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ABSTRACT A major bottleneck in distributed learning is the communication overhead of exchanging
intermediate model update parameters between the worker nodes and the parameter server. Recently, it is
found that local gradients among different worker nodes are correlated. Therefore, distributed source coding
(DSC) can be applied to increase communication efficiency by exploiting such correlation. However, it
is highly non-trivial to exploite the gradient correlations in distributed learning due to the unknown and
time-varying gradient correlation. In this paper, we first propose a DSC framework, named successive
Wyner-Ziv coding, for distributed learning based on quantization and Slepian-Wolf (SW) coding. We
prove that the proposed framework can achieve the theoretically minimum communication cost from
an information theory perspective. We also propose a low-complexity and adaptive DSC for distributed
learning, including a gradient statistics estimator, rate controller, and a log-likelihood ratio (LLR) computer.
The gradient statistics estimator estimates the gradient statistics online based only on the quantized
gradients at previous iterations, hence it does not introduce extra communication cost. The computation
complexity of the rate controller and the LLR computer is reduced to a linear growth in the number of
worker nodes by introducing a semi-analytical Monte Carlo simulation. Finally, we design a DSC-based
distributed learning process and find that the extra delay introduced by DSC does not scale with the
number of worker nodes.

INDEX TERMS Distributed learning, model aggregation, distributed source coding, Slepian-Wolf coding.

I. INTRODUCTION

THEPROLIFERATION of mobile devices such as smart-
phones, tablets, and wearable devices has revolutionized

people’s daily lives. Due to the growing computation and
sensing capabilities of these devices, a wealth of data has
been generated each day, which can be used to train high-
accurate machine learning models. It is becoming crucial
to train big models in a distributed fashion in which large-
scale datasets are distributed over multiple worker machines
for parallel processing [2], [3]. Compared with traditional
learning at a centralized data center, distributed learning
offers several distinct advantages, such as preserving privacy,
reducing network congestion, and leveraging distributed
on-device computation.

Distributed learning generally requires the participating
worker nodes to exchange intermediate model update param-
eters with the parameter server for global model aggregation
repeatedly. With the fast-growing on-device computation
capability, the communication overhead between the worker
nodes and the parameter server has gradually become the
performance bottleneck [2]. This is exacerbated in the
cases of the federated learning paradigm [4], [5], and the
cloud-edge AI systems [6]. In these computation paradigms,
generally, the time for communication can be many orders of
magnitude longer than the time for local computations [7].
It is thus essential to design communication-efficient dis-
tributed learning methods to reduce the communication cost
during model aggregation. Gradient compression, such as

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

2444 VOLUME 3, 2022

HTTPS://ORCID.ORG/0000-0003-2586-3841
HTTPS://ORCID.ORG/0000-0002-0799-0954


quantization and sparsification, is an efficient approach to
reduce the communication cost at each round of model
update. Partially initiated by the 1-bit implementation of
stochastic gradient descent (SGD) by Microsoft in [8], a
large number of recent studies have revisited the idea of
gradient quantization [9], [10], [11]. Other approaches for
low-precision training focus on the sparsification of gra-
dients, either by thresholding small entries or by random
sampling [12], [13]. There also exist several approaches
that combine quantization and sparsification to maximize
performance gains, including quantized SGD (QSGD) [14]
and TernGrad [15].
The above model compression schemes treat each model

update from different worker nodes independently. In prac-
tice, the local updates are correlated since the model to be
trained is the same for all worker nodes. Recently, it is found
in [16], [17] that the model aggregation of distributed learn-
ing is inherently an indirect multi-terminal source coding
problem, or the so-called CEO problem [18], where each
worker node cannot observe directly the model update that
is to be reconstructed at the parameter server, but is rather
provided only with a noisy version. The work [19] also
finds that the correlation of the local gradients produced by
different worker nodes is strong using information-theoretic
measures. Therefore, distributed source coding (DSC) can
be applied for model aggregation to further increase the
communication efficiency by exploiting such correlation.
Nevertheless, exploiting the gradient correlations in dis-

tributed learning is a non-trivial task. The most straight-
forward way is to apply the practical designs of DSC for
the quadratic Gaussian CEO problem to distributed learn-
ing. The work [20] proposes an asymmetric DSC framework
that essentially relies on quantization and Wyner-Ziv coding
and can approach any point of the achievable rate region
via source splitting. The practical DSC design [20] requires
knowledge of the gradient statistics, which, however, are gen-
erally unknown and time-varying in the training process [21].
Even if the gradient statistics are known in the existing asym-
metric Slepian-Wolf (SW) coding design [20], it still requires
to redesign the encoders and decoder at each iteration due
to the time-varying correlation. However, the complexity of
computing the transmission rate at each iteration increases
exponentially with the number of the worker nodes, and thus
is unacceptable in a large-scale network.
Recently there have been some attempts to exploit the cor-

relation of the local gradients [16], [19], [22]. The work [22]
explores local memory similarity across worker nodes and
designs a commutative compressor which works as follows:
At each iteration, a leading worker node is selected, and all
other worker nodes follow the leading worker’s top-k index
selection to sparsify their own local gradients. However, there
is still redundant information that is not exploited between
the sparsified local gradients. To this end, the work [19]
exploits an autoencoder to capture the common information
that exists in the local gradients. The autoencoder is trained
using the local gradients collected from all the worker nodes

at the initial iterations, which, however, introduces extra com-
munication overhead since the local gradients for the training
cannot be compressed. Moreover, the static encoders and
decoders may fail to track the time-varying gradient correla-
tion. In [16], the worker nodes are divided into two groups.
The worker nodes in the first group transmit their local
gradients without exploiting the correlation and the gradient
statistics are estimated at the parameter server based on these
local gradients. The worker nodes in the second group use
nested scalar quantization and Slepian-Wolf (SW) coding to
compress their local gradients. In this scheme, extra commu-
nication overhead is still needed since the local gradients of
workers nodes in the first group cannot be compressed during
correlation estimation. Besides, similar to asymmetric SW
coding [20], the complexity of computing the transmission
rate at each iteration increases exponentially with the number
of worker nodes. Note that all these works [16], [19], [22]
cannot theoretically guarantee that their proposed methods
can fully exploit the correlation and achieve a theoretically
minimum communication cost.
Motivated by the above issue, in this paper, we study

the gradient compression scheme for distributed learning
by fully exploiting the correlation of local gradients. The
goal is to propose a DSC scheme to achieve the theoreti-
cally minimum communication cost, which is characterized
by a sum-rate-distortion function. The low-complexity DSC
scheme is required to track the time-varying correlation of
local gradients and does not introduce extra communication
cost. The main contributions of this paper are outlined below:

• DSC design under known and static gradient statistics:
We propose a successive Wyner-Ziv coding framework
for distributed learning based on quantization and SW
coding. By applying ideal quantization and ideal SW
coding, we first prove that the proposed framework
can achieve the sum-rate-distortion function. To the
best of our knowledge, this is the first work achiev-
ing the information-theoretic communication cost of
model aggregation by exploiting the correlation. We
then provide a multilevel syndrome-based SW coding
implemented by low density parity check (LDPC) codes
when gradient statistics are known. The proposed prac-
tical SW coding design is flexible and compatible with
existing gradient quantization methods and can further
reduce the communication overhead without loss of
model accuracy.

