
Received 31 March 2023; accepted 8 May 2023. Date of publication 16 May 2023;
date of current version 5 June 2023. The review of this article was arranged by Associate Editor Quan Chen.

Digital Object Identifier 10.1109/OJCS.2023.3276370

State Space Explosion Mitigation for
Large-Scale Attack and Compliance Graphs

Using Synchronous Exploit Firing
NOAH L. SCHRICK (Member, IEEE), AND PETER J. HAWRYLAK (Senior Member, IEEE)

Tandy School of Computer Science, University of Tulsa, Tulsa, OK 74104 USA

CORRESPONDING AUTHOR: NOAH L. SCHRICK (e-mail: noah-schrick@utulsa.edu).

ABSTRACT Attack and compliance graphs are useful tools for cybersecurity and regulatory or compliance
analysis. Thgraphs represent the state of a system or a set of systems, and can be used to identify all current
or future ways the systems are compromised or at risk of violating regulatory or compliance mandates.
However, due to their exhaustiveness and thorough permutation checking, these graphs suffer from state
space explosion - the graphs rapidly increase in the total number of states, and likewise, their generation
time also rapidly increases. This state space explosion in turn also slows the analysis process. This work
introduces a mitigation technique called synchronous firing, where graph users and designers can prevent
the generation of infeasible states by firing exploits simultaneously through joining inseparable features like
time. This feature does not invalidate the integrity of the resulting attack or compliance graph by altering the
exhaustiveness or permutation checking of the generation process, but rather jointly fires exploits through
their defined inseparable features.

INDEX TERMS Attack graph, compliance and regulation, compliance graph, cybersecurity, high-
performance computing, speedup, synchronous firing.

I. INTRODUCTION
Cybersecurity has been at the forefront of computing for
decades, and vulnerability analysis modeling has been utilized
to mitigate threats to aid in this effort. One such modeling
approach is to represent a system or a set of systems through
graphical means, and encode information into the nodes and
edges of the graph. Even as early as the late 1990s, experts
have composed various graphical models to map devices and
vulnerabilities through attack trees, and this work can be seen
through the works published by the authors of [1]. This work,
and other attack tree discussions of this time such as that
conducted by the author of [2], would later be referred to as
early versions of modern-day attack graphs [3]. These attack
graphs take the form of Directed Acyclic Graphs (DAGs),
where the root node is the initial state of the environment,
and each subsequent node represents the new state of the
environment after changes have occurred. By utilizing this
graphical approach, cybersecurity postures can be measured at
a system’s current status, as well as hypothesize and examine
other postures based on system changes over time. Attack

graphs have also been extended to Cyber-Physical Systems
(CPS) and the Internet of Things (IoT), and their usage can
be seen in works such as that presented by the authors of [4],
[5]. Various analysis metrics can then be performed, such as
Bayesian attack graphs [6], maximum flow [7], and centrality-
based ranking measures [8].

As an alternative to attack graphs for examining vulner-
able states and measuring cybersecurity postures, the focus
can be narrowed to generate graphs with the purpose of
examining compliance or regulation statuses. These graphs
are known as compliance graphs. Compliance graphs can
be especially useful for cyber-physical systems, where a
greater need for compliance exists. As the authors of [9],
[10], [11] discuss, cyber-physical systems have seen greater
usage, especially in areas such as critical infrastructure and
IoT. The challenge of cyber-physical systems lies not only
in the demand for cybersecurity of these systems, but also
the concern for safe, stable, and undamaged equipment. The
industry in which these devices are used can lead to additional
compliance guidelines that must be followed, increasing the

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME 4, 2023 147

https://orcid.org/0000-0003-0875-8927
https://orcid.org/0000-0003-3268-7452
mailto:noah-schrick@utulsa.edu

SCHRICK AND HAWRYLAK: STATE SPACE EXPLOSION MITIGATION FOR LARGE-SCALE ATTACK AND COMPLIANCE GRAPHS

complexity required for examining compliance statuses. Com-
pliance graphs are promising tools that can aid in minimizing
the overhead caused by these systems and the regulations they
must follow.

Attack and compliance graphs are an appealing approach
since they are often designed to be exhaustive: all system
properties are represented at its initial state, all attack options
are fully enumerated, all permutations are examined, and all
changes to a system are encoded into their own indepen-
dent states, where these states are then individually analyzed
through the process. The authors of [12] also discuss the ad-
vantage of conciseness of attack graphs, where the final graph
only incorporates states that an attacker can leverage; no su-
perfluous states are generated that can clutter analysis. Despite
their advantages, attack graphs do suffer from their exhaus-
tiveness as well. As the authors of [3] examine, even very
small networks with only 10 hosts and 5 vulnerabilities yield
graphs with 10 million edges. When scaling attack graphs to
analyze the modern, interconnected state of large networks
comprising of a multitude of hosts, and utilizing the entries
located in the National Vulnerability Database and any custom
vulnerability testing, attack graph generation quickly becomes
infeasible. Similar difficulties arise in related fields, where
social networks, bioinformatics, and neural network represen-
tations result in graphs with millions of states [13]. This state
space explosion is a natural by-product of the graph genera-
tion process, and removing or avoiding it entirely undermines
the overall goal of attack and compliance graphs. However,
there are some scenarios in which the state space explosion
can be mitigated when certain features are inseparable. Since
every change in the network is examined individually, and
no two changes can occur simultaneously, some nodes in the
graph are created despite being infeasible. A leading cause of
this is when examining an environment over time. Assets must
undergo a time progression in the graph generation process,
and by firing the time change separately for each asset, there is
a synchronization problem where assets may progress through
time disjointly from other assets. This work introduces a so-
lution to this problem with synchronous exploit firing, which
mitigates state space explosion for applicable scenarios while
maintaining accuracy of the resulting graph, and discusses the
performance results of its use.

