
Received 18 November 2022; accepted 25 December 2022. Date of publication 30 December 2022;
date of current version 13 January 2023. The review of this article was arranged by Associate Editor Shih-Chia Huang.

Digital Object Identifier 10.1109/OJCS.2022.3233088

An Efficient Connected-Component Labeling
Algorithm for 3-D Binary Images

XIAO ZHAO 1, YUYAN CHAO2, HUI ZHANG1, BIN YAO1, AND LIFENG HE 1,3 (Senior Member, IEEE)
1Artificial Intelligence Institute, School of Electronic Information and Artificial Intelligence, Shaanxi University of Science and Technology, Xi’an 710021, China

2Graduate School of Environment Management, Nagoya Sangyo University, Owariasa-shi 488-8711, Japan
3Graduate School of Information Science and Technology, Aichi Prefectural University, Nagakute 480-1198, Japan

CORRESPONDING AUTHOR: LIFENG HE (e-mail: helifeng@ist.aichi-pu.ac.jp)

This work was supported in part by the Grant-in-Aid for the National Natural Science Foundation of China under Grants 61971272 and 61601271, in part by the
Doctoral Scientific Research Foundation of Shaanxi University of Science and Technology under Grant 2019BJ-27, and in part by the Nitto Foundation, Japan.

ABSTRACT Conventional voxel-based algorithms for labeling connected components in 3D binary images
use the same mask to process all object voxels. To reduce the number of times that neighboring voxels
are checked when object voxels are processed, we propose an algorithm that uses two different masks for
processing two different types of object voxels. One type of mask is used when the voxel preceding the
object voxel being processed is an object voxel, and the other type is used otherwise. In either case, an
optimal order is used for checking the voxels in the corresponding mask. Experimental results demonstrate
that our proposed algorithm checked fewer voxels, and was more efficient than conventional algorithms.

INDEX TERMS Computer vision, connected component, labeling algorithm, 3D binary image.

I. INTRODUCTION
Connected-Component labeling (CCL) in a binary im-
age is indispensable for pattern recognition, pattern analy-
sis, computer (robot) vision, and machine intelligence [1].
CCL can transform a binary image to a symbolic im-
age in which all pixels belonging to a connected com-
ponent (also called an object) are assigned a unique la-
bel. Subsequently, using the symbolic image, the fea-
tures of these connected components (objects) can be
extracted.

Many efficient CCL strategies have been proposed for
2D binary images [2]. Efficient two-scan CCL algo-
rithms include pixel-based algorithms [3], [4], [5], run-
based algorithms [6], [7], and block-based algorithms
[8], [9].

As technologies for image acquisition and manipulation
have advanced, 3D images have become widely used in var-
ious image-processing and analysis applications [10], such
as medical image analysis and computer-aided diagnosis of
medical images [11], [12], [13], [14], as well as computer
graphics. More accurate and complete information is con-
tained in 3D images than in 2D images. For example, doctors
can quickly diagnose diseases using 3D images [15].

CCL for 3D binary images has attracted much attention
since the 1980s, and many algorithms [3], [16], [17], [18],
[19], [20], [21], [22] have been proposed.

He et al. [21] presented an efficient voxel-based CCL al-
gorithm for 3D binary images (for convenience, we call this
algorithm the VCL algorithm). By checking the voxels in the
mask in an optimal order, the VCL algorithm can reduce the
number of voxels to check when processing each object voxel.
However, some voxels that were already checked earlier while
processing another voxel may be checked again.

An effective strategy for improving 2D CCL algorithms is
to reuse the information obtained while processing each object
pixel to reduce the number of pixels that need to be checked
when processing another object pixel later. This strategy was
first presented in [24], further studied in [3], and has also been
extended to block-based CCL algorithms [25], [26].

This article presents an improvement of the VCL algorithm
that incorporates the above efficient strategy in the following
manner: for an object voxel that follows another object voxel,
the algorithm uses the mask M1, which contains much fewer
voxels than the conventional mask. Conversely, for an object
voxel that follows a background voxel, it uses another mask
M2, which is like the mask used in conventional voxel-based

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME 4, 2023 1

https://orcid.org/0000-0002-7387-1646
https://orcid.org/0000-0001-8132-0919
mailto:helifeng@ist.aichi-pu.ac.jp

ZHAO ET AL.: EFFICIENT CONNECTED-COMPONENT LABELING ALGORITHM FOR 3-D BINARY IMAGES

FIGURE 1. Mask M with 26-connectivity for 3-D binary images.

CCL algorithms. In either case, an optimal order is used for
checking the voxels in the corresponding mask.

The remainder of the article is organized as follows. We
present some preliminaries in Section II and introduce our
proposed algorithm in Section III. In Section IV, we present
experimental results to evaluate the performance of our pro-
posed algorithm against conventional CCL algorithms. We
discuss the results in Section V and present our concluding
remarks in Section VI.

II. PRELIMINARIES
For a 3D binary image of size U × V × W, we use v(x, y, z) to
denote the voxel at (x, y, z) in the image, where 1 ≤ x ≤ U, 1 ≤
y ≤ V, and 1 ≤ z ≤ W. For convenience, we also use v(x, y, z)
to denote the value of the voxel. Without loss of generality,
we use 0 as the value of a background voxel and 1 as the
value of an object voxel. We only consider 26-connectivity
in this article because the other cases (i.e., 6-connectivity and
18-connectivity) are sub-cases of 26-connectivity. Moreover,
all border voxels of an image are assumed to be background
voxels.

A. PRINCIPLE OF LABEL-EQUIVALENCE-BASED TWO-SCAN
LABELING ALGORITHMS
For a voxel v(x, y, z), the 26 voxels v(x ± i, y ± j, z ± k)
such that i, j, k are 0 or 1, except i = j = k = 0, are said to
be its neighbors. Two object voxels p and q in a binary image
are said to be 26-connected if and only if there is a path that
consists of object voxels v1, …, vn such that v1 = p, vn = q,
and for 1 ≤ i < n, vi and vi+1 are neighbors of each other.
A connected component (an object) in a binary image is a
maximum set of object voxels in the image such that all pairs
of voxels in the set are 26-connected.