• Low-complexity and adaptive DSC for distributed learn-
ing: We design three helper blocks, i.e., gradient
statistics estimator, rate controller, and log-likelihood
ratio (LLR) computer, to provide necessary information
for the SW encoder and SW decoder at each iteration,
so that practical SW coding can be applied to distributed
learning when the gradient statistics are unknown and
time-varying. The gradient statistics estimator esti-
mates the gradient statistics online only based on the
quantized gradients at previous iterations, hence it
does not introduce extra communication cost. The rate
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controller and LLR computer calculate the rate and
LLR, respectively, of each bit-plane efficiently based
on the estimated gradient statistics. The computation
complexity is reduced to a linear growth in the number
of worker nodes by introducing a semi-analytical Monte
Carlo simulation. Finally, we design a DSC-based dis-
tributed learning process and find that the extra delay
introduced by DSC does not scale with the number of
worker nodes.

• Experiment validation: The performance of the three
helper blocks and the communication cost of the
proposed DSC are evaluated based on real-world
datasets MNIST, CIFAR-10, and SVHN. The gra-
dient statistics change slowly with iteration t and
the proposed online gradient statistics estimation is
effective. Compared with the traditional Monte Carlo
simulation, the rate controller equipped with semi-
analytical Monte Carlo simulation is more unbiased and
achieves higher precision. It is also observed that the
proposed DSC significantly reduces the communication
cost without any loss of model accuracy in real-world
datasets.

The rest of this paper is organized as follows. Section II pro-
vides the system model and problem formulation. Section III
proposes DSC under known and static gradients statistics.
Section IV introduces a low-complexity and adaptive DSC
for distributed learning. SectionV provides experiment results.
Finally, we conclude the paper in Section VI.
Notations: An n-length sequence generated by random

variable X is denoted by Xn, whose i-th element is denoted
by X[i], i.e., Xn = (X[1],X[2], . . . ,X[n]).

II. SYSTEM MODEL AND PROBLEM FORMULATION
In this section, we first formulate the model aggregation in
distributed learning as a quadratic Gaussian CEO problem
under unbiased estimation constraint. Then, we review the
minimum communication cost by exploiting the correla-
tion between local gradients from an information theory
perspective.

A. MODEL AGGREGATION IN DISTRIBUTED LEARNING
We consider a basic distributed learning framework, where a
shared AI model (e.g., a classifier) is trained collaboratively
across K worker nodes via the coordination of a parameter
server.
Let K = {1, . . . ,K} denote the set of worker nodes. Each

worker node k ∈ K collects a fraction of training data,
denoted as Sk. It is assumed that the local datasets are
independent and identical distributed (IID) for different k′s.
Let w ∈ R

P denote the P-dimensional model parameter to
be learned. The loss function measuring the model error is
defined as

F(w) =
∑

k∈K

|Sk|
|S| Fk(w), (1)

where Fk(w) = 1
|Sk|

∑
i∈Sk fi(w) is the loss function of

worker node k quantifying the prediction error of the model w
on the local dataset Sk collected at the k-th worker node, with
fi(w) being the sample-wise loss function, and S = ⋃

k∈K Sk
is the union of all datasets. The objective of distributed
learning is to minimize the loss function F(w).
The minimization of F(w) is typically carried out through

the minibatched stochastic gradient descent (minibatched
SGD) algorithm at each worker node. Specifically, each
worker node k splits its local dataset Sk into mini-batches
of size B, and draws one mini-batch Bk(t) randomly at each
iteration t. It then calculates the local gradient as

gk(t) = ∇ 1

B

∑

i∈Bk(t)
fi(w(t)). (2)

At each iteration t, the parameter server is interested in the
global gradient g(t), which is defined as g(t) � ∇F(w(t))
The parameter server estimates the global gradient g(t) by
aggregating ĝ(t) = 1

K

∑K
k=1 gk(t), and then updates the

model w(t) as

w(t + 1) = w(t)− η(t)ĝ(t), (3)

with η(t) being the learning rate at iteration t. This training
process is repeated until the model converges. Since we focus
on the design of communication-efficient model aggregation
in the training process, the training iteration index t is omitted
in the rest of this paper.
Model aggregation in distributed learning is essentially to

estimate the global gradient g at the parameter server based
on the local gradients gk computed at worker nodes. As
shown in [17], by minibatched SGD, this problem can be
modeled as a Gaussian CEO problem in distributed source
coding. Specifically, the P-dimensional global gradient g can
be viewed as P realization of source X, which is a sequence
of P IID real-valued Gaussian random variables of mean
zero and variance σ 2

X .
1 Similarly, the P-dimensional local

gradient gk observed by each worker node k can be viewed
as P realization of source Yk, which is a noisy version of
the global gradient X, i.e.,

Yk[i] = X[i] + Nk[i],∀i ∈ {1, 2, . . . ,P}, (4)

where the gradient noise NPk is a sequence of IID real-valued
Gaussian random variables of mean zero and variance σ 2

N .
The task of model aggregation is then to reconstruct XP at
the parameter server based on the noisy observations YPk ’s
at all the K worker nodes.2 We call σ 2

X the global gradient
variance and σ 2

N the gradient noise variance, respectively.

1. As stated in [15], the gradient statistics in different layers can be
different as gradients are back propagated. In experiment, we apply layer-
wised DSC for the model aggregation, where the elements within one layer
can be assumed IID. Nevertheless, for presentation convenience, we assume
that the entire gradients are sequences of IID variables.

2. Note that the assumption of gradient distribution follows principle of
maximum entropy. The sufficiency of our proposed coding design will not
be damaged even if these assumptions do not hold. Experimental validation
of the Gaussian assumption of gradients can be found in [15], [17], [23].
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FIGURE 1. Experimental results of Pearson correlation coefficient of two local gradients over iterations for three datasets where the number of worker nodes is 10 and the
local mini-batch size is 20.

The local gradient YPk observed by each worker node
k is separately encoded to Sk = φk(YPk ) and sent to the
parameter server. The encoder function φk is defined by
φk : RP → {1, 2, . . . , 2PRk }, where Rk is the communication
rate of worker node k. The parameter server observes Sk, for
each k = 1, 2, . . . ,K, and outputs an unbiased estimation X̂P

of XP by using decoder function ψK , i.e.,

X̂P = ψK(S1, S2, . . . , SK). (5)

The estimation performance of X̂P can be measured by MSE
distortion given as

D
(
XP, X̂P

)
= 1

P

P∑

i=1

E

[(
X[i] − X̂[i]

)2
]
. (6)

As shown in [24, Th. 6.3], the unbiased gradient estimator
ensures the convergence of the model and the convergence
rate of model training in machine learning depends on the
mean square error (MSE) of the estimated gradient. Our
aim is to design encoders {φk}Kk=1 and decoder ψK such that
the total communication cost, i.e., Rsum(D) = ∑K

k=1 Rk, is
minimized for a target gradient distortion D(XP, X̂P) ≤ D.