II. RELATED WORK
Multiple works have introduced various approaches for mit-
igating state space explosion. The authors of [14] propose
that attack graphs encapsulate excessive information that lead
to difficulties in scalability. They discuss the concept of
monotonicity, where attackers do not need to backtrack. If a
previous exploit was achieved, its preconditions and postcon-
ditions should not be revoked through another, future exploit
firing. The authors of [15] use monotonicity in their tool, TVA,
along with various node and edge representations based on
sets and dependency graphs that can likewise mitigate the
state space explosion challenge. The authors of [3] also take

the approach of using alternate representations of the under-
lying graph structure through logical attack graphs. In this
representation, each node only encompasses a portion of the
network in a logical statement format, as opposed to encoding
the entire system information at each node. This approach
is able to limit the total number of nodes to O(N2), with N
representing the total number of nodes in the system.

A form of synchronous firing is discussed by the author
of [16], where it is described as grouped exploits. The func-
tionality discussed by the author is similar: firing an exploit
should be performed on all possible assets simultaneously.
This was also described as synchronizing multiple exploits.
The methodology is similar to the one implemented in this
work, but there are notable differences. The first, is that the
work performed by the author of [16] utilizes global features
with group features. Using the simultaneous exploit firing
necessitated a separation of global and group features, and
grouped exploits could not be performed on exploits that
could be applicable to both sets. A second difference is that
there is no consistency checking in the work by the author
of [16], which could lead to indeterminate behavior or race
conditions unless additional effort was put into encoding ex-
ploits to use precondition guards. A third difference is that the
work of [16] could still lead to a separation of features. The
grouped exploit feature would attempt to fire all exploits on
all applicable assets simultaneously, but if some assets were
not ready or capable to fire, these assets would not proceed
with the exploit firing but the applicable assets would. The last
difference is that the work by the author of [16] was developed
in Python, since that was the language of the generator of
the tool at the time. This work relies on RAGE (The RAGE
Attack Graph Engine) for the feature development and result
collection [17]. RAGE is developed in C++ for performance
enhancements, so the synchronous firing feature in this new
work was likewise developed in C++.

III. INSEPARABLE FEATURES
One main appeal of attack graphs and compliance graphs are
their exhaustiveness. The ability to generate all permutations
of attack chains or to generate all possible ways a system can
fall out of compliance is a valuable feature. The disadvantage
of this approach is that the generation of the final graph in-
creases in time, as does the analysis. Another disadvantage is
that this exhaustiveness can produce states that are not actu-
ally attainable or realistic, as briefly mentioned in Section II.
When a system has assets that have inseparable features, the
generation process forcibly separates features to examine all
permutations, since the generation process only modifies one
quality at a time. One example of an inseparable feature is
time. If two different assets are identical and no constraints
dictate otherwise, the two assets should not, and realistically
cannot, proceed through time at different rates. For example,
if two cars were manufactured at the same moment, one of
these cars cannot proceed multiple time steps into the future
while the other remains at its current time step; each car must
step through time at the same rate. However, the generation

148 VOLUME 4, 2023

FIGURE 1. A network without Synchronous Firing generating infeasible
states.

of attack graphs and compliance graphs examines the possi-
bilities that one car ages by one time step, while the other car
does not, or vice versa. This results in an attack graph that can
be seen in Fig. 1, which is a partial attack graph showing the
separation of the time feature. All shaded states are considered
unattainable, since all of these states comprise of assets that
have advanced time at different rates. It is noticeable that
not only are the unattainable states themselves a wasteful
generation, but they also lead to the generation of even more
unattainable states that will then also be explored. A better
procedure for a generation process similar to this example is
to have a single state transition that updates assets with an
inseparable feature simultaneously.

Post-processing is one option at removing the unattain-
able states. This process would simplify and reduce the
time taken for the analysis process, but the generation pro-
cess would still suffer from generating and exploring the
unattainable states, and would still need to go through a
post-processing step. Instead, a new feature called syn-
chronous firing can be used to prevent the generation of
these states. The goal of the synchronous firing feature
is to prevent the generation of unattainable states, while
incurring no greater computational cost. Section IV will dis-
cuss the development of this feature, and Section V will
examine the results when using this feature in applicable
networks.