To label a binary image, a label-equivalence-based two-
scan labeling algorithm [2] works as follows. In the first scan,
for each voxel v(x, y, z), if v(x, y, z) is a background voxel,
it does nothing; otherwise (i.e., v(x, y, z) is an object voxel),
it checks whether there is any object voxel in the mask M,
which consists of the 13 neighbors of v(x, y, z) that have been
processed (Fig. 1). If there are none, the algorithm assigns v(x,
y, z) a new provisional label. Otherwise, there are some object
voxels in the mask, each of which has been assigned a pro-
visional label during the previous image processing. Because

all object voxels in the mask are 26-connected to v(x, y, z),
all object voxels in the mask and v(x, y, z) belong to the same
object. Therefore, the algorithm assigns any label in the mask
to v(x, y, z), records all labels in the mask as equivalent labels,
and finds a unique label as the representative of the equivalent
labels by resolving equivalent labels.

In this manner, after the first scan, each object voxel has
been assigned a provisional label, all provisional labels as-
signed to the voxels of each object have been recorded as
equivalent labels, and a representative label for each group
of equivalent labels has been found by resolving equivalent
labels. In the second scan, by replacing the provisional label
of each object voxel by its representative label, all voxels of
an object are assigned a unique label.

B. EQUIVALENT-LABEL-SET STRATEGY FOR LABEL
EQUIVALENCE RESOLUTION
The equivalent-label-set strategy is the most efficient strategy
for resolving label equivalences [2]. This strategy combines
all equivalent provisional labels in a set and uses the smallest
label in the set as the representative label of all labels in the set
[23]. For convenience, we use R(l) to denote the representative
label of the provisional label l, and S(t) to denote the equiva-
lent label set for which t is the representative label. Thus, for
each provisional label x � S(t), R(x) = t holds.

In the first scan, when a new provisional label l is assigned
to an object voxel v (i.e., v = l), this strategy sets the repre-
sentative label of l to itself (i.e., R(l) = l) and establishes a
new equivalent label set S(l) = {l}. Whenever two provisional
labels m and n are found to be equivalent, where m � S(u)
and n � S(v), all provisional labels in S(u) and S(v) are equiv-
alent. Therefore, S(u) and S(v) are combined by the following
procedure resolve(u, v).

resolve(u, v){
if (u < v)
S(u) = S(u) � S(v);
for all p � S(v), R(p) = u;
else if (v < u)
S(v) = S(v) � S(u);
for all p � S(u), R(p) = v;
}

Using this strategy, at any time in the first scan, all pro-
visional labels assigned to a connected component in the
processed area of the image are combined in an equivalent
label set whose smallest label is their representative label.
Therefore, as soon as the first scan has finished, all equivalent
labels assigned to an object are combined in an equivalent
label set whose smallest label is the representative label of
the object.

C. REVIEW OF VCL ALGORITHM
The VCL algorithm is a label-equivalence-based two-scan
algorithm that uses the equivalent-label-set strategy for label
equivalence resolution. In principle, when processing each
object voxel, the voxels in the mask can be checked in any

2 VOLUME 4, 2023

TABLE 1. Number of Neighbors of a Voxel in the Mask

order. However, the order of checking may affect the effi-
ciency. Because there are 13 voxels in the mask, the number
of possible orders is 13! therefore, it is important to find an
optimal order for checking the voxels in the mask.

According to the principle of the equivalent-label-set strat-
egy for label equivalence resolution, when processing an
object voxel, each object voxel in the mask has been assigned
a provisional label, and all provisional labels assigned to the
voxels of each connected part in the mask have been com-
bined in the same equivalent label set during the previous
image processing. That is, all label equivalences between the
provisional labels of each connected part in the mask have
been resolved. Therefore, only the label equivalences between
different connected parts in the mask need to be considered.

When checking a voxel in the mask, if the voxel is an object
voxel, that voxel and all its neighbors in the mask certainly be-
long to the same connected part; therefore, it is not necessary
to check any of its neighbors further. For this reason, when
the VCL algorithm processes an object voxel, it checks voxels
in the mask in the order of the numbers of their neighboring
voxels in the mask. The number of neighbors of each voxel in
the mask shown in Fig. 1 is shown in Table 1. According to
Table 1, to process an object voxel, the VCL algorithm checks
voxels in the mask in the order (named Order-I) v9 → (v3, v6)
→ (v1, v8) → v10 → (v2, v5, v12) → (v4, v7) → v11 → v13.

The VCL algorithm labels a 3D binary image as follows.
In the first scan, if the current voxel is a background voxel, it
does nothing. Otherwise (i.e., if the current voxel is an object
voxel), it checks its neighbors in the mask in Order-I. If v9

is an object voxel, the provisional label of v9 is assigned to
the current voxel. Because v9 connects with all other object
voxels in the mask (if any), no label equivalence needs to be
considered. Conversely, if v9 is a background voxel, then v3

is checked. If v3 is an object voxel, the provisional label of v3

is assigned to the current voxel. Because there may be label
equivalences between the provisional label of v3 and other ob-
ject voxels in the mask, caused by the existence of the current
object voxel, the other voxels in the mask except the neighbors
of v3 (i.e., v11, v12, and v13) should be checked further.

In the case in which v3 is also a background voxel, v6 is
the next voxel in Order-I. The procedure for processing v6 is
like that described above. Other cases can be processed in a
similar manner.

Experimental results have demonstrated that the VCL algo-
rithm is much more efficient than previous labeling algorithms
for 3D binary images [21]. However, some voxels in the mask
that have been checked when processing another object voxel
earlier may be checked again. Therefore, the VCL algorithm
may perform substantial redundant work, which should be
avoided.