B. GRADIENT CORRELATION
We use Pearson correlation coefficients to measure the corre-
lation between the local gradients. Let ρYkYj denote Pearson
correlation coefficients of two local gradients Yk and Yj, for
k �= j, which is given by

ρYkYj = E
[
YkYj

]
√
E
[
Y2
k

]
E

[
Y2
j

] (7)

= E
[
(X + Nk)

(
X + Nj

)]
√
E
[
(X + Nk)2

]
E

[(
X + Nj

)2]
(8)

= σ 2
X

σ 2
X + σ 2

N

. (9)

Note that the correlation between the local gradients fully
depends on σ 2

X/σ
2
N . Specifically, the Pearson correlation coef-

ficient approaches 0 when σ 2
X/σ

2
N → 0 and the Pearson

correlation coefficient approaches 1 when σ 2
X/σ

2
N → ∞.

Fig. 1 illustrates the experimental results of Pearson cor-
relation coefficient of two local gradients over iterations for
three datasets, MNIST, SVHN, and CIFAR-10, where the
number of worker nodes is 10 and the local mini-batch size
is 20. These three models approach convergence at the end
of the last iteration. Each value of Pearson correlation coeffi-
cient is obtained by averaging over 300 model trainings. Both
IID and non-IID partitions are considered for the training
dataset. For the former, we randomly partition the training
samples into 100 equal shards, each of which is assigned
to one particular worker node. While for the latter, we first
sort the data by digit label, divide it into 200 equal shards,
and randomly assign 2 shards to each worker node. The
specific experiment setup can be found in Section V-A. It is
observed that the correlation between the local gradients is
large at the beginning of the model training and gradually
decreases over iterations. Intuitively, in SGD-based learning,
the correlation is strong at the beginning of the model train-
ing since the initial model is far away from the converge
point. Then, the correlation decreases as the global model
is converging and the local gradients are very small and
uncorrelated when the model approaches the optimal solu-
tion. It is also observed that the correlation in IID partition
are much larger than those in non-IID partition for all the
three datasets. This indicates that the gradient distribution
with non-IID dataset partition is more dispersive than that
with IID dataset partition as expected.

C. REVIEW OF MINIMUM COMMUNICATION COSTS
To exploit the correlation between the local gradients,
the work [17] obtains the sum-rate-distortion function for the
model aggregation problem. This function characterizes the
minimum total communication cost at given gradient esti-
mation distortion D. The result is given as the following
theorem.
Theorem 1 [17]: For every distortion D, the sum-rate-

distortion function is

Rsum(D) = K

2
log

(
1 + σ 2

N

KD− σ 2
N

)
+ 1

2
log

(
1 + σ 2

X

D

)
. (10)

Remark 1: The sum-rate-distortion function is the sum of
two nonnegative terms. The first term depends on the vari-
ance of gradient noise, σ 2

N , as well as the number of worker
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FIGURE 2. The proposed successive Wyner-Ziv coding framework for model aggregation in distributed learning.

nodes, K. It can be interpreted as the rate for quantizing
K independent gradient noises. The second term depends
on the variance of the global gradient, σ 2

X , which is the
classical channel capacity for a Gaussian channel with a
transmit power σ 2

X and a noise power D. It thus can be
interpreted as the rate for quantizing the global gradient. If
each worker node transmits its own local gradient without
distributed source coding, the sum-rate-distortion function

reduces to Rin(D) = K
2 log(1 + σ 2

N

KD−σ 2
N
) + K

2 log(1 + σ 2
X

KD ).

Note that the rate difference between Rin(D) and Rsum(D),

i.e., K2 log(1+ σ 2
X

KD )− 1
2 log(1+ σ 2

X
D ), represents the communi-

cation cost reduction by exploiting the correlation between
worker nodes.
The work [17] only derives the minimum communication

cost, but does not provide a practical coding scheme to
achieve this bound. This paper aims to propose a practical
coding design to achieve the sum-rate distortion function in
Theorem 1.

III. DSC DESIGN UNDER KNOWN STATIC GRADIENT
STATISTICS
In this section, we first propose a successive Wyner-Ziv
coding framework and prove that the proposed framework
can achieve the sum-rate-distortion function of the Gaussian
CEO problem in (10). Then the practical SW coding in the
framework is implemented by a multilevel syndrome-based
method.

A. SUCCESSIVE WYNER-ZIV CODING FRAMEWORK
The successive Wyner-Ziv coding framework is depicted in
Fig. 2, which consists of a pair of classical source encoder
and decoder, K−1 pairs of Wyner-Ziv encoder and decoder,
and a linear estimator. At each iteration, each P-dimensional
gradient vector is divided into multiple n-length blocks and
each block is separately transmitted by the proposed frame-
work. More specifically, encoder 1 employs classical source
coding to map Yn1 to codeword Un

1 and output the corre-
sponding index S1. Encoder k, for k = 2, . . . ,K, employs

Wyner-Ziv encoding to map Ynk to codeword Un
k and out-

put the corresponding index Sk. The decoder first decodes
codeword Un

1 from encoder 1, then successively decodes
codeword Un

k , for k = 2, . . . ,K from the encoder k with side
information Un

1, . . . ,U
n
k−1. Finally, the decoder estimates X̂n

by employing a linear estimator of Un
1, . . . ,U

n
K .

Now, we introduce the proposed framework in detail.
We first define each function in the framework, and then
describe the encoding and decoding phases respectively. For
each worker node k, the pair of quantizer and dequantizer
is defined by:

Qk : Yn
k →

{
1, 2, . . . , 2nR

Q
k

}

Q−1
k :

{
1, 2, . . . , 2nR

Q
k

}
→ Un

k ,

respectively, where RQk is the quantization rate of the quan-
tizer at worker node k, and Un

k is an n-dimensional vector

codebook of size 2nR
Q
k . At worker node 1, the pair of classical

source encoder and decoder is defined by

EENT1 :
{

1, 2, . . . , 2nR
Q
1

}
→
{

1, 2, . . . , 2nR1
}

DENT
1 :

{
1, 2, . . . , 2nR1

}
→
{

1, 2, . . . , 2nR
Q
1

}
,

respectively, where R1 is the transmission rate of the worker
node 1. For k = 2, . . . ,K, the pair of SW encoder and
decoder is defined by

ESWk :
{

1, 2, . . . , 2nR
Q
k

}
→
{

1, 2, . . . , 2nRk
}

DSW
k :

{
1, 2, . . . , 2nRk

}
× Un

1 × · · · × Un
k−1 →

{
1, 2, . . . , 2nR

Q
k

}
.

respectively, where Rk is the transmission rate of worker
node k.
At the encoder side, worker node 1 first quantizes Yn1 using

codebook Un
1 by finding the vector codeword Un

1 ∈ Un
1 that

is closest (e.g., in Euclidean distance) to Yn1 , and outputs the
quantization index I1. Then the entropy encoder compresses
I1 as S1, which is transmitted at rate R1. For k = 2, . . . ,K,
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worker node k first quantizes Ynk using codebook Un
k and

outputs the quantization index Ik. Then the SW encoder
compresses Ik as Sk, which is transmitted at rate Rk.
At the decoder side, the parameter server first employs

the entropy decoder and dequantizer 1 to reconstruct Un
1 as

Ûn
1 . Thus operations in the pair of classical source encoder

and decoder for worker node 1 can be summarized as

Ûn
1 = Q−1

1

[
DENT

[
EENT[Q1

[
Yn1
]]]]