IV. IMPLEMENTING SYNCHRONOUS FIRING
Synchronous exploit firing aims to eliminate the generation
of infeasible states during the generation process, rather than
needing an additional post-processing step. Using Fig. 1 as an
example, the goal of synchronous firing is to only generate
the 3 valid, unshaded non-root nodes, rather than generate
all 16 nodes since 13 of the nodes represent an impossibility
where two cars are progressing through time at different rates.
Synchronous firing is accomplished through new grouping
keywords in the input exploit file, which propagate through
the modified attack and compliance graph engine, and prevent
the firing of exploits if they are part of a group where all
members are not yet available to fire. For the implementation
of the synchronous firing feature, there were four primary
changes and additions that were required. The first is a change
in the lexical analyzer, which handles the model and exploit

input. Users indicate features that should fire simultaneously
in these input files, and the lexical analyzer is responsible
for parsing and passing that information to the graph gener-
ator. The second involves multiple changes to the PostgreSQL
database implementation and schema in RAGE to support the
storage of group features and information. The third is the
implementation of compound operators in RAGE, since enu-
meration of all exploits may not be possible, especially when
modeling a system over time. The fourth is a change in the
graph generation process, which checks to see if all exploits
in a group are able to fire simultaneously before firing. The
subsections in this Section describe these four alterations in
greater detail.

A. GNU BISON AND FLEX
The work conducted by the author of [17] included the in-
troduction of GNU Bison and GNU Flex into RAGE. The
introduction of Bison and Flex allows for an easily modifiable
grammar to adjust features, the ability to easily update parsers
since Bison and Flex are built into the build system, and
increases portability since Flex and Bison generate standard
C. For the development of the synchronous firing feature, a
similar approach was taken to that of the work performed by
the author of [16] with the exploit keywords. This work imple-
ments the “group” keyword. The new keyword is intended to
be used when creating the exploit files. The design of exploits
in the exploit file is developed as:

<exploit> ::= <group name> ’’group’’
’’exploit’’ <identifier> ,
(<parameter-list>)=

where the “<group name>” identifier and “group” keyword
is optional. An example of an exploit not utilizing the group
feature is:

exploit
brake_pads(2015_Toyota_Corolla_LE)=

and an example of an exploit utilizing the group feature is:
time group exploit

advance_month(all_applicable)=
To implement the keyword recognition and group name pars-
ing, a few changes were made, where the intention was to
detect the usage of the “group” keyword, and have the lex-
ical analyzer code return to the parser implementation file
to alert of the presence of the “GROUP” token. The new
token is of type string with the name “GROUP”, and it is
comprised of a leading “IDENTIFIER” of type string or in-
teger token, followed by the “GROUP” token. This new token
also required changes to the processing of the “exploit” key-
word. If the group keyword is not detected, the exploit has
a group of name “null”. If the group keyword is detected,
then the leading IDENTIFIER is parsed, and the exploit is
assigned to a group with the parsed name. Various auxiliary
functions were also adjusted to include (for instance) support
for printing the groups of each exploit. Fig. 2 illustrates the
incorporation of this feature into Bison, Flex, and the overall
program.

VOLUME 4, 2023 149

SCHRICK AND HAWRYLAK: STATE SPACE EXPLOSION MITIGATION FOR LARGE-SCALE ATTACK AND COMPLIANCE GRAPHS

FIGURE 2. Inclusion of Synchronous Firing into GNU Bison, GNU Flex, and
the overall program.

B. POSTGRESQL
As seen in Fig. 2, Bison and Flex feed into the Model
Database. With the addition of a new group identifier and
the group keyword, minor alterations were needed to ensure
compatibility with the PostgreSQL database. One adjustment
was to alter the exploit table in the SQL schema to include
new columns of type “TEXT”. The second adjustment was
to update the SQL builder functions. This included updating
the related functions such as exploit creations, exploit parsing,
database fetching, and SQL string builders to add additional
room for the group identifier. Additional care was taken to
ensure that the normalization form of the database was not
altered. Before adding the group identifier to its appropri-
ate table, additional checking was performed to ensure there
would be no partial functional dependencies or transitive de-
pendencies.

C. COMPOUND OPERATORS
Many of the graphs previously generated by RAGE comprise
of states with features that can be fully enumerated. In many of
these generated graphs, there was an established set of qual-
ities that was used, with an established set of values. These
typically have included “compliance_vio = true/ f alse”,
“root = true/ f alse”, or other general “true/ f alse” values or
“version = X” qualities. To expand on the types and com-
plexities of graphs that can be generated and to allow for
synchronous firing, compound operators have been added to
RAGE. When updating a state, rather than setting a quality
to a specific value, the previous value can now be modified
by an amount specified through standard compound operators
such as +=, −=, ∗=, or /=. Previous work on an attack

graph generator included the implementation of compound
operators, as seen by the author of [18]. However, this work
was conducted on the previous iteration of an attack graph
generator written in Python. This attack graph generator has
since been rewritten in C++ by the author of [17], and com-
pound operators were not included in the latest version of
RAGE.

The work conducted by the author of [17] when designing
the software architecture of RAGE included specifications for
a quality encoding scheme. As they discuss, qualities have
four fields, which include the asset ID, attributes, operator, and
value. The operator field is 4 bits, which allows for a total of
16 operators. Since the only operator in use at the time was the
“=” operator, the addition of four compound operators does
not surpass the 16 operator limit, and no encoding scheme
changes were necessary. This also allows for additional com-
pound operators to be incorporated in the future.