FIGURE 2. Processed neighbors of voxels v and w.

FIGURE 3. Mask M1 for processing an object voxel v following another
object voxel.

III. PROPOSED ALGORITHM
As noted above, the VCL algorithm uses the same order to
check the voxels in the mask when it processes all object vox-
els. When processing an object voxel v that follows another
object voxel u, some voxels in the mask that were checked
when processing u may be checked again when processing
v. This increases the time for checking voxels and therefore
decreases the efficiency of CCL. To solve this problem, we
propose an improved VCL algorithm that uses the information
obtained while processing an earlier object voxel to label the
current object voxel.

A. PROCESSING AN OBJECT VOXEL FOLLOWING ANOTHER
OBJECT VOXEL
When the algorithm processes an object voxel v that follows
another object voxel u, it can assign the provisional label of
v1 (u) to v. To resolve the related label equivalences, of the 13
processed neighbor voxels of v, the nine voxels v1 (u), v2 (u3),
v3 (u4), v5 (u6), v6 (u7), v8 (u9), v9 (u10), v11 (u12), and v12

(u13) are also the neighbors of u, as shown in Fig. 2. Therefore,
all label equivalences (if any) related to these nine voxels have
already been resolved while processing u. To process v, the
provisional label of u needs to be assigned to v, and the label
equivalences (if any) caused by the remaining neighbors of v
(i.e., v4, v7, v10, and v13) need to be resolved. Accordingly, the
mask M1 for processing v consists of v4, v7, v10, and v13, as
shown in Fig. 3.

The voxels u3 (v2), u4 (v3), u6 (v5), u7 (v6), u9 (v8), u10

(v9), u12 (v11), and u13 (v12) may have been checked while

VOLUME 4, 2023 3

ZHAO ET AL.: EFFICIENT CONNECTED-COMPONENT LABELING ALGORITHM FOR 3-D BINARY IMAGES

processing u. Therefore, when processing v, the information
known about these voxels can be used to resolve the related
label equivalences. According to how the information to be
used, there are the following five cases, where resolve(u, v) is
the label equivalence resolution procedure (between u and v)
defined in Section II-B.

a) In the case in which u10 = 1 (i.e., v9 = 1; see Fig. 2),
because v9 connects to v and to each of v4, v7, v10,
and v13, all related label equivalences (if any) in the
mask M1 have been resolved; therefore, no new label
equivalence needs to be resolved.

b) In the case in which [(u10 = 0) � {(u4 = 1) � (u7 = 1)}
� (u13 = 1)] (i.e., [(v9 = 0) � {(v3 = 1) � (v6 = 1)} �
(v12 = 1)]; see Fig. 2), v4, v7, v10, and v13 all connect to
u and v; therefore, no new label equivalence needs to be
resolved.

c) In the case in which [(u10 = 0) � {(u4 = 1) � (u7 = 1)}
� (u13 = 0)] (i.e., [(v9 = 0) � {(v3 = 1) � (v6 = 1)}
� (v12 = 0)]; see Fig. 2), v4, v7, and v10 connect to u
and v, but v13 does not. Therefore, only v13 needs to be
checked. If v13 = 1, resolve(v, v13) is executed.

d) In the case in which [(u10 = 0) � (u4 = 0) � (u7 = 0)
� (u13 = 1)] (i.e., [(v9 = 0) � (v3 = 0) � (v6 = 0) �
(v12 = 1)]; see Fig. 2), v13 and v10 connect to u and v, but
v4 and v7 do not. Therefore, if v4 = 1, resolve(v, v4) is
executed, otherwise, if v7 = 1, resolve(v, v7) is executed.

e) In the other cases, because there is less available infor-
mation, it is less helpful and can be ignored. In such
cases, if v9 = 1, because v9 connects to v1 (u) and all v4,
v7, v10, and v13, no new label equivalence needs to be
resolved. Therefore, checking v9 first is efficient. Con-
versely, if v9 = 0, the voxels in mask M1 are checked in
the order decided by the strategy in the VCL algorithm.
Because the numbers of neighbors of v4, v7, v10, and
v13 in the mask M1 are 2, 2, 3, and 1, respectively,
the optimal order (named Order-II) for checking these
voxels is v10 → (v4, v7) → v13. The procedure for
resolving label equivalences in these cases will be given
latter.

The information of checked voxels in each of the above
cases will be recursively used to process the following object
voxel w (if it is). The case for processing w will be also one of
Case (a)–Case (e).

In Case (a), we only know v9 = 1, i.e., w8 = 1 (see Fig. 2,
similarly hereinafter). Thus, it is Case (e) for processing w. In
Case (b), we know that [(v9 = 0) � {(v3 = 1) � (v6 = 1)}
� (v12 = 1)], i.e., [(w8 = 0) � {(w2 = 1) � (w5 = 1)}
� (w11 = 1)]. Thus, it is also Case (e) for processing w. In
Case (c), we know that [(v9 = 0) � {(v3 = 1) � (v6 = 1)}
� (v12 = 0)], i.e., [(w8 = 0) � {(w2 = 1) � (w5 = 1)} �
(w11 = 0)]. Thus, for processing w if v13 = 1, i.e., w12 = 1, it
is Case (d), else Case (e). In Case (d), we know that [(v9 = 0)
� (v3 = 0) � (v6 = 0) � (v12 = 1)], i.e., [(w8 = 0) � (w2 = 0)
� (w5 = 0) � (w11 = 1)]. Thus, for processing w if {(v4 = 1)
� (v7 = 1)}, i.e., {(w3 = 1) � (w6 = 1)}, it is Case (c), else
Case (e).

Now, we consider the procedure for processing v in Case
(e). As introduced above, v9 (i.e., u10/w8) will be checked
first. If v9 = 1, the same as in Case (a), nothing needs to be
done. Moreover, if w = 1, for processing w, it will be Case
(e). On the other hand, if v9 = 0, v10 (i.e., u11/w9) will be
checked. If v10 = 1, resolve(v, v10) will be executed. If w = 1,
for processing w, it will be Case (a). Other situations can be
analyzed in a similar way. The procedure for Case (e) (named
Procedure I) can be described as follows.