. (11)

The parameter server then employs the SW decoder to
decode codeword Un

k as Ûn
k by using the previously decoded

symbols Ûn
1, . . . , Û

n
k−1 as side information. Thus, operations

in the pair of Wyner-Ziv encoder and decoder for worker
node k ∈ {2, . . . ,K} can be summarized as

Ûn
k = Q−1

k

[
DSW

[
ESW[Qk

[
Ynk
]]
, Ûn

1, . . . , Û
n
k−1

]]
. (12)

Finally, to reconstruct the sequence Xn, the parameter
server employs a linear estimator, which implements the
function ψ : Un

1 × · · · × Un
K → X n and is defined by

X̂n =
K∑

k=1

αkÛ
n
k , (13)

where αk is the linear coefficient.

B. THEORETICAL ACHIEVABILITY
In this subsection, we prove that the achievable rate of the
coding design can approach the sum-rate-distortion function
in Theorem 1.

Given the gradient distortion D, we define the rate tuple
RK(D) ∈ R

K+ by

Rk(D) = rk + 1

2
log

(
1

σ 2
X

+
k∑

i=1

1 − exp(−2ri)

σ 2
N

)

− 1

2
log

(
1

σ 2
X

+
k−1∑

i=1

1 − exp(−2ri)

σ 2
N

)
, k = 1, . . . ,K, (14)

where (r1, r2, . . . , rK) ∈ R
K+ satisfying

K∑

k=1

1 − exp(−2rk)

σ 2
N

= 1

D
. (15)

The following theorem states that our successive Wyner-Ziv
coding framework can approach the rate tuple RK(D) for
any (r1, r2, . . . , rK) ∈ R

K+ satisfying (15).
Theorem 2: Let (R∗

1, . . . ,R
∗
K) be the rate tuple RK(D∗).

For any ε > 0, there exists a block length of n, one clas-
sical source encoder and K − 1 Wyner-Ziv encoders, which
compress local gradients Yn1 , . . . ,Y

n
K at rates (R1, . . . ,RK),

respectively, and a decoder which reconstructs the global
gradient Xn as X̂n, such that

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

E[X̂n|Xn = xn] = xn (16)

1

n

n∑

i=1

E[(X[i] − X̂[i])2] = D∗ (17)

Rk < R∗
k + ε, k = 1, . . . ,K. (18)

Proof: Let Uk be the auxiliary random variable defined as

Uk = Yk +Wk, k = 1, . . . ,K, (19)

where Wk ∼ N (0, σ 2
Wk
) is independent of (X,Y1, . . . ,YK)

and is independent for different k. The random variable Uk
can be interpreted as a quantized version of Yk and the
quantizer determines the variance of the quantization noise
σ 2
Wk

. The quantization noise Wk of an ideal quantization
Qk(·) is required to be Gaussian distributed and independent
of the local gradient Yk. We assume ε′ < ε. To construct
the random codebook for encoder k, for k = 1, . . . ,K, draw
2nI(Uk;Yk)+nε′ n-length Uk vectors randomly according to the
marginal of Uk, which is jointly typical with the observed
vector Ynk (there will be at least one such codeword for
large enough n with high probability). It can be proved by
the generalized Markov lemma in [25, Lemma 5] that Xn,Yn

and Un are jointly typical with a high probability because
Uk − Yk − X − Yj − Uj, k �= j are Markov chains.

Since the encoder at worker node 1 employs classical
source coding EENT1 , the corresponding decoder can recover
Un

1 accurately with a high probability if

R1 > I(U1;Y1)+ ε′, (20)

where I(U1;Y1) = R∗
1 by letting r1 � I(U1;Y1|X). The

encoder at worker node k, for k = 2, . . . ,K, employs
SW coding ESWk and the ideal SW coding can be capa-
ble of compressing the quantized sources to their joint
entropy. Specifically, the encoder partitions its 2nI(Uk;Yk)+nε′

codewords into 2nRk bins. Then, the encoder picks a code-
word Un

k which is jointly typical with Ynk and sending
the corresponding bin index. The corresponding decoder
attempts to recover codeword Un

k from the specified bin
with side information Un

1, . . . ,U
n
k−1. By the mutual pack-

ing lemma in [26, Lemma 12.2], no other set of codewords
in the specified bin can be jointly typical with a high
probability if

I(Yk;Uk)− Rk < I(U1, . . . ,Uk−1;Uk)− ε′, (21)

and this condition can be rewritten as

Rk > I(Yk;Uk)− I(U1, . . . ,Uk−1;Uk)+ ε′ (22)

= h(Uk|U1, . . . ,Uk−1)− h(Uk|Yk)+ ε′ (23)

= I(Yk;Uk|U1, . . . ,Uk−1)+ ε′, (24)

where h(·) is the differential entropy function, and
I(Yk;Uk|U1, . . . ,Uk−1) = R∗

k by letting rk � I(Uk;Yk|X).
After recovering {Uk}Kk=1, the parameter server reconstructs
X̂n using a linear estimator

X̂n =
K∑

k=1

αkU
n
k , (25)

where αk = (σ 2
N+σ 2

Wk
)−1

∑K
k=1 (σ

2
N+σ 2

Wk
)−1

. The conditional expectation of

X̂[i] is given by

E

[
X̂[i]|X[i] = x[i]

]
(26)
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= E

[
K∑

k=1

αk(x[i] + Nk[i] +Wk[i])

]
(27)

=
K∑

k=1

αkx[i] (28)

= x[i], (29)

where the expectation is over gradient noise Nk[i] and quan-
tization noise Wk[i] for k = 1, 2, . . . ,K. Hence, X̂n is an
unbiased estimator of Xn and its distortion is given by

1

n

n∑

i=1

E

[
(X
[
i] − X̂[i

]
)2
]

=
(

K∑

k=1

1

σ 2
N + σ 2

Wk

)−1

=
(

K∑

k=1

1 − exp(−2rk)

σ 2
N

)−1

= D∗. (30)

The proof of Theorem 2 is completed.

We set r1 = r2 = · · · = rK = − 1
2 (1 − σ 2

N
KD ), where

(r1, r2, . . . , rK) satisfies (15). Based on Theorem 2, our suc-
cessive Wyner-Ziv coding framework can approach the rate
tuple RK(D) and the corresponding sum rate is given by

∑

k∈K
Rk(D)

=
∑

k∈K
rk + 1

2
log

(
1

σ 2
X

+ 1

D

)
− 1

2
log

(
1

σ 2
X

)
(31)

= K

2
log

(
1 + σ 2

N

KD− σ 2
N

)
+ 1

2
log

(
1 + σ 2

X

D

)
, (32)

which is exactly the sum-rate-distortion function in (10).
Though the asymmetric Wyner-Ziv coding design in [20]

also achieves the sum-rate-distortion function, its coding
framework is more complex due to applying source split-
ting. Specifically, for a system with K worker nodes, our
coding scheme only employs one entropy coding and K− 1
Wyner-Ziv coding, while the asymmetric Wyner-Ziv coding
design employs one entropy coding and 2(K−1) Wyner-Ziv
coding thus requires more computation complexity.

