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ABSTRACT As a self-supervised learning method, the graph contrastive learning achieve admirable perfor-
mance in graph pre-training tasks, and can be fine-tuned for multiple downstream tasks such as protein
structure prediction, social recommendation, efc. One prerequisite for graph contrastive learning is the
support of huge graphs in the training procedure. However, the graph data nowadays are distributed in
various devices and hold by different owners, like those smart devices in Internet of Things. Considering
the non-negligible consumptions on computing, storage, communication, data privacy and other issues,
these devices often prefer to keep data locally, which significantly reduces the graph contrastive learning
performance. In this paper, we propose a novel federal graph contrastive learning framework. First, it is able
to update node embeddings during training by means of a federation method, allowing the local GCL to
acquire anchors with richer information. Second, we design a Self-adaptive Cluster-based server strategy to
select the optimal embedding update scheme, which maximizes the richness of the embedding information
while avoiding the interference of noise. Generally, our method can build anchors with richer information
through a federated learning approach, thus alleviating the performance degradation of graph contrastive
learning due to distributed storage. Extensive analysis and experimental results demonstrate the superiority
of our framework.

INDEX TERMS Differential privacy, federated learning, graph contrastive learning.

In recent years, due to the outstanding performance of graph
contrastive learning (GCL) in node classification, node clus-
tering and graph classification, it has attracted widespread
attention in tasks such as protein structure prediction [1] and
computer vision [2]. As a self-supervised graph representa-
tion learning method, GCL is able to address the real-world
problem of existing large amounts of unlabelled and unusable
graph data [3], [4]. It learns the representation of such graph
data as a result of pre-training, and only slight fine-tuning
is required when applied to a specific task, thus unlocking
significant time or equipment costs, and providing good trans-
ferability [5].

Specifically, to realize the pre-trained model, GCL typi-
cally begins by obtaining positive and negative samples from
various views. It frequently employs data augmentation (e.g.,
node dropout, edge dropout, and feature mask) to obtain aug-
mented graph from original graph, such as GraphCL [6]. And
then uses the original graph as the anchors, with the data
corresponding to the augmented graph being positive sample
pairs and the other data being negative sample pairs. Anchors
are used as the reference for training. Following that, the
theory of maximizing mutual information (infoMAX) [7] is
introduced to maximize the similarity of positive sample pairs
on the hidden space while decreasing the similarity of negative
sample pairs. According to this learning process, it is noticed
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that anchors have a decisive influence on the training effect,
and more representative anchors are more conducive for gen-
eralized and stable representations [8], [9]. In the case of
centralized training, GCL uses the original graph as a proper
anchor.

However, in the real world, due to the large size of real-
world graph data [10], [11], it is frequently scattered across
multiple devices in more general cases like Internet of Things
(IoTs) [12], [13], making it difficult to interoperate and result-
ing in data isolation with privacy protection in mind [14], [15],
[16], [17]. It causes the absence structural and feature infor-
mation in the stored graphs in each device [18], which lead
to a lack of representative ability of origin graph [19]. Then
corresponding anchors can lead to a significant reduction in
the effectiveness of GCL.

In recent years, federated learning approaches [20] are pro-
posed and flourished, which aims at solving the distributed
learning of deep neural networks [21]. They usually aggregate
the neural network parameters across clients by weighted av-
eraging, and follow an iterative mode to train models without
fusing all data to the central server. However, previous efforts
in federated learning have been of limited use in solving the
problem of GCL, where specific designs towards mitigating
the missing of anchor information are imperative.

To solve the above problem, this paper proposes Self-
adaptive Cluster-based Federal Graph Contrastive Learning
(SC-FGCL), which allows local devices to federate with other
clients to update the node embeddings obtained from clients’
network layers, SC-FGCL provides local clients with criti-
cal clues to obtain anchors with richer information and thus
obtain better GCL results. Simultaneously, the self-adjusting
clustering method of server in SC-FGCL automatically ex-
plores for the best embedding update solution for each round,
enabling each embedding to maximize its own information
enrichment while avoiding interference from other noisy node
embeddings.