The operations for processing v in the various cases are
summarized in Table 2, where “e” means either a background
voxel or an object voxel, and w is the next voxel of v. The
case transition is shown in Fig. 4. More details are given in
Appendix.

B. PROCESSING AN OBJECT VOXEL FOLLOWING A
BACKGROUND VOXEL
When processing an object voxel u following a background
voxel, all processed neighbor voxels of u except for u1 (i.e.,
u2, …, u13), as shown in Fig. 2, are unknown voxels. There-
fore, the mask M2 for processing u in this case consists of u2,
…, u13, as shown in Fig. 5.

Our proposed algorithm decides the order in which to check
the voxels in M2 according to the following two strategies.

4 VOLUME 4, 2023

TABLE 2. Operations in Various Cases

FIGURE 4. Case transition for processing consecutive object voxels by use
of M1.

FIGURE 5. Mask M2 for processing an object voxel u following a
background voxel.

The first strategy is the same as that in the VCL algorithm:
a voxel with more neighbors should be checked earlier. The
number m of neighbors of each voxel in the mask for process-
ing u is shown in column 2 of Table 3.

The second strategy is based on the following considera-
tion. In the case in which the next voxel v to be processed
is also an object voxel, as described in Section III-A, the
information on u4, u7, u10, and u13 obtained while processing
u can be used to reduce the number of voxels to check when
processing v. Therefore, these voxels should be checked pref-
erentially. Obviously, a voxel with more neighbors from the
set {v4, v7, v10, v13} should be checked earlier. The number of
neighbors from {v4, v7, v10, v13} of each voxel in the mask for
processing u is shown in column 3 of Table 3.

TABLE 3. Number of Neighbors of a Voxel in the Mask M2

Combining the above two strategies, the voxels in the mask
for processing v should be checked in descending order of the
value s = m + 0.5 × n, as shown in column 4 of Table 3. Here,
0.5 is a weighting coefficient inspired by the observation that
the next voxel v may be a background voxel. Thus, the order
for checking the voxels in the mask for processing u (named
Order-III) is u9 → u10 → (u3, u6) → (u4, u7, u8) → (u2, u5,
u12) → u13 → u11.

The procedure for labeling an object voxel can be defined
in a similar way to that of the VCL algorithm.

C. PROCEDURE OF PROPOSED ALGORITHM
In the first scan, the algorithm does nothing for any of the
background voxels. For an object voxel following a back-
ground voxel, the voxels in mask M2 (shown in Fig. 5) are
checked in the order Order-III, and the related label equiv-
alences (if any) are resolved. Then, each following object
voxel is processed according to the information about the
voxels checked while processing the previous object voxel,
as introduced in Section III-A. An illustration of the first scan
of our proposed algorithm, LabelProcessing, is presented in
Appendix.

In the second scan, the provisional label of each object
voxel is replaced by its representative label, similarly to the
VCL algorithm.

IV. EXPERIMENTAL RESULTS
In this section, we compare our proposed algorithm with VCL
and RCL, which is a run-based algorithm for labeling 3D
images [21]. The code of the VCL and RCL algorithms was
provided by their authors.

All three algorithms were implemented in the C language.
All experiments were executed on a PC-based workstation
(Intel Xeon CPU E5-1650 v4 @ 3.60 GHz, 4 GB RAM,
Ubuntu Linux OS), and were compiled by the GNU C com-
piler (version 5.16) with the -O3 option. All execution times
reported in this section were obtained with the use of one core.

VOLUME 4, 2023 5

ZHAO ET AL.: EFFICIENT CONNECTED-COMPONENT LABELING ALGORITHM FOR 3-D BINARY IMAGES

FIGURE 6. Maximum and average execution time (ms) versus size of noise
images: (a) Maximum execution time, (b) Average execution time.

All reported results were obtained by averaging the results of
1000 runs.

A. EXPERIMENTAL RESULTS ON NOISE IMAGE SETS
Five sets of 41 uniform noise images, of five different sizes
(163 × 163 × 163, 327 × 327 × 327, 408 × 408 × 408,
465 × 465 × 465, and 512 × 512 × 512 voxels) were
generated by thresholding images containing uniform random
noise with 41 different threshold values (from 0 to 1000 in
steps of 25). Because such noise images contain connected
components with complicated geometric shapes and complex
connectivity, they pose a severe challenge to CCL algorithms.

For the noise images of each size, the maximum and av-
erage execution times are shown in Fig. 6. As Fig. 6 shows,
as the image size increased, the execution time of all three
algorithms increased similarly, and our proposed algorithm
was the most efficient of the algorithms with respect to both
maximum and average execution time.

We used all noise images of size 512 × 512 × 512 to
evaluate how the execution time varied with the density of
the object voxels in an image. The execution times are shown
in Fig. 7. The results show that our proposed algorithm was
more efficient than the VCL algorithm on noise images with
densities between 0.3 and 0.9, and was more efficient than the
RCL algorithm on all tested images except those with the low-
est and highest densities. Fig. 8 shows the speed improvement
of our proposed algorithm compared with the VCL and RCL
algorithms. The speed improvement compared with VCL is
plotted as S1 (= (TVCL - TOurs) / TVCL), and that compared
with RCL is plotted as S2 (= (TRCL -TOurs) / TRCL).

FIGURE 7. Execution time (ms) versus density on 512 × 512 × 512 noise
images.

FIGURE 8. Speed improvement versus density on 512 × 512 × 512 noise
images (where S1 = (TVCL - TOurs)/TVCL, S2 = (TRCL - TOurs)/TRCL).

FIGURE 9. Execution time (ms) on 512 × 512 × 512 overlapped-cube
images.