C. PRACTICAL SW CODING DESIGN
The proposed successive Wyner-Ziv coding framework con-
sists of two key components, quantization and SW coding.
As for quantization, there has been extensive research on
gradient quantization schemes [8], [9], [10], [11], including
vector quantization [27], and they can be readily applied to
the proposed framework. However for SW coding, there is
no efficient coding scheme which uses random binning as in
the achievability proof of Theorem 2. Hence, this subsection
focuses on the practical SW coding design in the successive
Wyner-Ziv coding framework.
In practice, error correction coding, such as LDPC code,

provides a flexible solution to this problem. We will focus on
syndrome-based SW coding [28], where the use of a linear

FIGURE 3. Block diagram of the multilevel syndrome-based SW coding scheme for
each worker node k ∈ {2, . . . , K }.

parity-check channel code was suggested for partitioning all
the binary source sequences into bins indexed by binary
syndromes of a channel code. Although the syndrome-based
SW coding can be directly applied to 1-bit quantization [8],
in order to enable the SW coding scheme to be suitable
for multi-bit quantization schemes, we provide a multilevel
syndrome-based SW coding in the following.
Fig. 3 shows the block diagram of the multilevel

syndrome-based SW coding scheme for each worker node
k ∈ {2, . . . ,K}. The local gradient Yk is first quantized to a
codeword Uk, which is then compressed using multilevel SW
coding with (U1, . . . ,Uk−1) as the decoder side information.
Denote Jk ∈ {0, 1, . . . , 2Rk −1} as the index of Uk and write
Jk as multiple bit-planes Bk,m,Bk,m−1, . . . ,Bk,1 in its binary
representation, i.e., Jk = ∑m

i=1 2i−1Bk,i, where m is the num-
ber of the bit-planes, Bk,m is the most significant bit and Bk,1
is the least significant bit. At first, Bk,1 is compressed using
the first SW code at rate

Rk,1 = H
(
Bk,1|U1, . . . ,Uk−1

)
, (33)

then each Bk,i for i = 2, . . . ,m is compressed with the i-th
SW code at rate

Rk,i = H
(
Bk,i|Bk,1, . . . ,Bk,i−1,U1, . . . ,Uk−1

)
, (34)

in the ascending order of i, where H(·) is the entropy
function. By the chain rule, we have

Rk =
m∑

i=1

Rk,i = H(Jk|U1, . . . ,Uk−1) = H(Uk|U1, . . . ,Uk−1). (35)

By splitting Uk into multiple bit-planes, well-studied binary
channel codes, such as LDPC, can be used to implement each
SW coding of them. The idea is to split the space of input
into bins, where elements with the same syndrome will be
assigned to the same bin. Then we can consider each bin as a
channel code and let Bk,i pass through a hypothetical channel
with the channel output Bk,1, . . . ,Bk,i−1,U1, . . . ,Uk−1.

More specifically, consider the problem of the i-th SW
coding at worker node k. Let Hk,i be the parity-check matrix
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FIGURE 4. Block diagram of the proposed low-complexity and adaptive DSC for distributed learning, where Wyner-Ziv coding block and helper block are in the solid and dash
boxes, respectively.

of a (lk,i, n) binary linear block code. The syndrome of the
length-n binary sequence bk,i is defined as sk,i = Hk,ibk,i,
which is a length-lk,i binary sequence.

• Encoder: The encoder simply computes and passes the
syndrome of bk,i to the decoder at rate lk,i

n . By the SW
theorem [29], we have

lk,i
n

≥ Rk,i. (36)

• Decoder: Decoding bk,i is similar to conventional chan-
nel decoding. However unlike conventional channel
decoding, it will recover the source Bk,i as a code vec-
tor of the received syndrome (bin index) instead of
a codeword. In practice, LDPC is efficient at decod-
ing bk,i. Given the received syndrome sk,i and the
side information bk,1, . . . , bk,i−1,u1, . . . ,uk−1, we can
decode the source bk,i using belief propagation.

• Estimator: The linear estimator jointly recovers x̂ from
all the received û1, . . . , ûK at the parameter server.
Given the quantization scheme, we can obtain the quan-
tization noise variance σ 2

Wk
at encoder k. Hence, the

linear estimator is proposed as

x̂ =
K∑

k=1

(
σ 2
N + σ 2

Wk

)−1

∑K
i=1

(
σ 2
N + σ 2

Wi

)−1
ûk. (37)

Then, the distortion of x̂ is (
∑K

k=1
1

σ 2
N+σ 2

Wk

)−1.

Remark 2: The proposed practical SW coding design is
flexible and can be compatible with existing gradient quan-
tization methods. Note that the proposed SW coding design
cannot be directly applied to the case with non-IID dataset.
This is because the gradients may not follow the Gaussian
CEO distribution due to the non-IID gradient noise. In this
case, we can apply existing methods, such as client cluster-
ing [30], [31], to mitigate the impact of non-IID datasets.
Specifically, by client clustering, we can group the clients
with the similar local training data into the same cluster,
and then apply the proposed SW coding design within each
cluster.
To design the LDPC code for the i-th bit-plane Bk,i, it

is essential to estimate the desired transmission rate, i.e.,
H(Bk,i|Bk,1, . . . ,Bk,i−1,U1, . . . ,Uk−1) and LLR of each bit-
plane via gathering the statistics for the hypothetical channel

with input Bk,i and output Bk,1, . . . ,Bk,i−1,U1, . . . ,Uk−1. In
distributed learning, however, the desired transmission rate
and the gradient statistics, are unknown and time-varying.
Even if the gradient statistics are known, the complexity of
computing the transmission rate at each iteration increases
exponentially with the number of the worker nodes, which is
unacceptable in a large-scale network. Therefore, the above
practical SW coding scheme cannot be directly applied to
distributed learning. In the next section, given the gradi-
ent statistics, we propose a low-complexity method, named
semi-analytical Monte-Carlo, to calculate the statistics of the
quantization variable. Based on the statistics of the quanti-
zation variable, the desired transmission rate and the LLR of
each bit-plane can be easily calculated. Moreover, we also
propose an online method to estimate the gradient statistics,
i.e., the global gradient variance σ 2

X(t) and the gradient noise
variance σ 2

N(t), at each iteration t.