In SC-FGCL, it is assumed that each device holds a graph
locally, which can be thought of as a subgraph of the global
graph with some node overlap between devices. Then, we
propose a novel federal GCL framework that uploads local
node embeddings to the server, updates each node embedding
jointly on the server side, and server returns the result as a
local GCL anchor. We present a corresponding paradigm for
the local training, feature update, and communication, as well
as analysis of communication and local storage consumption.

To further improve the performance for GCL, we also in-
troduce a self-adaptive clustering method in SC-FGCL for
selecting the best update solution for each node on server
side. The method recursively selects the embedding with the
highest similarity and tightness for the node to be updated, by
adopting the calculation of the clustering internal evaluation
effectiveness metric as the criterion. In addition, the selection
of the threshold for the best clustering internal evaluation met-
ric is dependent on the Calinski-arassment score value, and
the server will automatically calculate and select the update
policy with the higher value as the final update policy.
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Finally, our framework ensures privacy security, while
differential privacy is used to protect privacy during data
transfer [22], [23], [24]. We conducted experiments on three
benchmark datasets and the results show the superiority of our
approach.

The main contribution of this paper includes:

1) We propose a novel federal GCL framework for obtain-
ing anchor with richer information by jointly updating
node embeddings, effectively mitigating GCL perfor-
mance degradation due to data isolation.

2) To enable node embeddings to be updated with maxi-
mally rich information about themselves, while reduc-
ing the interference of noisy embeddings, we propose
a self-adaptive clustering method that automatically se-
lects the optimal update scheme for node embeddings.

3) The results of the extensive evaluation show that our
framework is advanced compared to the baseline.

II. RELATED WORK

A. GRAPH CONTRASTIVE LEARNING

Inspired by contrastive learning (CL), GCL has received wide
attention in the recent years, which is based on GNN for
contrastive learning on graph data. Velickovi¢ et al. proposed
DGI (Deep Graph Infomax) [25], which uses the concept of
DIM (deep infoMax) [7] to optimize infoNCE loss in order to
maximize mutual information between local and global node
representations. Following that, Sun, et al. proposed Info-
Graph as an extension to DGI [26]. In contrast to DGI, which
focuses on node-level GCL, InfoGraph focuses on graph-level
GCL. It maximizes mutual information between graph-level
and substructural representations at different scales (nodes,
edges, triangles). Furthermore, Sun, et al. proposed Info-
Graph* for semi-supervised scenes to extend InfoGraph.

You, et al. proposed GraphCL [6], currently the most fa-
mous of GCL. Based on SimCLR [27], GraphCL obtains
two views from original Graph by data augmentation, and
also adopts DIM theory for optimization. The loss func-
tion of GraphCL follow normalized temperature -scaled cross
entropy loss (NT-Xent) [28], [29], [30], NT-Xent is the com-
monly used GCL loss at present. GraphCL has rich data
augmentation methods (node drop, edge drop, feature mask)
and contrastive levels (node-level, graph-level, subgraph-
level), which have had a profound impact on subsequent GCL
research.

Current work in GCL focuses on two main aspects: data
augmentation approaches, and contrastive approaches.

For data augmentation approaches, Zhu, et al. proposed
GCA [31], which bases the probability of removing edges on
node centrality in order to keep structural information more
valuable to Graph. Hassani et al. proposed MVGRL in [32],
which introduces a multi-view approach. Recently, there has
also been some excellent work emerging on learnable data
augmentation approaches [3], [33], [34].

For contrastive learning methods, Qiu, et al. proposed
GCC [35] to improve the transferability in interactive
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contrastive manner. In [36], Xu, et al. proposed GraphLoG,
which uses hierarchical prototypes to capture global semantic
clusters while keeping local similarity, and employs EM for
efficient learning. Furthermore, some recent research focuses
on how negative examples are chosen e.g., [37], [38]. Mean-
while, inspired by [39], [40], [41] focuses on the learning
model without negative samples.

B. FEDERATED LEARNING

Federated learning was developed to address machine learn-
ing performance degradation caused by data isolation issues,
with the goal of achieving co-training while maintaining pri-
vacy and security. FedAvg [20], the industry and academic
standard for federated learning, has been widely used to date.
During the training process, factors such as network parameter
weights, gradients, or loss of the local model are averaged on
the server, thus eliminating the need to expose local data.