B. EXPERIMENTAL RESULTS ON OVERLAPPED-CUBE
IMAGE SET
The overlapped-cube image set is composed of images of size
512 × 512 × 512 containing a random distribution of 50 cubes
of object voxels, where overlapping cubes are allowed, with
cube sizes ranging from 10 × 10 × 10 to 100 × 100 × 100 in
steps of 5. The densities of these images range from 0.59% to
85.5%.

The execution times of the algorithms on the overlapped-
cube image set are shown in Fig. 9. For almost all the
overlapped-cube images, our proposed algorithm was much
more efficient than both the VCL and RCL algorithms, par-
ticularly for larger cubes. The average speed improvements
of our proposed algorithm compared with the VCL and RCL
algorithms were 15% and 12%, respectively.

6 VOLUME 4, 2023

FIGURE 10. 3D image samples: (a) CThead, (b) MRbrain.

TABLE 4. Execution Time (ms) on Medical Images

C. EXPERIMENTAL RESULTS ON MEDICAL IMAGES
Two 3D medical images, which were downloaded from a
dataset in the University of North Carolina Volume Rendering
Test Data Set archive, were used in our experiments. One
is a CT head image (named CThead), and the other is an
MR brain image (named MRbrain). The size of both images
is 256 × 256 × 99. Slices of CThead and MRbrain are
shown in Fig. 10(a) and (b), respectively. The two images
were binarized by using the optimal threshold obtained by the
MATLAB graythresh function.

The execution times of the algorithms on the two medical
images are presented in Table 4. The table shows that our
proposed algorithm is more efficient than both the VCL and
RCL algorithms, on both images.

D. EXPERIMENTAL RESULTS COMPARED WITH
PRED++_3D ON YACCLAB
An efficient algorithm for labeling 3D binary images, named
PRED++_3D, has recently been proposed [16]. This algo-
rithm is also voxel-based and uses the same mask as that used
in the VCL algorithm. By using the optimal decision tree, state
prediction, and code compression, PRED++_3D performs
better than LED_3D, a variant of the VCL algorithm.

We compared our proposed algorithm with the LED_3D
and PRED++_3D algorithms on the Yet Another Con-
nected Components Labeling Benchmark (YACCLAB) [27],
[28], which is a widely used open-source C++ bench-
marking framework for CCL algorithms. The code of the
PRED++_3D and LED_3D algorithms was downloaded
from https://github.com/prittt/YACCLAB. The code of our
proposed algorithm was modified to adapt it to YACCLAB.

All experiments on YACCLAB were executed on a PC-
based workstation (Intel Core i7-6700 CPU @ 3.40 GHz, 8
GB RAM, Windows 7 Pro 64-bit).

FIGURE 11. Image samples: (a) Mitochondria, (b) OASIS, (c) Hilbert.

FIGURE 12. Execution time (ms) on the YACCLAB datasets: (a)
Mitochondria, (b) OASIS, (c) Hilbert.

Our experiments used three images (test_gt, test_re, and
train_gt) in Mitochondria, 107 images in OASIS, and six im-
ages (n01, n02, n03, n04, n05, and n06) in Hilbert, which are
included in the YACCLAB dataset. Image samples are shown
in Fig. 11.

The execution times (which were obtained by averaging
50, 10, and 100 runs on Mitochondria, OASIS, and Hilbert,
respectively) are shown in Fig. 12. For OASIS, Fig. 12
shows only the execution times on the 30 images from

VOLUME 4, 2023 7

https://github.com/prittt/YACCLAB

ZHAO ET AL.: EFFICIENT CONNECTED-COMPONENT LABELING ALGORITHM FOR 3-D BINARY IMAGES

TABLE 5. Number of Neighbors to be Checked for Each Configuration in
the VCL Algorithm

OAS2_0001_MR1 to OAS2_0017_MR1, instead of all 107
images. This is because the execution times on the remaining
images are similar to those shown in Fig. 12(b). Fig. 12 shows
that, for the first two datasets, our proposed algorithm was
faster than both the LED_3D and PRED++_3D algorithms,
particularly on the Mitochondria dataset. On the third dataset,
our proposed algorithm is faster than the other two algorithms
on all images except n06.

V. DISCUSSION
A. COST EFFECTIVENESS ANALYSIS
The VCL algorithm and our proposed algorithm perform CCL
in a similar manner. In the first scan, for each object voxel,
both algorithms assign the voxel a provisional label, record
all provisional labels in the mask as equivalent, and resolve
label equivalences among these provisional labels.

In the second scan, both algorithms replace each provi-
sional label by its representative label. Therefore, the two
algorithms have the same time complexity. The reason that our
proposed algorithm performs better than the VCL algorithm
is that our proposed algorithm checks fewer voxels than the
VCL algorithm.

For each object voxel being processed, the VCL algorithm
checks the voxels in mask M (shown in Fig. 1) in Order-I
(defined in Section II-C). As explained in [21], when process-
ing an object voxel, it considers 25 configurations of the mask.
For each configuration, the number of times that a voxel in the
mask is checked is shown in Table 5, in which “b,” “o,” “e,”
and “-” mean “background voxel,” “object voxel,” “either,”
and “irrelevant voxel,” respectively. An irrelevant voxel is one
that does not need to be checked because whether it is an
object voxel does not affect the result. An “e” voxel does
need to be checked, and it could be either an object voxel or a
background voxel.

TABLE 6. Number of Neighbors to be Checked for Each Configuration in
Mask M2 in Our Proposed Algorithm

TABLE 7. Number of Neighbors to be Checked for Each Configuration in
Mask M1 in Our Proposed Algorithm

The number of times that neighbors are checked in case i,
denoted by Ni, is shown in the rightmost column of Table 5,
where 1 ≤ i ≤ 25. The probability of being case i, denoted
by pi, is k/W, where W is the number of all configurations
of the mask and k is the number of configurations in case i.
For example, p1 = 212/213 = 0.5 and p5 = 29/213 = 0.0625.
Thus, for the VCL algorithm, the average number of times
that it checks voxels when it processes an object voxel is∑25

i=1 piNi = 3.17.