IV. LOW-COMPLEXITY AND ADAPTIVE DSC FOR
DISTRIBUTED LEARNING
This section proposes a low-complexity and adaptive DSC
for distributed learning when the gradient statistics are
unknown and time-varying. The block diagram is shown
in Fig. 4, which consists of two blocks: Wyner-Ziv coding
block and helper block. The Wyner-Ziv coding block consists
of quantizer, SW encoder, SW decoder, and dequantizer, and
it corresponds to the compression modules of the local gradi-
ent in the successive Wyner-Ziv framework. The helper block
consists of the gradient statistics estimator, rate controller,
and LLR computer, and it is located on the parameter server.
The helper block provides necessary information for the SW
encoder and SW decoder at each iteration, so that practical
SW coding can be applied when the gradient statistics are
unknown and time-varying. Specifically, the gradient statis-
tics estimator estimates the gradient statistics online based
on the quantized local gradients received in past iterations.
The rate controller calculates the transmission rate of each
worker node based on the estimated gradient statistics and
informs all the worker nodes about the rate. The LLR com-
puter calculates the LLR of each bit-plane based on the
estimated gradient statistics and the side information (the
quantized local gradients received at the current iteration)
at the parameter server, and then informs the corresponding
SW decoder.
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In the following, we will introduce the implementation of
these three helper blocks, respectively. Then, we design an
efficient DSC-based distributed learning process. Finally, we
analyze the complexity of the proposed DSC and the delay
introduced by the extra communication and computation.

A. THE STATISTICS OF QUANTIZATION VARIABLE
In this subsection, we propose a low-complexity method
to calculate the statistics of quantization variable given the
gradient statistics σ 2

X(t) and σ 2
N(t). We compute the con-

ditional probability Pr(Bk,1 = bk,1, . . . ,Bk,i = bk,i|U1 =
u1, . . . ,Uk−1 = uk−1), which is an important component in
calculating the transmission rate and LLR as will be shown
in the next subsection. We define Qk(·) as the quantization
function at worker node k, and define J(·) as the binary
representation function. Then we have

Pr
(
Bk,1 = bk,1, . . . ,Bk,i = bk,i|U1 = u1, . . . ,Uk−1 = uk−1

)
(38)

= Pr
(
Bk,1 = bk,1, . . . ,Bk,i = bk,i,U1 = u1, . . . ,Uk−1 = uk−1

)

Pr(U1 = u1, . . . ,Uk−1 = uk−1)
(39)

=

∫ ··· ∫
J(Qk(yk))

(i)=bk,i,...,bk,1
Q1(y1)=u1,...,Qk−1(yk−1)=uk−1

f (y1, . . . , yk)dy1, . . . , dyk

∫ ··· ∫
Q1(y1)=u1,...,Qk−1(yk−1)=uk−1

f (y1, . . . , yk−1)dy1, . . . , dyk−1
, (40)

where J(·)(i) represents the least significant i bits of the
binary representation J(·) and the joint probability density
function f (y1, . . . , yk) is given by

f (y1, . . . , yk) =
∫

1

σX
√

2π
e
− x2

2σ2
X

k∏

i=1

1

σN
√

2π
e
− (yi−x)2

2σ2
N dx. (41)

1) TRADITIONAL MONTE CARLO METHOD

Note that it is very hard to calculate (40) analytically since it
involves multi-dimensional integration. The work [32] uses
Monte Carlo simulations to estimate (38) because they are
more flexible and can be easily applied to different quan-
tizers. Specifically, draw L independent samples from the
distribution X ∼ N(0, σ 2

X) and Yk ∼ N(X, σ 2
N) for each

k = 1, . . . ,K, and let the l-th sample be denoted as xl and ylk,
respectively. Define 1(·) as an indicator function that equals
one if its argument is true and zero otherwise. Based on these
L samples, we can approximate the probability in (38) as

Pr
(
Bk,1 = bk,1, . . . ,Bk,i = bk,i|U1 = u1, . . . ,Uk−1 = uk−1

)

≈

∑L
l=1 1

(
J
(
Qk
(
ylk
))(i)=bk,i,...bk,1

Q1
(
yl1
)=u1,...,Qk−1

(
ylk−1

)
=uk−1

)

∑L
l=1 1

(
Q1
(
yl1
) = u1, . . . ,Qk−1

(
ylk−1

) = uk−1
) (42)

2) SEMI-ANALYTICAL MONTE CARLO METHOD

It is very expensive to calculate (42) accurately in the case
of a large number of worker nodes because the number of
samples required for the traditional Monte Carlo method
increases exponentially with the number of worker nodes.
Observing that the local gradients given the global gradient
are independent over the worker nodes in the CEO problem,

we propose a semi-analytical Monte Carlo simulation to esti-
mate (38) alternatively. Specifically, we perform L times the
following independent simulations. At the l-th simulation, we
first draw a sample xl from the distribution X ∼ N(0, σ 2

X).
Given the global gradient xl, the local gradients {Uk}Kk=1 are
independent of each other, then we have

Pr
(
Ui = ui,Uj = uj|X = xl

)

= Pr
(
Ui = ui|X = xl

)
Pr
(
Uj = uj|X = xl

)
,∀i �= j (43)

Then, by semi-analytical Monte Carlo simulation, we can
approximate the conditional probability in (38) as

Pr
(
Bk,1 = bk,1, . . . ,Bk,i = bk,i|U1 = u1, . . . ,Uk−1 = uk−1

)

≈
1
L

∑L
l=1 Pr

(
Bk,1=bk,1,...,Bk,i=bk,i
U1=u1,...,Uk−1=uk−1

|X = xl
)

1
L

∑L
l=1 Pr

(
U1 = u1, . . . ,Uk−1 = uk−1|X = xl

)

=
∑L

l=1 Pr

(
Bk,1=bk,1···
Bk,i=bk,i |X = xl

)∏k−1
i=1 Pr

(
Ui = ui|X = xl

)

∑L
l=1

∏k−1
i=1 Pr

(
Ui = ui|X = xl

) . (44)

Note that the conditional probabilities on X = xl in (44)
can be calculated analytically and independently. As will be
shown in Section V-C, the required number of samples in
this method does not scale with the number of worker nodes.
Hence, the proposed semi-analytical simulation method is
more computationally efficient than the traditional Monte
Carlo simulation. Based on (38), we provide the rate con-
troller and LLR computer for computing the transmission
rate and the LLR, respectively.

B. RATE CONTROLLER AND LLR COMPUTER
The estimation of the transmission rate is critical. When the
estimated rate is larger than the ground truth, the redundant
information will be transmitted, otherwise, the decoding will
fail. Armed with the semi-analytical Monte Carlo method,
the rate controller estimates the transmission rate for the i-th
bit-plane at worker node k as

H
(
Bk,i|Bk,1, . . . ,Bk,i−1,U1, . . . ,Uk−1

)

=
∑

bk,1···
bk,i−1

∑

u1···
uk−1

Pr

(
Bk,1 = bk,1, . . . ,Bk,i−1 = bk,i−1

U1 = u1, . . . ,Uk−1 = uk−1

)

·H
(

Pr

(
Bk,i = 1|Bk,1 = bk,1, . . . ,Bk,i−1 = bk,i−1

U1 = u1, . . . ,Uk−1 = uk−1

))
, (45)

where

H(p) = p log2
1

p
+ (1 − p) log2

1

1 − p
. (46)

Recall that the decoding of the i-th bit-plane of worker
node k, i.e., Bk,i, can be viewed as channel decoding
over the hypothetical channel with input Bk,i and output
Bk,1, . . . ,Bk,i−1,U1, . . . ,Uk−1. The channel statistics, which
is needed for decoding Bk,i, is entirely captured by the LLR
Lch(bk,i). The LLR Lch(bk,i) can be obtained as shown at
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the top of the next page, where the conditional probabil-
ity can also be calculated by semi-analytical Monte Carlo
simulation (44).