On this basis, various approaches to improving FedAvg
have emerged. The main issues being researched in the field
of federated learning are optimizing approach, and privacy
protection.

Li, et al. proposed FedProx for federated learning algorithm
optimization [42], which allows different workloads to be
performed by taking into account the performance of different
devices. FedMA [43] was proposed by Wang, et al., to build
global models via layers by matching and averaging hidden
elements with the same features.

For privacy security, FL. commonly employs homomorphic
encryption [44], differential privacy [45], and model aggrega-
tion mechanisms [46].

Currently, there are only [47] and [48] work on federal
GCL, but they focuses on data heterogeneity and reducing
structural interference to graph federated learning due to dif-
ferential privacy via graph contrastive learning methods. Our
work focuses on addressing the limitations of distributed stor-
age for GCL through federated learning.

1il. PROBLEM DEFINITION

A. SYSTEM SETTINGS

The system consists of one server and N clients C :
{Ci, Cy, ...,Cy}, Each device holds its own dataset D; : {G;}.
where G; : {V;, E;} indicates a graph with node feature set
X; = {xyey;} and edge feature set Z; = {z¢ef,}. Accordingly,
the adjacency matrix A; can be obtained from the G;. We
assume that nodes are partially overlapped between clients i.e.
GIUGU...UGy =G, VNV, #0,i# .

All devices federate with others to train their own lo-
cal GCL pre-training models. The training is initiated by
server. At the beginning, server distributes initialized network
parameters to individual clients. During training process,
clients first perform forward propagation locally and upload
the results to server. Then, server aggregates results and
sends them back to the corresponding clients. Finally, clients
update local network parameters according to aggregated
results.
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TABLE 1. Notion
Notion Definition
N The number of clients.
C Clients set
c,eC The client C; in C.
G :{V,E} Graph data G with the node set V' and the edge set E.
4 The number of nodes in V.
X ={zpev} The node feature set of V.
Z ={zeccr} The node feature set of E.
0; C}’s local neural network parameters.
L(6;) loss of C; under ;.
I Mapping function.
ANf Sensitivity of differential privacy.
M Randomized mechanism.
Q Arbitrary set of outputs.
Pr[] Probability of occurrence of random events.
B. SECURITY

Federated learning necessitates the exchange of frequent
messages between all devices. As in FedAvg, gradient, net-
work weights are used as transmission parameters. In this
process, malicious and semi-honest clients and server may
capture changes in transmission and thus infer the original
data through differential attacks [49]. To protect privacy, we
use differential privacy, which makes it difficult to capture
changes to only one element in local node embedding.

Differential privacy is defined as follows [22]:

Neighboring datasets are two datasets D and D' that differ
by only one record. Function f is able to map the dataset D
to the abstract range R: f : D — R. The maximum difference
between the mapping results is defined as the sensitivity Af.
Mechanism M is a randomized algorithm that transforms the
result of f.

Definition 1: (e, §)-differential privacy [50]. For any neigh-
boring datasets of D and D', and for every set of output €2,
randomized mechanism M gives (€, §)-differential privacy, if
M satisfies:

PrM(D) € Q] < exp(e)-Pr[M (D') € Q] +6 (1)

C. DESIGN OBJECTIVE

The purpose of all clients during training is to train a local
representation of the nodes via contrastive learning. Our opti-
mization goal is to minimize the node contrastive loss on all
clients:

Y i
. 1
arg min —L(6;)
01.05.....0y ; i
where |V;| denotes the number of G; nodes, [V| =Y |V;|,
and denotes the value of the loss function of C; under C;’s local

neural network parameters 6;.
The notations mentioned above as shown in Table 1.
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FIGURE 1. Overall framework of SC-FGCL.

IV. FRAMEWORK

In this section, we first briefly outline the general training
process. Next, we detail the client local training method and
the server aggregation strategy. Finally, the framework’s com-
munication mechanism is defined and analyzed.

A. OVERVIEW OF FEDERAL GRAPH CONTRASTIVE
LEARNING

Motivated by the performance degradation of GCL in the dis-
tributed storage, this framework proposes that multiple clients
jointly update local embeddings and use the updated embed-
dings as anchor for local GCL.