When our proposed algorithm processes an object voxel v,
if the previous voxel is a background voxel, it processes v by
using the mask M2 (shown in Fig. 5) and checks the voxels in
the mask in Order-III (defined in Section III-B). As shown in
Table 6, 23 configurations of the mask need to be considered.
For each configuration, the number of times that voxels in
the mask are checked is shown in the rightmost column of
Table 6. The average number of times that voxels are checked
is

∑23
i=1 piNi = 3.11.

If the voxel preceding v is an object voxel u, our proposed
algorithm processes v by using the mask M1 (shown in Fig. 3)
and checking the voxels in the mask in Order-II (defined in
Section III-A). The cases to be considered are listed in Table 7.
Here, ui and vj are as defined in Fig. 2, “c” means “checked

8 VOLUME 4, 2023

FIGURE 13. Number of times that neighbors are checked on
512 × 512 × 512 noise images.

voxel” (i.e., the voxel has been checked while processing the
previous object voxel), and “n” means “not checked” (i.e.,
the voxel has not been checked while processing the previous
object voxel). For each case, the number of times that voxels
in the mask are checked is shown in the rightmost column of
Table 7.

If u10 (v9) has been checked while processing the previous
object voxel u (v1), one of the cases from case 1 to case 10
holds. The probability of being case i, pi, can be calculated
as explained above. In this situation, the average number of
times that voxels are checked is

∑10
i=1 piNi = 0.42.

If u10 (v9) has not been checked while processing the previ-
ous object voxel u (v1), one of the cases from case 11 to case
14 holds. In this situation, the algorithm checks some or all of
v9, v10, v7, v4, and v13.

The probability of being case i, pi, can also be calculated as
explained above. The average number of times that voxels are
checked is

∑14
i=11 piNi = 2.13.

According to Table 7, the probability that u10 (v9) is
checked while processing u is 0.5. Therefore, when processing
an object voxel following another object voxel by using the
mask M1, the average number of times that voxels are checked
is 0.5 × 0.42 + 0.5 × 2.13 = 1.27.

Suppose that M1 and M2 are used equivalently; then, to
process an object voxel, the average number of times that
voxels are checked by our proposed algorithm is 0.5 × 3.11
+0.5 × 1.27 = 2.19. Because 2.19 is less than 3.17 (the
average number of times that voxels are checked when the
VCL algorithm processes an object voxel), our proposed algo-
rithm checks fewer voxels than the VCL algorithm. Therefore,
our proposed algorithm is more efficient than the VCL
algorithm.

We used all the 512 × 512 × 512 noise images to count the
numbers of voxels checked by the VCL algorithm, the CML
algorithm (which is a variant of our proposed algorithm that
uses only m, shown in Table 3, to decide the order for checking
the voxels in the mask M2), the PRED++ algorithm, and
our proposed algorithm. The results are shown in Fig. 13,
which shows that our proposed algorithm checks fewer voxels
than the other three algorithms for all images. This is the
reason that our proposed algorithm is more efficient than the
conventional algorithms.

FIGURE 14. Processing flow of the first scan of the VCL algorithm.

B. COMPARISON OF IMPLEMENTATION ARCHITECTURE
AND FLOW
The first scan of our proposed algorithm is an improvement
of that of the VCL algorithm. The VCL algorithm processes
all object voxels in the same manner, and therefore its im-
plementation architecture is very simple. The processing flow
is shown in Fig. 14, where W is the size of the input image.
In contrast, our proposed algorithm processes object voxels
differently, depending on whether they follow a background
voxel or another object voxel. Moreover, when our proposed
algorithm processes an object voxel following another object
voxel, it uses the information obtained while processing the
previous object voxel, and the information gathered while
processing this object voxel is used to process the following
object voxel (if it is one). The cases (a)-(e) shown in Table 2
demonstrates how to process an object voxel based on the
information of already checked pixels when Mask M1 is used,
and the case transition diagram shown in Fig. 4 shows the
case transition when successive object voxels are processing.
Because recursion is necessary to implement our proposed
algorithm, the implementation architecture of our proposed
algorithm is much more complex than that of the VCL algo-
rithm (see Appendix.).

C. COMPARISON WITH PRED++_3D ALGORITHM
Similar to our proposed algorithm, when processing object
voxels, the PRED++_3D algorithm also uses known infor-
mation for state prediction. However, PRED++_3D uses the
same mask as that used in the VCL algorithm to process
all object voxels, whereas our proposed algorithm uses two
different masks for processing two different types of object
voxels.

In addition to the two masks, our proposed algorithm in-
troduces two new improved strategies. The first strategy is
a method to decide the order in which to process voxels in
the mask when processing the object voxels that follow a
background voxel. The second strategy is to ignore voxels
that do not provide information for processing an object voxel
that follows another object voxel. The latter improvement
reduces the number of cases to be considered; moreover, in
such cases, an efficient procedure (i.e., Procedure I, presented
in Section III-A) is used, which checks the voxel above the
current object voxel first.

VOLUME 4, 2023 9

ZHAO ET AL.: EFFICIENT CONNECTED-COMPONENT LABELING ALGORITHM FOR 3-D BINARY IMAGES

Because of these improvements, our proposed algorithm
performed better than PRED++_3D.

D. LIMITATION OF PROPOSED ALGORITHM
According to the analysis in Section V-A, when processing
an object voxel following a background voxel, the average
numbers of times that voxels in the corresponding mask are
checked by the VCL algorithm and our proposed algorithm
are 3.17 and 2.19, respectively; these numbers are very sim-
ilar. For a low-density noise image, the voxel preceding an
object voxel is very likely to be a background one. Therefore,
the efficiencies of the VCL algorithm and our proposed algo-
rithm are almost the same for low-density noise images (with
densities between 0.0 and 0.3).