C. GRADIENT STATISTICS ESTIMATION
In the above design of the rate controller and LLR computer,
it is assumed that the parameter server has perfect knowledge
on the gradient statistics σ 2

X(t) and σ
2
N(t). However, in dis-

tributed learning, the gradient statistics σ 2
X(t) and σ

2
N(t) are

usually unknown and can even vary over time. In this sub-
section, we propose methods to estimate the global gradient
variance σ 2

X(t) and the gradient noise variance σ 2
N(t) at each

iteration t. We first consider an offline estimation where
the perfect local gradients are available at the parameter
server. Then we consider a more realistic online estimation
where only the historical local gradients are available at the
parameter server.

1) OFFLINE ESTIMATION WITH PERFECT LOCAL
GRADIENTS

We first estimate σ 2
N(t) and the sum of σ 2

X(t) and σ 2
N(t)

based on the perfect local gradients, then we estimate σ 2
X(t)

by taking the difference between them.
Note that the local gradient is a noisy version of the global

gradient, i.e., Yk(t) = X(t) + Nk(t), hence given the global
gradient X(t), the variance of Yk(t) is equal to the variance of
Nk(t). The local gradients {gk,p(t)}k∈K at dimension p from
K worker nodes can be viewed as K samples of variable
Yk(t)|X(t) with variance σ 2

N(t). We can obtain the following
P unbiased estimations of σ 2

N(t) as

σ̂ 2
N,p(t) = 1

K − 1

K∑

k=1

(
gk,p(t)− ḡp(t)

)2
, p = 1, 2, . . . ,P, (48)

where ḡp(t) = 1
K

∑K
k=1 gk,p(t) and P is the number of gradi-

ent dimension. Then we estimate σ 2
N(t) by averaging these

P estimations as

σ̂ 2
N(t) = 1

P

P∑

p=1

σ̂ 2
N,p(t). (49)

Note that the mean and the variance of the local gradient
Yk(t) is given by

E[Yk(t)] = E[X(t)] + E[Nk(t)] = 0, (50)

and

Var(Yk(t)) = E

[
(Yk(t)− E[Yk(t)])

2
]

(51)

= E

[
(X(t)+ Nk(t))

2
]

(52)

= E

[
X2(t)

]
+ E

[
N2
k (t)

]
(53)

= σ 2
X(t)+ σ 2

N(t), (54)

respectively, where (53) results from the independence of
Nk(t) and X(t). The local gradients {gk(t)}k∈K from K worker
nodes can be viewed as KP samples of variable Yk(t) with
variance σ 2

X(t)+ σ 2
N(t). The unbiased estimation of σ 2

X(t)+
σ 2
N(t) is thus given by

σ̂ 2
X+N(t) = 1

KP

K∑

k=1

P∑

p=1

g2
k,p(t). (55)

Based on (49) and (55), σ 2
X(t) can be estimated as

σ̂ 2
X(t) = σ̂ 2

X+N(t)− σ̂ 2
N(t). (56)

2) ONLINE ESTIMATION WITH QUANTIZED LOCAL
GRADIENTS

In practical distributed learning, the parameter server can
only receive the quantized local gradients from worker nodes.
In addition, the quantized local gradients of iteration t are
not available at the parameter server at the beginning of
the iteration t, and thus cannot be used for the estimation
of σ 2

X(t) and σ 2
N(t). Hence, offline estimation with perfect

local gradients is infeasible in practice. As an alternative, we
propose an online estimation of σ 2

X(t) and σ 2
N(t) based on

the quantized local gradients at the beginning of the iteration
t + 1. The main idea is to first estimate the sum of σ 2

X(t)
and σ 2

N(t), then the optimal σ 2
X(t) and σ

2
N(t) are obtained by

maximizing the likelihood of the received quantized local
gradients.
Similar to the previous case, the parameter server can

compute the estimation of σ 2
X(t) + σ 2

N(t) with the help of
worker nodes. Since the local gradient gk(t) is available at
worker node k and can be viewed as P samples of variable
Yk(t) with variance σ 2

X(t)+σ 2
N(t), worker node k can estimate

σ 2
X(t)+ σ 2

N(t) by

σ̂ 2
X+N,k(t) = 1

P

P∑

p=1

g2
k,p(t), k = 1, 2, . . . ,K. (57)

Lch
(
bk,i
)

= log
Pr
(
Bk,1 = bk,1, . . . ,Bk,i−1 = bk,i−1,U1 = u1, . . . ,Uk−1 = uk−1|Bk,i = 1

)

Pr
(
Bk,1 = bk,1, . . . ,Bk,i−1 = bk,i−1,U1 = u1, . . . ,Uk−1 = uk−1|Bk,i = 0

)

= log
Pr
(
Bk,1 = bk,1, . . . ,Bk,i−1 = bk,i−1,U1 = u1, . . . ,Uk−1 = uk−1,Bk,i = 1

)

Pr
(
Bk,1 = bk,1, . . . ,Bk,i−1 = bk,i−1,U1 = u1, . . . ,Uk−1 = uk−1,Bk,i = 0

) − log
Pr
(
Bk,i = 1

)

Pr
(
Bk,i = 0

)

= log
Pr
(
Bk,1 = bk,1, . . . ,Bk,i−1 = bk,i−1,Bk,i = 1|U1 = u1, . . . ,Uk−1 = uk−1

)

Pr
(
Bk,1 = bk,1, . . . ,Bk,i−1 = bk,i−1,Bk,i = 0|U1 = u1, . . . ,Uk−1 = uk−1

) − log
Pr
(
Bk,i = 1

)

Pr
(
Bk,i = 0

) (47)
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Then each worker node transmits this estimation to the
parameter server along with the quantized local gradi-
ent. Note that the communication cost of transmitting
this estimation is negligible compared to transmitting the
high-dimensional local gradient. Based on the received K
estimates, the parameter server can estimate σ 2

X(t)+σ 2
N(t) by

σ̂ 2
X+N(t) = 1

K

K∑

k=1

σ̂ 2
X+N,k(t). (58)

Now we aim to compute the estimation of σ 2
X(t) and σ

2
N(t).

At the beginning of the iteration t + 1, the quantized local
gradients {uk(t)}Kk=1 and σ̂ 2

X+N(t) are available at the param-
eter server. In the following, we apply maximum likelihood
estimation for σ 2

X(t) and σ
2
N(t) based on the quantized local

gradients {uk(t)}Kk=1. The likelihood function is given by

L
(
σ 2
X(t), σ

2
N(t)|{uk(t)}Kk=1

)
(59)

= Pr
σ 2
X(t),σ

2
N (t)
(U1 = u1(t), . . . ,UK = uK(t)) (60)

=
P∏

p=1

Pr
σ 2
X(t),σ

2
N (t)

(
U1 = u1,p(t), . . . ,UK = uK,p(t)

)
, (61)

where the calculation of each probability is similar to (44) by
applying semi-analytical Monte Carlo simulation. We esti-
mate σ 2

X(t) and σ
2
N(t) by maximizing the likelihood function.