The overall process of the framework is shown in Fig.
1. In each training round, the client C; € C forward prop-
agates its graph data to get the local embedding #;. Then,
clients send the local embedding to server, which gets hg :
{h1, ha, ..., hy}. On the server, the hg is updated by the self-
adaptive aggregation method to get hg: {h1,"h2, ..., hy}.
After that, server sends the updated embedding back to the
corresponding client. Finally, client C; receives the updated
embedding h;, uses it as an anchor for contrastive learning,
computes the local loss. Training stops until local models
converge.

At the start of training, the server delivers the same initial
graph encoder and projection head network parameters to all
clients. In addition, the transmitted data between clients and
server with differential privacy.

B. CLIENT GRAPH CONTRASTIVE LEARNING MODEL

As shown in Fig. 2, in k — th round training for the local client
Ci, G; first propagates forward to obtain the node representa-
tion in the Graph:

iy = & (f (xi.))

client N

where f(-) is the GCN, g(-) is the projection head function,
and h{f i is the original embedding representation of node j
in client C; at the k — th round of training. Then the node
embedding sequence hf in client C; is:

k __ k k k k
W= kg iR

After uploading hf to server, C; gets the updated embedding
K< from the server:

K k 11k ko7 ko7
W= (ko i

k Kk’ e gk
where h; j and h; ; are positive sample pair, /; j and the

other nodes in the hf/ are negative sample pairs.

The loss function follows the normalized temperature-
scaled cross entropy loss mentioned in Section 2.1, and the
loss function for node v; ; in the k — th round,is defined as:

exp (sim (hk o j) /z)
S L exp (sim (hk P hj.jj,) /z)

where sim(-) is defined as:

li’j = —log

k Tk
. k k hi,n hi,m
sim(h;,, hi,,)=+—""F"—
’ ’ k hk
Hhi,n i,m”

The loss function of C; in the k — th round is:

Vil

L= ln
m=1

Unlike the usual GCL method which uses the original graph
as the anchor, our framework uses the updated embeddings
returned by the server as the anchor. Meanwhile, we used the
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FIGURE 3. Server aggregation model.

original graph instead of data augmentation as positive and
negative samples.

Our approach enables the local client to use richer infor-
mation anchor for learning, thereby alleviating contrastive
learning performance degradation caused by distributed stor-
age.

C. SERVER AGGREGATION MODEL

When server receives the embeddings that clients have up-
loaded, it needs to update them jointly. We design an update

VOLUME 4, 2023

k-th aggregation

mean pooling

mechanism with self-adaptive capabilities, as shown in 3.
It aggregates similar embeddings, and iteratively adjusts the
aggregation radius by computing the tightness score, until the
optimal radius is found.

To evaluate the tightness through clustering effect, we in-
troduce Davies-Bouldin Index (DB) and Calinski-Harabasz
Index (CH) as the evaluation index of clustering.

Definition 2: Davies-Bouldin Index [51]

s(D)

Sop=——2
L7 I(e, mean(D))



WANG ET AL.: SC-FGCL: SELF-ADAPTIVE CLUSTER-BASED FEDERAL GRAPH CONTRASTIVE LEARNING

where S, p is DB of an embedding e and D, D represents
an embedding set and all embeddings in it are considered as a
cluster, s(D) is cluster D’s diameter, mean(D) represents the
cluster centre, (e, mean(D)) represents the distance between
e and mean(D).

DB measures intra-class closeness, a smaller value of S, p
means the more reasonable for e to join the cluster.

Definition 3: Calinski-Harabasz Index [52]

B(K)(N — K)

CHK)= ————
W(EK)K — 1)

where, K is the number of clusters, N is the total number
of samples in clusters, B(K) is inter-cluster divergence, W (K)
is intra-cluster divergence. CH measures the overall clustering
effect, a higher CH indicates better global clustering.

The detailed process of server aggregation algorithm is as
follows:

(D First, for the embeddings received in the k — th round,
calculate their distances to others and arranged in descending
order to obtain the Similarity Sequence:

SimSeq; . = Jej,ea,...,€p,...,€
qz,/ r (Z?L]lvi\)*l

e, represents the embedding of a node with rank 7 in
SimSeq; ;.

@ The set D; ; of embeddings for updating hf.f i is ob-
tained recursively by sequentially querying embeddings from
SimSeq; ;.