A few changes were necessary to allow for the addition
of compound operators. Before the generation of an attack
graph begins, all values are stored in a hash table. For previous
networks generated by RAGE, this was not a concern since all
values could be fully enumerated and all possible values were
known. When using compound operators however, not all
values can be fully known. The task of approximating which
exploits will be applicable and what absolute minimum or
maximum value bounds will be prior to generation is difficult,
and not all values can be enumerated and stored into the hash
table. As a result, real-time updates to the hash table needed
to be added to the generator. The original key-value scheme
for hash tables relied on utilizing the size of the hash table
for values. Since the order in which updates happen may not
always remain consistent (and is especially true in distributed
computing environments), it is possible for states to receive
different hash values with the original hashing scheme. To
prevent this, the hashing scheme was adjusted so that the new
value of the compound operator is inserted into the hash table
values if it was not found, rather than the size of the hash table.
Previously, there was no safety check for the hash table, so if
the value was not found, the program would end execution.
The assertion that the new value can be inserted into the hash
table is safe to make, since compound operators are conducted
on numeric values, and matches the numeric type of the hash
table.

Other changes involved updating classes (namely the Qual-
ity, EncodedQuality, ParameterizedQuality, NetworkState,
and Keyvalue classes) to include a new member for the op-
erator in question. In addition, preconditions were altered to
include operator overloads to check the asset identifier, quality
name, and quality values for the update process.

D. GRAPH GENERATION
The implementation of synchronous firing in the graph gen-
eration process relies on a map to hold the fired status of
groups. Previously, each iteration of the applicable exploit
vector loop generated a new state. With synchronous firing,
all assets should be updating the same state, rather than each

150 VOLUME 4, 2023

FIGURE 3. Synchronous Firing in the Graph Generation Process.

independently creating a new state. To implement this, each
iteration of the applicable exploit vector checks if the current
loop element is in a group and if that group has fired. If the
element is in a group, the group has not been fired, and all
group members are ready to fire, then all group members will
loop through an update process to alter the single converged
state. Otherwise, the loop will either continue to the next
iteration if group conditions are not met, or will create a single
state if it is not in a group. Fig. 3 displays the synchronous fire
approach.

E. ACCURACY OF GENERATED GRAPHS
The process of synchronous firing may result in output graphs
of different sizes compared to their non-synchronous firing
counterparts. This is the intended effect, but raises the discus-
sion of their accuracy. A derivative figure of Fig. 1 is shown
in Fig. 4, which illustrates the original figure with its syn-
chronous firing counterpart. In this example, since two cars

FIGURE 4. Car Example With and Without Synchronous Firing.

should not progress through times at different rates, the graph
generated by synchronous firing represents greater real-world
applicability and accuracy compared to its non-synchronous
equivalent, despite having less states and edges. The infor-
mation removed in this scenario is considered unwanted and
unusable.

However, the accuracy of the resulting graph relies on the
input models provided by a user. If a user groups features such
as time and weather, additional care is required to ensure that
this is desired. The synchronous firing feature ensures that
group assets have exploits fired on them simultaneously if
specified, but users will need to ensure that the relationship
between the group assets is justified. In the experiments shown
in Section V, no usable or wanted information is lost due to
the feature the assets were grouped on, along with the exploits
specified for these groups.

V. RESULTS
A. EXPERIMENTAL NETWORKS AND COMPUTING
PLATFORM
All data was collected on a 13 node cluster, with 12 nodes
serving as dedicated compute nodes, and 1 node serving as the
login node. Each compute node has a configuration as follows:
� OS: CentOS release 6.9
� CPU: Two 8-core Intel Xeon E5-2620 v3

– With hyperthreading: 2 threads/process per core
� Two Intel Xeon Phi Co-Proces sors
� One FPGA (Nallatech PCIE-385n A7 Altera Stratix V)
� Memory: 64318MiB
All nodes are connected with a 10 Gbps Infiniband inter-

connect.

VOLUME 4, 2023 151

SCHRICK AND HAWRYLAK: STATE SPACE EXPLOSION MITIGATION FOR LARGE-SCALE ATTACK AND COMPLIANCE GRAPHS

1) AUTOMOBILE MAINTENANCE
The example networks for testing the effectiveness of syn-
chronous firing follow the compliance graph generation ap-
proach. These networks analyze two assets, both of which
are identical 2006 Toyota Corolla cars with identical qualities.
The generation examines both cars at their current states, and
proceeds to advance in time by a pre-determined amount, up
to a pre-determined limit. Each time increment updates each
car by an identical amount of mileage. During the generation
process, it is determined if a car is out of compliance either
through mileage or time since its last maintenance in accor-
dance with the Toyota Corolla Maintenance Schedule manual.

In addition, the tests employ the use of “services”, where
if a car is out of compliance, it will go through a correction
process and reset the mileage and time since last service.
Each test varies in the number of services used. The 1 Service
case only employs one service, and it is dedicated to brake
pads. The 2-Service case employs two services, where the
first service is dedicated to the brake pads, and the second is
for exhaust pipes. This process extends to the 3-, 4-, 5-, and
6-Service cases. The experimental setup is as follows:
� All cases ran for 12 months, with time steps of 1 mo.
� All cases had the same number of compliance checks:

brake pads, exhaust pipes, vacuum pumps, AC filters, oil
changes, and driveshaft boots.

� There were 12 base exploits, and an additional 6 exploits
were individually added in the form of services for each
test.