Conversely, when processing an object voxel v(x, y, z), both
the VCL algorithm and our proposed algorithm first check
the voxel above v(x, y, z) (i.e., v(x, y, z-1)), and do noth-
ing to resolve label equivalences if v(x, y, z-1) is an object
voxel. Therefore, for high-density noise images (with den-
sities greater than 0.9), in which the voxel above the object
voxel being processed is very likely to be an object voxel, the
efficiencies of the two algorithms are also almost the same.

This analysis indicates that our proposed algorithm has
no advantage for processing very low-density or very high-
density images. This is the main limitation of our proposed
algorithm.

Additionally, as noted in Section V-B, the source code of
our proposed algorithm is much longer than that of the VCL
algorithm, and our proposed algorithm contains recursive pro-
cedures, whereas the VCL algorithm does not. Usually, a
longer and recursive program requires more execution time.
This may be the reason that the execution time on noise im-
ages is not completely proportional to the number of times
that voxels are checked.

VI. CONCLUSION
In this article we proposed an efficient CCL algorithm for
3D binary images. Our proposed algorithm uses two different
masks for processing object voxels, depending on whether
the voxel preceding the object voxel being processed is an
object voxel. In either case, the algorithm checks the voxels
in the corresponding mask in an optimal order. Experimen-
tal results demonstrate that our proposed algorithm checked
fewer voxels than the VCL algorithm for all 3D binary images
tested, and that our proposed algorithm was more efficient
than the VCL and RCL algorithms for almost all noise images,
the overlapped-cube image set, and the medical images. Ex-
perimental results on YACCLAB also demonstrated that our
proposed algorithm was more efficient than the PRED++_3D
algorithm.

Our research results can play an important role in many
applications, such as detecting the number and volume of
blood clots in blood vessels, detecting the number and vol-
ume of crystals in material experiments, and determining the
volume of materials required for 3D printers by calculating
the volumes of parts. In future work, we will construct a

hardware implementation and parallel implementation of the
algorithm. We will also try to use the strategies proposed in
[16] to automatically generate and compress the code of our
proposed algorithm, which may improve its speed further.

APPENDIX

ACKNOWLEDGMENTS
We thank the anonymous referees for their valuable com-
ments, which greatly improved this article. We are grateful to
the associate editor, Prof. Song Guo, for his kind cooperation.

10 VOLUME 4, 2023

We thank Edanz (https://jp.edanz.com/ac) for editing a draft
of this manuscript.

REFERENCES
[1] R. C. Gonzalez, R. E. Woods, and B. R. Masters, “Digital image pro-

cessing, third edition,” J. Biomed. Opt., vol. 14, no. 2, pp. 257–262,
Feb. 2009.

[2] L. He, X. Ren, Q. Gao, X. Zhao, B. Yao, and Y. Chao, “The connected-
component labeling problem: A review of state-of-the-art algorithms,”
Pattern Recognit., vol. 70, no. 10, pp. 25–43, Oct. 2017.

[3] L. He, X. Zhao, Y. Chao, and K. Suzuki, “Configuration-transition-
based connected-component labeling,” IEEE Trans. Image Process.,
vol. 23, no. 2, pp. 943–951, Feb. 2014.

[4] X. Zhao et al., “A new connected-component labeling algorithm,” IE-
ICE Trans. Inf. Syst., vol. 98, no. 11, pp. 2013–2016, Nov. 2015.

[5] L. He, Y. Chao, K. Suzuki, and K. Wu, “Fast connected-component
labeling,” Pattern Recognit., vol. 42, no. 9, pp. 1977–1987, Sep. 2009.

[6] L. He, Y. Chao, and K. Suzuki, “A run-based two-scan labeling al-
gorithm,” IEEE Trans. Image Process., vol. 17, no. 5, pp. 749–756,
May 2008.

[7] L. He, Y. Chao, and K. Suzuki, “A run-based one-and-a-half-scan
connected-component labeling algorithm,” Int. J. Pattern Recognit. Ar-
tif. Intell., vol. 24, no. 4, pp. 557–579, Apr. 2010.

[8] C. Grana, D. Borghesani, and R. Cucchiara, “Optimized block-based
connected components labeling with decision trees,” IEEE Trans. Image
Process., vol. 19, no. 6, pp. 1596–1609, Jun. 2010.

[9] W. Chang, C. Chiu, and J. Yang, “Block-based connected-component
labeling algorithm using binary decision trees,” Sensors, vol. 15, no. 9,
pp. 23763–23787, Feb. 2015.

[10] C. C. Queirolo, L. Silva, O. R. P. Bellon, and M. Pamplona Segundo,
“3D face recognition using simulated annealing and the surface inter-
penetration measure,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 32,
no. 2, pp. 206–219, Feb. 2010.

[11] W. R. Crum, O. Camara, and D. L. G. Hill, “Generalized overlap mea-
sures for evaluation and validation in medical image analysis,” IEEE
Trans. Med. Imag., vol. 25, no. 11, pp. 1451–1461, Nov. 2006.

[12] K. W. Finnis, Y. P. Starreveld, A. G. Parrent, A. F. Sadikot, and T. M.
Peters, “Three-dimensional database of subcortical electrophysiology
for image-guided stereotactic functional neurosurgery,” IEEE Trans.
Med. Imag., vol. 22, no. 1, pp. 93–104, Jan. 2003.

[13] B. Rosenhahn, T. Brox, and J. Weickert, “Three-dimensional shape
knowledge for joint image segmentation and pose tracking,” Int. J.
Comput. Vis., vol. 73, no. 3, pp. 243–262, Mar. 2007.

[14] K. Suzuki, H. Yoshida, and J. Nappi, “Mixture of expert 3D massive-
training ANNs for reduction of multiple types of false positives in
CAD for detection of polyps in CT colonography,” Med. Phys., vol. 35,
pp. 694–703, 2008.

