 0.939 also
outperforms the best (Cresci et al. [5]), by 1.0 percentage
points (0.939 vs. 0.929). In addition, BOTLE achieves the
second-best results in the other cases (highlighted in blue
color in Table 4). In summary, BOTLE offers the best or
second-best results in all cases.

BOTLE outperforms the current state-of-the-art system by
Cresci et al. [5] on several metrics such as accuracy and F1-
score (using the test set #2) and recall (using the test set #1).
Although BOTLE performs slightly below Cresci et al. [5] in
some cases, it offers many significant advantages over [5] as
follows.

No handcrafted features required: BOTLE does not rely
on any human-engineered features. Existing classifiers re-
quire feature engineering, ranging from six features (Cresci
et al. [5]) to more than 1,000 (BotOrNot [1]). One of the best
performers, Cresci et al. [5], still requires six features, namely,
URLs, hashtags, media, entities, mentions, and plain text.
Furthermore, the process of constructing bio-inspired “DNA”
sequences in [5] is very time-consuming and labor-intensive.

No prior knowledge required: BOTLE does not require
prior knowledge or assumptions about users’ profiles, friend-
ship networks, or historical behavior of the target accounts.
It uses only the textual contents of users’ tweets for classifi-
cation. The method by Cresci et al. [5], nonetheless, requires
prior knowledge such as replies or retweets to construct bio-
inspired “DNA” sequences. It is expensive to collect, store
and pre-process a large amount of data based on features.
Without feature engineering, BOTLE can be implemented and
deployed much faster and earlier than the other models.

V. EFFECTIVENESS OF LINGUISTIC EMBEDDINGS
For the results In Table 4, we use word embeddings, charac-
ter embeddings, part-of-speech embeddings and named-entity
embeddings. In this section, we validate the effectiveness of
these linguistic embeddings by adding them one at a time
to the bot detection model and measure the performance im-
provement as each type of embedding is added.

A. LINGUISTIC EMBEDDINGS: DETECTION PERFORMANCE
As shown in Table 5, we started with only word embeddings.
We then added character, POS, and NE embeddings, one type
at a time, in that order. Every time a type of embedding was
added, we conducted the same experiments using test sets #1
and #2, and recorded the resulting precision, recall, accuracy
and F1-score.

The results in Table 5 show that the detection performance
is improved every time a new type of embedding was added.
For example, using the test set #1, the accuracy is improved
from 0.961 to 0.965, 0.966 and 0.969 as character, POS, and
NE embeddings were added one by one, respectively. The
same observation applies to the other performance metrics,
and to test set #2 as well. This consistently demonstrates the
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TABLE 5. Empirical Assessment of Different Linguistic Embeddings: Word, Character, Part-of-Speech (POS), and Named-Entity (NE) Embeddings

TABLE 6. Empirical Assessment of Running Time and Memory Usage Incurred by the Linguistic Embeddings: Word, Character, Part-of-Speech (POS), and
Named-Entity (NE) Embeddings

TABLE 7. Performance of Four Recurrent Variants: LSTM, GRU, MGU, and
LGRU

effectiveness of the additional types of linguistic embeddings.
They enable the proposed model to encode rich linguistic and
syntactic knowledge such as affixes, grammar, and part-of-
speech.

On the other hand, incorporating additional linguistic em-
beddings will increase the run time and memory usage of a

model. In the next section we examine the overheads incurred
by additional linguistic embeddings in the proposed model
BOTLE.

B. LINGUISTIC EMBEDDINGS: RUNNING TIME AND
MEMORY USAGE
In this section, we report the runtime (for training and infer-
ence) and memory usage of BOTLE as we added character,
POS, and NE embeddings, one type at a time, in that or-
der, resulting in four linguistic embedding combinations: 1)
word embeddings only; 2) word and character embeddings; 3)
word, character and POS embeddings; and 4) word, character,
POS and NE embeddings. For each combination (model),
we conducted the same experiments using test set #2, and
recorded the resulting run time and memory usage.