� All cases used the same network model.
� All cases used the same exploit file, with the exception

of the “group” keyword being present in the synchronous
firing testing.

� All services must be performed prior to advancing time,
if services are applicable.

� Graph visualization was not timed. Only the generation
and database operation time was measured.

The compliance checks are as follows:
� Brake pads: to be checked every 6 months
� Exhaust pipes: to be checked every 12 months
� AC filter: to be checked every 12,000 miles
� Vacuum pump: to be checked every 120,000 miles
� Engine oil: to be checked every 6,000 miles
� Driveshaft boots: to be checked every 12,000 miles

2) DMCA TAKEDOWN
A second example of synchronous firing is illustrated through
a DMCA Takedown for a fictitious organization [19]. In this
example, a DMCA Takedown is issued to an organization
after a group of employees were found to be engaging in
online piracy with torrenting software on company devices
and while using company resources. Detection and removal
of illicit data, such as through means presented by the authors
of [20] for Windows or [21] for company-supplied Android
mobile devices, can be incorporated into and represented by a
compliance graph.

For this example, various graphs are generated based on
the permutations of employees present. In one graph, only
Employee A is present in the network. In another graph, Em-
ployees B and C are present in the network. All permutations
are examined and results are shown in Subsection V-B3. The
graph generation process walks through as a system adminis-
trator removes the torrenting software and the illicit data from
the company devices. Typically when removing torrenting
software, the data associated with the torrenting program can
be removed at the same time as the uninstall automatically;
an administrator does not need to remove the torrenting pro-
gram and then separately remove the data. Without the use
of synchronous firing, attack and compliance graphs must
individually remove all data and all programs individually.
This example highlights the capability of synchronous firing
by grouping the removal of software and data together through
“uninstall” groups, as opposed to traditional attack and com-
pliance graphs requiring multiple steps to remove the software
and data.

This experimental setup is as follows:
� Employee A has torrenting software, and is actively up-

loading and downloading 3 programs.
� Employee B has torrenting software, and is actively up-

loading and downloading 4 programs.
� Employee C has torrenting software, and is actively up-

loading and downloading 5 programs.
� If synchronous firing is not enabled, the administrator re-

moves each illicit program one-by-one after the removal
of the torrenting software.

� If synchronous firing is enabled, the administrator re-
moves the torrenting software and all programs off a
single device simultaneously.

� Graph visualization was not timed. Only the generation
and database operation time was measured.

The compliance checks are as follows:
� Does an employee have torrenting software?
� Does an employee have illicit data?

B. RESULTS AND ANALYSIS
1) RESULTS FOR THE THEORETICAL AUTOMOBILE
ENVIRONMENT
Using the experimental setup described in Section V-A on the
platform described at the beginning of Section V-A, results
were collected in regards to the effect of synchronous firing on
both state space and runtime. The graphs’ edge to state ratio
(E/S Ratio) was computed as well. The inclusion of this ratio
allows for a comparison to be drawn regarding the usage of the
synchronous firing feature. Examining this ratio can provide
additional insight on how the graph’s underlying topological
structures change when using or not using synchronous firing.
The results can be seen in Figs. 5 and 6. The respective tables
are seen in Tables 1 and 2. Both figures show a decrease in
the number of states and a decrease in the runtime when syn-
chronous firing is utilized. Since synchronous firing prevents
the generation of unattainable states, there is no meaningful

152 VOLUME 4, 2023

FIGURE 5. Bar Graph and Line Graph Representations of Synchronous
Firing on Runtime.

FIGURE 6. Bar Graph and Line Graph Representations of Synchronous
Firing on State Space.

TABLE 1. Results for the Non-Synchronous Firing Testing

TABLE 2. Results for the Synchronous Firing Testing

FIGURE 7. Speedup (Amdahl’s) and State Space Reduction Factor
Obtained When Using Synchronous Firing.

information loss that occurs in the graphs generated with
the synchronous firing feature. Since the resulting number of
states was also reduced, there will be increased justification
for the synchronous firing approach due to a reduced runtime
for the analysis process. Fig. 7 displays the speedup (accord-
ing to Amdahl’s Law) obtained when using synchronous firing
instead of non-synchronous firing for identical setups, as well
as the state space reduction factor.

When examining the E/S Ratio for the non-synchronous
graphs, it is both expected and observed that the ratio slightly
increases as the number of services increases. When more
applicable exploits are used during the generation process, the
number of permutations increases, which corresponds with
the growing number of states and edges. However, the in-
crease in the number of services also increases the relation
between states and the new permutations.

When comparing the E/S Ratio for the non-synchronous
graphs to the E/S Ratio for the synchronous graphs, it is
observed that the ratio does not remain constant. For example,
for the 5-Service case, the non-synchronous graph has an E/S

VOLUME 4, 2023 153

SCHRICK AND HAWRYLAK: STATE SPACE EXPLOSION MITIGATION FOR LARGE-SCALE ATTACK AND COMPLIANCE GRAPHS

TABLE 3. Results for the Comprehensive Services Without Synchronous
Firing

Ratio of 6.398, and the synchronous graph has an E/S Ratio
of 7.209. While the number of states and the number of edges
is reduced when using synchronous firing, the ratio of edges
to states is not necessarily constant or reduced.