Definition 4: Decision recursive formula. For selecting the
optimal solution for updating a cluster from adjacent embed-
dings:

C(r) = argDmin {Se,,C(r—l), Se,,C(r—2)} U {ey}

where C(0) = {hj{j}, C(0) = {h{{j, el }

Given a sensitive value &, end the recursion when
minD{Ser,c(y,l), Ser,c(yfz)} > ¢ to obtain Di,j‘

(® Perform mean pooling on the embedding in D; ; to
update the initial embedding.

@ If ¢ is small, sufficient information will not be obtained,
and when ¢ is large, the updates contain noisy information. To
find the optimal sensitivity value, we first set a small ¢, and
cluster the updated embeddings at the end of all updates. In
this paper, meanshift clustering [53] is used as an example.
And then compute CH based on the clustering results.

Then, we gradually scaled up ¢ and repeated the above
process until the current clustering CH was smaller than the
previous one. The previous & was considered as the optimal
sensitivity value for this round.

The procedure of server aggregation is given in Algorithm
1. The time complexity of Algorithm 1 is O + n? x m),
where 7 is the number of input embeddings, m is the embed-
ding’s dimension.

18

Algorithm 1: Server Aggregation Algorithm.
INPUT: training round k; number of clients, N; k — th
round initial embedding set of server, ¥,
RE =Rk WS nE R Y i — th client, Ci; C's

s Ty

initial embedding, k¥,

k k  pk k
W= g B
value ¢; amplification factor u; distance function dis(-);
Initial round of iterations r = 2; Loop initial round
l=1,CHy=CH; =0.

OUTPUT: k — th round updated embedding, hk/;

K _ ks pk k k'

W=
# Get similarity sequence:
for it jin ik do
for 1% ,, in h* do
Calculate dis (h{.j B ) B I
end for
Sorted in descending order according to
calculations.
Get SimSeq <—
{SimSeqLo, SimSeq 1, - .
SimSeq; j <—

€1,€2,...,€p,...,6€
{ ’ ’ 2 &F ’ (Zf\]:l |Vz)_1}
end for

., hf‘ Vil }; initial sensitivity
) 1

.,SimSeqN’Wm},

# Obtaining decision set for updating by recursion and
mean pooling:
while CH; < CH;_; do
for 1f ; in h* do
while minD{Se,,C,-.j(rfl)a Se,,C,;j(r72)} < edo
Ci j(r) <—
afgll)niﬂ{se,,c,v,,(r—l), Se,.ci =2y} U {er}

r<—r+1
end/ while
hf;f <« mean(C; j(r — 2))
end for
# Optimal sensitivity value selection:
meanshift on A%’
Calculate CH,
[ «<—1+1
e <— (1+pe
end while
return iK' «— p/=2K'

V. ANALYSIS
In this section, we will conduct a communication security
analysis as well as a framework efficiency analysis.

A. SECURITY ANALYSIS
To avoid privacy leakage during communication, we use dif-
ferential privacy in the communication process. In order to
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secure privacy while adding less noise and gaining more flex-  TABLE 2. Dataset
ibility, we adopt Gaussian mechanism for differential privacy.
Gaussian mechanism is defined as follows: Dataset  Cora Citeseer ~Pubmed

Theorem 1: Gaussian mechanism. [22] For. a function. f: Nodes 2708 19717 3327
D — R over a dataset D, the mechanism M in (2) provides Ed 420 14338 P
the -differential privacy. 8es

Features 1433 500 3703
MD) = f(D)+Y @ Classes 7 6 3

where Y is the Gaussian noise satisfying the (3) condition:

VSE(QILO,>AﬂﬂHﬁ§BZSAf

Y ~N(0,0%) (3

For all transmitted data, the (e, §)-differential privacy de-
fined in Definition 1 is satisfied by adding a Gaussian noise to
it that meets the above conditions.

B. EFFICIENCY ANALYSIS

In this section, we compare our method with vanilla method
(GraphCL with FedAvg) in terms of communication effi-
ciency and local storage space consumption to provide an
analysis of the applicability scenarios of this framework.