To obtain the training time, we trained a model with
each of the above four combinations using 2,099,261 sam-
ples from the test set #2. To obtain the average inference
time, we ran a model with each combination to classify
528,920 samples from the test set #2. The total infer-
ence time for classifying 528,920 samples was then divided
by 528,920 to obtain the average inference time of one
sample.
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TABLE 8. Empirical Assessment of Running Time and Memory Usage Incurred by Four Recurrent Variants LSTM, GRU, MGU, and LGRU

To obtain the GPU memory consumption of a model, we
profiled the job using NVIDIA NVML [66]. The NVIDIA
library tracked and summarized the memory usage throughout
the whole process of training and inference. All the experi-
ments were run on a Linux workstation with the following
configuration: NVIDIA GeForce GTX 1080 graphics card,
Intel Core i7-6700 3.4 GHz processor, 12 GB DDR4 memory,
and 1 TB solid state drive.

Table 6 illustrates the total training time, average inference
time, and memory usage of the four linguistic embedding
combinations. We observe that the run time and memory
usage increase as more linguistic embeddings are added to
the detection model. These increases are expected because
they are the price to pay for higher classification performance
(shown in Table 5) as more linguistic embeddings are incor-
porated into the classifier. These increases are acceptable for
the task of Twitter bot detection on laptops, desktops or cloud
services to achieve higher detection performance via the use
of all types of linguistic embeddings. For example, using all
four types of linguistic embeddings, the average inference
time per sample is only 25.8 msec, and the combined memory
consumption for training and inference is 5.9 gigabytes. (For
other applications on low power, low memory devices, a trade-
off analysis should be made to select the type(s) of linguistic
embeddings optimal for both classification performance and
resource constraints.)

VI. PERFORMANCE COMPARISON OF DIFFERENT
RECURRENT VARIANTS
During the design process, we considered several recur-
rent variants, namely, long short-term memory (LSTM),
gated recurrent unit (GRU), minimal gated unit (MGU) and
lightweight gated recurrent unit (LGRU), which are described
in Section III-B. We implemented and tested these variants
and selected the best performer for our task, which is LGRU.
In this section, we report the results of this selection process
to help other researchers decide on a variant for similar tasks.
The selection criteria are detection performance, run time and
memory usage.

A. RNN VARIANTS: DETECTION PERFORMANCE
Table 7 shows the classification performance of the recur-
rent variants LSTM, GRU, MGU, and LGRU with all four

embeddings (word, character, POS, and NE) on the cresci-
2017 dataset. The other parameters are the same as those in
Section IV-C. Overall, LGRU yields the best performance
among the variants. Although the classification improvement
of LGRU over the other variants seems marginal, LGRU re-
ally shines when it comes to run time and memory usage as
discussed in the next section.

B. RNN VARIANTS: RUNNING TIME AND MEMORY USAGE
In this section, we report the run time (training and inference)
and memory usage of the four recurrent variants LSTM, GRU,
MGU and LGRU obtained from the same experiments dis-
cussed above in Section VI-A. The total training time, average
inference time and memory usage were measured and col-
lected as described in Section V-B and are shown in Table 8.

The training time of LGRU is 39%, 24%, and 12.8% shorter
than that of LSTM, GRU and MRU (2,997 minutes vs. 4,168,
3,705 and 3,380 minutes), respectively. The average inference
time of LGRU is 21.3%, 12.4% and 7.4% shorter than that
of LSTM, GRU and MRU (25.8 msec vs. 31.3, 29, and 27.7
msec), respectively. LGRU also consumes less memory than
LSTM, GRU and MRU: 11.9%, 8.5% and 5.1% less memory
(5.9 gigabytes vs. 6.6, 6.4 and 6.2), respectively.

The above results demonstrate that LGRU is the best per-
former among the RNN variants. It provides the best of both
worlds: higher classification performance and lower over-
heads in terms of memory usage and run time.

VII. CONCLUSION
This article presents an RNN model, specifically BiLGRU,
with four linguistic embeddings (i.e., word, character, POS,
and NE embeddings) to distinguish Twitter bots from human
accounts. Our model requires no prior knowledge or assump-
tion about users’ profiles, friendship networks, or historical
behavior on the target account. To the best of our knowledge,
our work is the first that develops an RNN model with several
types of linguistic embeddings to detect bots that relies only
on tweets and does not require any feature engineering. Exper-
iments on the public dataset cresci-2017 show that our model
performs similarly or better than existing work, but without
handcrafted feature engineering, which is labor-intensive and
time-consuming. This advantage allows for faster and easier
implementation and deployment of the bot detection scheme.
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In addition, our proposed bidirectional recurrent neural archi-
tecture can be relatively easily adapted to a new problem, for
example, using BiLGRU with linguistic embeddings to detect
phishing emails, spam webpages or spam SMS.
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