2) RESULTS FOR A GROUPED AUTOMOBILE ENVIRONMENT
The environment and resulting graphs presented in Sec-
tion V-B1 depict the possible states of the two cars in
compliance graph formats. While these graphs demonstrated
accurate, exhaustive depictions of the cars and their compli-
ance standings, they may not be realistic representations of
the most likely outcomes. If a car was due for two compliance
checks at the same time, it is unlikely that the car would be
taken for one maintenance, returned to its original destination,
then driven immediately back for maintenance, and finally to
its original destination once more. The more realistic scenario
is that the car is taken for maintenance, both services are
performed at the same visit, and then the car is returned to
its original destination.

Another set of graphs were generated using only the 3-
Service case. These services were for a driveshaft boot check,
an AC filter change, and an oil change. This set of graphs
used comprehensive services”, where a car would undergo
multiple services simultaneously. With three services used,
there are a total of three permutations: all three services are
done individually, two services are performed simultaneously
while the other is performed later, and all three services are
performed simultaneously.

For this set of examples, all compliance checks have the
same time requirements. This work does not introduce any
heuristics or methodologies for intentionally performing ser-
vices early or late. If Service A was required no later than
every 6 months, but Service B was required no later than
every 8 months, then joining Service A and Service B together
would either mean: 1. Service B was completed 2 months
earlier than it needed to be, or 2. Service A was completed 2
months later than it needed to be. This was considered out of
scope for this approach, but this is noted in the Future Works
Section (Section VI).

TABLE 4. Results for the Comprehensive Services With Synchronous Firing

FIGURE 8. Bar Graph and Line Graph Representations of Synchronous
Firing with Comprehensive Services on Runtime.

These results are seen in Table 4 for the synchronous firing
enabled generation, and Table 3 for the non-synchronous fir-
ing generation. The corresponding figures for the runtime can
be seen in Fig. 8, and the corresponding figures for state space
can be seen in Fig. 9. It is noticeable that there is a state space
reduction achieved through synchronous firing in this set of
examples, along with a runtime improvement. When all three
services were conjoined, synchronous firing provided a 5.09x
speedup over non-synchronous firing. Using comprehensive
services on their own also provided a reduction in state space
and an improvement in runtime. When synchronous firing
was enabled and comprehensive services were used, the total
number of states could be reduced from 25,317 to 3,774, pro-
viding a a 6.7x reduction in state space solely from combining
services.

Leveraging comprehensive services with synchronous fir-
ing enables users to significantly reduce the size of the
resulting attack or compliance graphs. Comprehensive ser-
vices also enable users to introduce heuristics to analyze and
identify optimal service plans for compliance, or attack miti-
gation strategies for attack graphs. Coupled with synchronous
firing, analysis of these optimal plans can be performed

154 VOLUME 4, 2023

FIGURE 9. Bar Graph and Line Graph Representations of Synchronous
Firing with Comprehensive Services on State Space.

FIGURE 10. Speedup (Amdahl’s) Obtained When Using Synchronous Firing
with Comprehensive Services.

TABLE 5. Results for the Non-Synchronous Firing Testing

quicker due to the inexistence of superfluous, unattainable
states.

3) RESULTS FOR THE DMCA TAKEDOWN ENVIRONMENT
Using the experimental setup described in Section V-A on the
platform described at the beginning of Section V-A, results
were collected in regards to the effect of synchronous firing
on both state space and runtime. The graphs’ edge to state
ratio (E/S Ratio) was computed as well. The respective tables
are seen in Tables 5 and 6. The associated figure (Fig. 11)

TABLE 6. Results for the Synchronous Firing Testing

FIGURE 11. Synchronous Firing on State Space and Runtime for the DMCA
Takedown Environment.

shows a decrease in the number of states and a decrease in
the runtime when synchronous firing is utilized. Since syn-
chronous firing prevents the generation of unattainable states,
there is no meaningful information loss that occurs in the
graphs generated with the synchronous firing feature. Fig. 12
displays the speedup (according to Amdahl’s Law) obtained
when using synchronous firing instead of non-synchronous
firing for identical setups, as well as the state space reduction
factor.

In this example, the synchronous firing approach mitigates
the state space explosion by an increasing factor. With tradi-
tional attack and compliance graph generation, the uninstall
process is required to be broken into individual steps, causing
an unnecessarily large growth in the resulting graph. This
is exacerbated due to the presence of multiple employees
transmitting multiple pieces of illicit data, all of which must
be captured individually. Using synchronous firing allows for
better modeling of real systems, where features, processes, or
tasks are often combined into single steps.

VOLUME 4, 2023 155

SCHRICK AND HAWRYLAK: STATE SPACE EXPLOSION MITIGATION FOR LARGE-SCALE ATTACK AND COMPLIANCE GRAPHS

FIGURE 12. Speedup (Amdahl’s) and State Space Reduction Factor
Obtained When Using Synchronous Firing.