1) COMMUNICATION EFFICIENCY
To ensure a fair comparison, we set the neural network layers
of GraphCL to be consistent with the framework of this paper.
It is assumed that the local GraphCL of device D; has a total
of m layers of network with parameter dimensions F; x dim;,
dimy x dimy,..., dimy,_ x dim,,. The gradient has the same
size as the parameters.

When the gradients of GraphCL are federated for learning
with the FedAvg method, the size of the data that needs to be
transferred for each round by device D; is:

F x dimy +dimy x dimy + - - - + dim,_| X dim,, (4)

Whereas SC-FGCL method passes node embedding, the
size of data to be transmitted is:

N; x dimy, (5)

According to (4) and (5), it can be found that our method
is insensitive to feature dimensionality, the size of network
parameters, and the number of nodes, while GraphCL is the
opposite.

In the case of distributed storage, the number of nodes
stored by each client tends to be significantly less than cen-
tralized case, so SC-FGCL can better support multiple feature
data, support multi-layer networks, and the transmission com-
munication is not limited by the network structure.

2) LOCAL STORAGE SPACE CONSUMPTION

For device D; holding G; : {N;, E;}, E; stored in the form of
an adjacency matrix, the size of the storage space occupied by
the origin graph is:

N; x F; + N; x N; (6)

VOLUME 4, 2023

GraphCL generally obtains two augmented graphs from the
origin graph, and we discuss the storage consumption under
three common augmentation approaches:
Node mask:
The storage consumption at node mask is:

Neost = 20(N; x Fj + aN; x Nj) + N; x F; + Ni x N; (7

where « is the node retention probability and @ € (0, 1).
Feature mask:
The storage consumption at feature mask is:

Feost = 2(BN; X F; + Ni x Nj) + N; x F; + N; x N;  (8)

where g is the node retention probability and 8 € (0, 1).
Subgraph:
The storage consumption at subgraph is:

Scost = 20(BN; x F; +aN; x N;) + N; x F; +N; x N; (9)

The only data that SC-FGCL needs to propagate through
the network is the local origin graph, and the combined
(6)-(9), SC-FGCL always consumes less local storage than
GraphCL.

VI. EXPERIMENTS

A. DATASETS

Cora, Pubmed, and Citeseer [54] are three benchmark datasets
commonly used in graph neural networks. We divide the node,
edge, and feature data so that they are stored in different
clients to simulate data isolation. To validate the effectiveness
of GCL as a pre-training, we select node classification as the
downstream task and use the downstream task accuracy as the
evaluation criterion. Details of these three datasets are shown
in Table 2.

B. COMPARISON METHODS
As there is no systematic approach focused on mitigating
the performance degradation of local GCL through a federal
approach before our work. So we compared the downstream
task accuracy for the following cases with the same training
settings:
1) Centralized training: centralized training to obtain pre-
train models
2) Local training: local training via GraphCL only
3) Baseline: network gradient averaging via FedAvg in
each round while training locally via GraphCL
4) Our methods
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client1
NT1 FLGCL

(a) client 1

FIGURE 4. Accuracy of node classification in cora.

We compare the training results between the centralized
training and the local training scenario with GraphCL to verify
that data isolation reduces the effectiveness of GCL.We use
GraphCL+FedAvg as a baseline to compare its training effect
on the local client.

C. PARAMETER SETTING

In our experiments, the total number of clients is 3; the (€, §)-
differential privacy parameters € € 1, 2, 4, 8, 16, 32, 64, 128,
8 = 10* are set; The learning rate for local GCL is 0.01; A
multi-layer perceptron classifier is used for node classifica-
tion, including a fully connected layer and a activation layer,
with a Relu activation layer function and a learning rate of
0.01.

D. ANALYSIS OF RESULTS

Table 3 shows the experimental results of the node classifi-
cation task using different datasets. Furthermore, for visual
analysis, we chose the results from the cora set and plotted
their accuracy curves for all clients, as shown in Fig. 4.

As shown in Fig. 4, the prediction accuracy of centralised
training is consistently significantly higher than the distributed
training and converged faster. According to Table 3, the pre-
diction accuracy of the centralised case is 10%—20% higher
than the distributed one. This indicates that distributed storage
of data can significantly reduce the effectiveness of GCL.