[15] X. Y. Chen, X. W. Song, and H. Xiao, “The diagnostic value of 128 slice
spiral CT 3D imaging in cerebral infarction and aneurysms,” Chin. J. Ct
Mri, vol. 13, no. 7, pp. 7–10, Jul. 2015.

[16] F. Bolelli, S. Allegretti, and C. Grana, “One DAG to rule them all,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 44, no. 7, pp. 3647–3658,
Jul. 2022.

[17] R. Lumia, L. Shapiro, and O. Zungia, “A new connected components
algorithm for virtual memory computers,” Comput. Vis. Graph. Image
Process., vol. 22, no. 2, pp. 287–300, Feb. 1983.

[18] L. Thurfjell, E. Bengtsson, and B. Nordin, “A new three-dimensional
connected components labeling algorithm with simultaneous object fea-
ture extraction capability,” CVGIP Graphical Model Image Process.,
vol. 54, no. 4, pp. 357–364, Apr. 1992.

[19] J. Udupa and V. G. Ajjanagadde, “Boundary and object labelling
in three-dimensional images,” Comput. Vis. Graph. Image Process.,
vol. 51, no. 3, pp. 355–369, Mar. 1990.

[20] Q. Hu, G. Qian, and W. L. Nowinski, “Fast connected-component
labeling in three-dimensional binary images based on iterative re-
cursion,” Comput. Vis. Image Understanding, vol. 99, pp. 414–434,
2005.

[21] L. He, Y. Chao, and K. Suzuki, “Two efficient label-equivalence-
based connected-component labeling algorithms for 3-D binary im-
ages,” IEEE Trans. Image Process., vol. 20, no. 8, pp. 2122–2134,
Aug. 2011.

[22] N. Maurice, F. Lemaitre, J. Sopena, and L. Lacassagne, “LSL3D: A
run-based connected component labeling algorithm for 3D volumes,”
in Proc. Int. Conf. Image Anal. Process., 2022, pp. 132–142.

[23] L. He, Y. Chao, and K. Suzuki, “A linear-time two-scan labeling algo-
rithm,” in Proc. IEEE Int. Conf. Image, Process., 2007, pp. 241–244.

[24] L. He et al., “An efficient first-scan method for label-equivalence-based
labeling algorithms,” Pattern Recognit. Lett., vol. 31, no. 1, pp. 28–35,
2010.

[25] C. Grana et al., “Optimized connected components labeling with pixel
prediction,” in Proc. Int. Conf. Adv. Concepts Intell. Vis. Syst., 2016,
pp. 431–440.

[26] F. Bolelli, S. Allegretti, L. Baraldi, and C. Grana, “Spaghetti labeling:
Directed acyclic graphs for block-based connected components label-
ing,” IEEE Trans. Image Process., vol. 29, pp. 1999–2012, 2020.

[27] C. Grana, F. Bolelli, L. Baraldi, and R. Vezzani, “YACCLAB - yet
another connected components labeling benchmark,” in Proc. IEEE
23rd Int. Conf. Pattern Recognit., 2016, pp. 3109–3114.

[28] F. Bolelli, M. Cancilla, L. Baraldi, and C. Grana, “Toward reliable
experiments on the performance of connected components labeling
algorithms,” J. Real-Time Image Process., vol. 17, pp. 229–244, 2020.

XIAO ZHAO received the B.E., M.S., and Ph.D.
degrees from the Shaanxi University of Science
and Technology, Xi’an, China, in 2001, 2006, and
2019, respectively. She is currently an Associate
Professor with the Shaanxi University of Science
and Technology. From 2017 to 2018, she was with
Aichi Prefectural University, Nagakute, Japan, as a
Research Associate. Her research interests include
image processing, artificial intelligence, pattern
recognition, and string searching.

YUYAN CHAO received the B.E. degree from the
Northwest Institute of Light Industry, China, in
1984, and the M.S. and Ph.D. degrees from Nagoya
University, Nagoya, Japan, in 1997 and 2000, re-
spectively. From 2000 to 2002, she was a Special
Foreign Researcher of the Japan Society for the
Promotion of Science, Nagoya Institute of Tech-
nology, Nagoya. She is currently a Professor with
Nagoya Sangyo University, Owariasahi, Japan, and
a Guest Professor with the Shaanxi University of
Science and Technology, Xi’an, China. Her re-

search interests include image processing, graphic understanding, CAD,
pattern recognition, and automated reasoning.

HUI ZHANG received the B.E. degree from the
Xi’an University of Technology, Xi’an, China, in
2020. He is currently working toward the gradua-
tion degree with the School of Electronic Informa-
tion and Artificial Intelligence, Shaanxi University
of Science and Technology, Xi’an. His research
interests include image processing and pattern
recognition.

VOLUME 4, 2023 11

https://jp.edanz.com/ac

ZHAO ET AL.: EFFICIENT CONNECTED-COMPONENT LABELING ALGORITHM FOR 3-D BINARY IMAGES

BIN YAO received the B.E., M.S., and Ph.D.
degrees from the Shaanxi University of Science
and Technology, Xi’an, China, in 2003, 2006, and
2019, respectively. He is currently an Associate
Professor with the Shaanxi University of Science
and Technology. His research interests include im-
age processing and artificial intelligence.

LIFENG HE (Senior Member, IEEE) received the
B.E. degree from the Northwest Institute of Light
Industry, China, in 1982, the second B.E. degree
from Xi’an Jiaotong University, Xi’an, China, in
1986, and the M.S. and Ph.D. degrees in AI and
computer science from the Nagoya Institute of
Technology, Nagoya, Japan, in 1994 and 1997, re-
spectively. He is currently a Professor with Aichi
Prefectural University, Nagakute, Japan, and a
Guest Professor with the Shaanxi University of
Science and Technology, Xi’an. From 2006 to

2007, he was with the University of Chicago, Chicago, IL, USA, as a Re-
search Associate. His research interests include intelligent image processing,
computer vision, automated reasoning, pattern recognition, string searching,
and artificial intelligence.

12 VOLUME 4, 2023

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