VI. FUTURE WORKS
As seen and discussed in Section III, when unattainable states
are generated, there is a compounding effect. Each unattain-
able state is explored, and is likely to generate additional
unattainable states. Future works include examining the effect
of synchronous firing when more assets are utilized. It is hy-
pothesized that the synchronous firing approach will lead to an
increased runtime reduction and state space reduction due to
the increased number of unattainable state permutations. This
work had a limited number of assets, but generated upwards of
400,000 states due to repeated applications of the exploit set
due to the services corresponding with the compliance graph.
Future work could alter the scenario to have a greater number
of assets, and a standard set of exploits more akin to an attack
graph rather than a compliance graph. Other future works
could include measuring the performance of synchronous fir-
ing when multiple groups of inseparable features are used.
This work used a single group, but multiple groups be added
to examine the performance of the feature.

Another avenue for future work would be to take a network
science approach. There may be features of interest from ex-
amining the topology of the resulting graphs with and without
synchronous firing. Various centrality metrics could be exam-
ined, as well as examining transformations such as dominant
trees or transitive closures derived from the original graphs.
Each approach could compare each graph when using or not
using synchronous firing to determine if there are possible
points of interest. Taking a network science approach could
also examine and analyze the E/S Ratio of the graphs when
using or not using synchronous firing, and attempt to provide
further insight on what those differences mean in terms of
usability of the graphs.

Introducing service heuristics could improve the charac-
teristics of synchronous firing. If services are performed too

early, then additional states would be generated in the result-
ing graph. If synchronous firing was not used, these additional
states could compound into more states due to the separation
of features. Likewise, if services are performed too late, then
additional states could be generated to represent the compli-
ance violation, and these states may also compound into more
statues without synchronous firing. Examining the impact of
synchronous firing when various heuristics are implemented
could reveal interesting results.

VII. CONCLUSION
This work implemented a state space explosion mitigation
technique called synchronous firing. This feature is able to
fire exploits simultaneously among a group of assets through
a single state transition. By firing exploits across multiple as-
sets, it is able to prevent the separation of features that should
normally be inseparable (such as time), and successfully re-
duces the number of total states in the resulting attack or
compliance graph. This feature does not alter the procedure of
the generation process in a way that undermines the integrity
of the resulting attack or compliance graph, and only groups
assets through defined inseparable features. This feature is
also toggleable, and the generation process seen in Fig. 3 does
not change if the feature is disabled. This feature successfully
reduced the total number of states, reduced the runtime of the
generation process, and can lead to a reduced analysis process
due to a smaller resulting graph.

REFERENCES
[1] C. Phillips and L. P. Swiler, “A graph-based system for network-

vulnerability analysis,” in Proc. New Secur. Paradigms Workshop, 1998,
pp. 71–79, doi: 10.1145/310889.310919.

[2] B. Schneier, “Attack trees: Modeling security threats,” Dr. Dobb’s J.,
vol. 24, no. 12, pp. 21–29, Dec. 1999. [Online]. Available: https://www.
schneier.com/academic/archives/1999/12/attack_trees.html

[3] X. Ou, W. F. Boyer, and M. A. Mcqueen, “A scalable approach to attack
graph generation,” in Proc. 13th ACM Conf. Comput. Commun. Secur.,
pp. 336–345, 2006.

[4] A. T. Al Ghazo, M. Ibrahim, H. Ren, and R. Kumar, “A2G2V: Au-
tomated attack graph generator and visualizer,” in Proc. 1st ACM
MobiHoc Workshop Mobile IoT Sens. Secur. Privacy, Ser. Mobile IoT.
2018, pp. 1–6, doi: 10.1145/3215466.3215468.

[5] M. Li, P. Hawrylak, and J. Hale, “Strategies for practical hybrid
attack graph generation and analysis,” Digit. Threats, Oct. 2021,
doi: 10.1145/3491257.

[6] L. Muñoz González, D. Sgandurra, A. Paudice, and E. C. Lupu,
“Efficient attack graph analysis through approximate inference,”
ACM Trans. Privacy Secur., vol. 20, no. 3, pp. 1–30, Jul. 2017,
doi: 10.1145/3105760.

[7] H. Wang, Z. Chen, J. Zhao, X. Di, and D. Liu, “A vulnerability assess-
ment method in industrial Internet of Things based on attack graph and
maximum flow,” IEEE Access, vol. 6, pp. 8599–8609, 2018.

[8] T. Gonda, T. Pascal, R. Puzis, G. Shani, and B. Shapira, “Analysis of
attack graph representations for ranking vulnerability fixes,” in Proc.
GCAI, 2018, pp. 215–228.

[9] J. Hale, P. Hawrylak, and M. Papa, “Compliance method for a cyber-
physical system,” U.S. Patent 9,471,789, Oct. 18, 2016.

[10] N. Baloyi and P. Kotzé, “Guidelines for data privacy compliance: A
focus on cyberphysical systems and Internet of Things,” in Proc. South
Afr. Inst. Comput. Sci. Inf. Technol.2019, pp. 1–12.

[11] E. Allman, “Complying with compliance: Blowing it off is not an
option,” ACM Queue, vol. 4, no. 7, pp. 18–21, 2006.

156 VOLUME 4, 2023

https://dx.doi.org/10.1145/310889.310919
https://www.schneier.com/academic/archives/1999/12/attack_trees.html
https://www.schneier.com/academic/archives/1999/12/attack_trees.html
https://dx.doi.org/10.1145/3215466.3215468
https://dx.doi.org/10.1145/3491257
https://dx.doi.org/10.1145/3105760

[12] O. Sheyner, J. Haines, S. Jha, R. Lippmann, and J. Wing, “Automated
generation and analysis of attack graphs,” in Proc. IEEE Symp. Secur.
Privacy, 2002, pp. 254–265.