For baseline, gradients are averaged each round during the
training process. According to the results shown in Table 3,
FedAvg has a 1%—5% increase for the distributed GraphCL.
And as shown by Fig. 4, convergence is slightly faster when
FedAvg is used.

The SC-FGCL method has superior performance both in
terms of accuracy and convergence speed. As shown in Table
3(a), the SC-FGCL has a 4%-7% improvement over baseline
in the Cora set, and for the citeseer and pubmed sets, the SC-
FGCL method results are close to centralized training results.
The curves in Fig. 4 show that the SC-FGCL converges signif-
icantly faster than the other methods and is similar to the con-
vergence speed of the centralised method. This demonstrates
the significant role of the SC-FGCL method in mitigating the
reduced GCL effect due to distributed storage, as well as its
superior performance as a federal GCL framework.

20
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(b) client 2

client 3
O CLIENT3 FLGCL_ACC
NT3 GCL AC

(c) client 3

TABLE 3. Accuracy of Node Classification Different Method

(a) Cora
Dataset Cora
Device Client 1 Client 2 Client 3
Centralized 80.34%+0.02%  79.63%+0.10%  80.36%=0.15%

GraphCL 66.14%+0.34%  62.28%+1.41%  61.09%=%1.00%
GraphCL+FedAvg | 67.24%+0.72%  65.30%+1.00%  62.64%*1.12%
SC-FGCL 71.80%+1.54%  67.32%+2.21%  69.01%=%1.30%
(b) Citeseer
Dataset Citeseer
Device Client 1 Client 2 Client 3
Centralized 70.79%+0.02%  71.93%+0.13%  72.79%=+0.12%
GraphCL 61.61%+0.11%  67.18%+0.11%  66.73%+0.13%
GraphCL+FedAvg | 61.42%+0.32%  67.71%+0.21%  66.85%%0.11%
SC-FGCL 66.37%+1.22%  67.36%+1.32%  69.53%=*1.87%
(c) Pubmed
Dataset Pubmed
Device Client 1 Client 2 Client 3
Centralized 86.58%+0.06%  85.47%%0.03%  87.60%=+0.02%
GraphCL 77.17%+0.10%  74.06%+0.11%  75.92%+0.08%
GraphCL+FedAvg | 80.00%+0.42%  79.14%+0.24%  76.04%%0.17%
SC-FGCL 82.39%+0.34%  82.40%=%0.73%  84.51%=x0.48%

To verify the effectiveness of the server aggregation scheme
proposed in this paper, we conducted ablation experiments on
three datasets and selected the results of client] for observa-
tional analysis. We shows the results in Table 4. The top10
embeddings in the similarity matrix are used to update the
original embeddings when no regression decision is made and
the optimal clustering sensitivity value selection is performed
via CH.

According to Table 3, the CH-index binding-only approach
outperforms the no-strategy approach, while the regression
decision-only approach outperforms the CH-index binding-
only approach. And is optimal when both approaches are
taken. This proves that regression decision method has a more
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TABLE 4. Ablation Experiments

Recursion  CH-index
Accuracy
Decision Binding
Dataset cora citeseer pubmed
v v 71.80%+1.5%  66.37%+1.2%  82.39%+0.3%
VA X 69.73%+1.2%  66.12%+0.7%  82.14%+2.0%
X Vv 69.19%+3.3%  65.78%+2.0%  80.22%+10.1%
X X 68.82%+4.2%  65.32%+51%  79.81%+13.2%

significant utility and that CH-index binding acts as an ad-
justment scheme to assist the regression decision method in
achieving the optimal value.

VII. CONCLUSION

In this paper, we propose a Self-adaptive Cluster-based
Federal Graph Contrastive Learning (SC-FGCL) framework
which unites all clients to update node embeddings as local
GCL anchors to mitigate the weakening of GCL effects by dis-
tributed stored graph data, resulting in better GCL effects. At
the same time, to enable the server to find the optimal update
solution, we designed clustering methods with self-adaptive
capabilities. It allows each embedding to be updated in a way
that maximizes the enrichment of its own information while
preventing noisy embeddings from interfering. Experimental
results on multiple graph datasets show that our method sig-
nificantly outperforms the comparative baseline and that our
self-training approach yields better performance.
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