[13] J. Zhang, S. Khoram, and J. Li, “Boosting the performance of FPGA-
based graph processor using hybrid memory cube: A case for breadth
first search,” in Proc. ACM/SIGDA Int. Symp. Field-Programmable
Gate Arrays, 2017, pp. 207–216.

[14] P. Ammann, D. Wijesekera, and S. Kaushik, “Scalable, graph-based net-
work vulnerability analysis,” in Proc. 9th ACM Conf. Comput. Commun.
Secur., 2002, pp. 217–224, doi: 10.1145/586110.586140.

[15] S. Jajodia and S. Noel, “Topological vulnerability analysis,” in Cyber
Situational Awareness: Issues and Research, vol. 46. Boston, MA,
USA: Springer, 2010, pp. 139–154.

[16] G. Louthan, “Hybrid attack graphs for modeling cyber-physical sys-
tems,” Ph.D. dissertation, Univ. Tulsa, Tulsa, OK, USA, 2011.

[17] K. Cook, “RAGE: The rage attack graph engine,” Ph.D. dissertation,
Univ. Tulsa, Tulsa, OK, USA, 2018.

[18] W. M. Nichols, “Hybrid attack graphs for use with a simulation of
a cyber-physical system,” Ph.D. dissertation, Univ. Tulsa, Tulsa, OK,
USA, 2018.

[19] “H.r.2281 - digital millennium copyright act,” pp. 105–304. 1998.
[Online]. Available: https://www.govinfo.gov/content/pkg/PLAW-
105publ304/html/PLAW-105publ304.htm

[20] Y. Kim, J. Moon, S. J. Cho, M. Park, and S. Han, “Efficient identi-
fication of windows executable programs to prevent software piracy,”
in Proc. IEEE 8th Int. Conf. Innov. Mobile Internet Serv. Ubiquitous
Comput., 2014, pp. 236–240.

[21] N. Kumari and M. Chen, “Malware and piracy detection in Android
applications,” in Proc. IEEE 5th Int. Conf. Multimedia Inf. Process.
Retrieval, 2022, pp. 306–311.

NOAH L. SCHRICK (Member, IEEE) received
the Bachelor of Science degree in electrical and
computer engineering and the Master of Science
degree in computer science from The University
of Tulsa, Tulsa, OK, USA, where he is currently
working toward the Ph.D. degree (fourth-year) in
computer science. His research focuses on cyberse-
curity and compliance, where he is on the analysis
of large-scale attack and compliance graphs to
detect, correct, and predict violations in regula-
tions or mandates. His additional research interests

include high-performance computing, research computing, platform engi-
neering, and scientific software development. Noah L. Schrick is a TU-Team8
Cyber Fellow with The University of Tulsa, where he focuses on the innova-
tion and growth of industry-applicable research.

PETER J. HAWRYLAK (Senior Member, IEEE) is
currently an Associate Professor with the Depart-
ment of Electrical and Computer Engineering, with
joint appointments in the Tandy School for Com-
puter Science and the School of Cyber Studies,
The University of Tulsa, Tulsa, OK, USA. He has
authored or coauthored more than 60 publications
and holds 15 patents in the radio frequency iden-
tification (RFID), energy harvesting, and cyber-
security areas. His research interests include RFID,
security for low-power wireless devices, Internet of

Things applications, critical infrastructure security, high-performance com-
puting, and digital design. His research has been supported by NASA, DOD,
the U.S. Army, DOE, Argonne National Laboratory, DOT, EPA, CDC, NSF,
and OCAST. Dr. Hawrylak is a Senior Member of the IEEE and IEEE
Computer Society. He was a Secretary of the Tulsa Section of the IEEE
2015–2018, Vice-Chair of the Tulsa Section of the IEEE 2019–2020. Since
2020, he has been a Chair of the Tulsa Section of the IEEE and lead-
ing the Section through the COVID-19 pandemic. He was Chair of the
RFID Experts Group (REG) of Association for Automatic Identification
and Mobility (AIM) during 2012–2013. He was the recipient of AIM Inc.’s
Ted Williams Award in 2015 for his contributions to the RFID industry.
Dr. Hawrylak serves on the Organizing Committee of the International IEEE
RFID Conference, and served two terms as the Editor-in-Chief of the IEEE
RFID VIRTUAL JOURNALduring 2016–2019 and also the Editor-in-Chief of
the International Journal of Radio Frequency Identification Technology and
Applications (IJRFITA) journal published by InderScience Publishers, which
focuses on the application and development of RFID technology. He is a
Senior Member the IEEE Computer Society, Member of IEEE-HKN, and
Member of Tau Beta Pi. He has served as the Faculty Advisor for the IEEE-
HKN chapter at The University of Tulsa (Zeta Nu chapter) from August 2010
to December 2020.

VOLUME 4, 2023 157

https://dx.doi.org/10.1145/586110.586140
https://www.govinfo.gov/content/pkg/PLAW-105publ304/html/PLAW-105publ304.htm
https://www.govinfo.gov/content/pkg/PLAW-105publ304/html/PLAW-105publ304.htm

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