By taking σ̂ 2
X+N(t) as a constraint, this maximization problem

is given by

P1 : max
σ 2
X(t),σ

2
N (t)>0

L
(
σ 2
X(t), σ

2
N(t)|{uk(t)}Kk=1

)
(62a)

s.t. σ 2
X(t)+ σ 2

N(t) = σ̂ 2
X+N(t). (62b)

Let σ̃ 2
X(t), σ̃

2
N(t) denote the optimal solution of problem P1.

It is found empirically in [21] that the ratio of noise variance

to gradient variance, i.e.,
σ 2
N (t)

σ 2
X(t)

changes slowly with iteration

t. Moreover, it can be easily found that the gradient correla-
tion only depends on the ratio of σ 2

X(t) to σ
2
N(t), and is not

related to the absolute value of σ 2
X(t) and σ 2

N(t). Hence,
the transmission rate and LLR calculations at iteration
t + 1 can be determined by the gradient statistics estimation
σ̃ 2
X(t), σ̃

2
N(t).

D. DSC-BASED DISTRIBUTED LEARNING PROCESS
The proposed DSC-based distributed learning algorithm is
presented in Algorithm 1. The timing diagram of the learn-
ing process is shown in Fig. 5, where 5 worker nodes are
illustrated as an example. At the beginning of the iteration t,
the parameter server broadcasts the global model w(t) to all
the worker nodes (line 3). At the same time, the parameter
server estimates the parameters σ 2

X(t − 1) and σ 2
N(t − 1) at

the gradient statistics estimator (line 4) and calculates the
transmission rate based on (45) at the rate controller (line 5).
The parameter server informs all the worker nodes about the
transmission rate (line 6). Then each worker node locally
takes one step of minibatched SGD on the current model

Algorithm 1 DSC-Based Distributed Learning

1: Initialize w(1), σ 2
X(0) and σ

2
N(0) at the parameter server;

2: for iteration t = 1, ..., T do
3: Broadcast global model w(t);
4: Calculate σ̃ 2

X(t − 1), σ̃ 2
N(t − 1) by solving P1;

5: Calculate Rk,i(t) based on (45);
6: Inform each worker node k of {Rk,i(t)}mi=1;
7: for each worker node k ∈ K do
8: Calculate gk(t) = ∇ 1

B
∑

i∈Bk(t) fi(w(t));
9: Calculate σ̂ 2

X+N,k(t) = 1
P
∑P

p=1 g
2
k,p(t);

10: Generate Hk,i(t) satisfying
lk,i
n ≥ Rk,i(t);

11: Perform quantization bk,m(t), ..., bk,1(t) = J(Q(gk(t)));
12: Generate syndrome sk,i(t) = Hk,i(t)bk,i(t);
13: Send sk,1(t), ..., sk,m(t) and σ̂ 2

X+N,k(t) to parameter
server;

14: end for
15: Recover b̂k,i(t) based on Lch(bk,i(t)) and sk,i(t);
16: ĝ(t) = 1

K
∑K

k=1 ûk(t);
17: w(t + 1) = w(t)− η(t)ĝ(t);
18: end for
19: Return w(T + 1);

using its local dataset (line 8). Then, each worker node
simply computes the scalar σ̂ 2

X+N,k(t) based on the observed
local gradient gk(t) (line 9). Each worker node generates
the parity-check matrix with the corresponding transmission
rate (line 10). Each worker node also quantizes the observed
local gradient gk(t) as Q(gk(t)), converts it to binary rep-
resentation bk,i(t) (line 11) and computes the syndromes of
bk,i(t) for i = 1, 2, . . . ,m (line 12). All the worker nodes
send the syndromes and the scalars to the parameter server
serially (line 13). Note that the transmission order in the
successive Wyner-Ziv framework can be adjusted according
to the order in which the local model training is completed.
Upon a syndrome of a worker node arriving, the parame-
ter server applies LDPC decoding to recover bk,i(t) based
on the received syndrome and LLR, then the LLR for the
syndrome of the next bit-plane is calculated at the LLR
computer (line 15). The LDPC decoding at the parame-
ter server and the transmission of the next syndrome are
executed in parallel, except for the decoding of the last syn-
drome. The linear estimator reconstructs ĝ(t) from all the
quantized local gradients based on (37) (line 16). At the
end of the iteration, the parameter server updates the global
model (line 17). The process repeats itself until the model
converges.

E. EXTRA DELAY ANALYSIS
From the timing diagram, we can find that the time con-
sumed by distributed learning mostly overlaps the time
consumed by DSC, such that the total delay of DSC-based
distributed learning is not the simple sum of them. In the
following, we will show that the communication and com-
putation of the helpers in DSC are sufficiently efficient
such that the extra delay introduced by DSC is almost
negligible.
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FIGURE 5. The timing diagram of DSC-based distributed learning process, where the graph depicts communication time above the horizontal axis and computation time below
it, the time consumed by DSC is marked in blue, and the time consumed by distributed learning is marked in red.

1) COMMUNICATION

We reveal that the extra communication overhead introduced
by DSC-based distributed learning is almost negligible. The
generation of the parity-check matrix in each SW encoder
requires the transmission rate computed by the parameter
server. This requires an extra communication overhead from
the parameter server to the distributed worker nodes. However,
the transmission rate for each SW encoder only consists of m
scalars, where m is the number of quantization bits, while the
global gradient is a P-dimensional vector. In the considered
experiment, m is not larger than 10 and P is in the order
of 106. Hence, the extra communication overhead from the
parameter server to the distributed worker nodes is negligible
compared with that of transmitting the gradient vector.
At iteration t + 1, the transmission rate is redesigned

based on the estimated gradient statistics, i.e., σ̃ 2
X(t), σ̃

2
N(t).

To estimate σ̃ 2
X(t), σ̃

2
N(t), the gradient statistics estimator at

the parameter server requires the quantized local gradients
{uk(t)}Kk=1 and scalars {σ̂ 2

X+N,k(t)}Kk=1 in (57). The extra com-
munication cost of transmitting these K scalars is negligible
compared with that of transmitting the gradient vector.
In contrast, the work [19] exploits an autoencoder to

capture the common information that exists in the local gra-
dients. The autoencoder is trained using the perfect local
gradients collected from all the worker nodes, which, how-
ever, introduces an extra communication overhead since the
local gradients for the training cannot be compressed. The
work [16] estimates the correlation based on the local gra-
dients of a group of worker nodes at each iteration, and
an extra communication overhead is still needed since the
local gradients of workers nodes in this group cannot be
compressed during correlation estimation.

2) COMPUTATION

We first reveal that the computational complexity of gradient
statistics estimation and rate controller is only polynomial.
Specifically, the complexity of gradient statistics estimation

is O(PLK
ε
), where ε is the accuracy of problem P1 and

the complexity of computing the likelihood function is
O(PLK). The complexity of computing the transmission rate
is O(2KMLK2M) since the number of bit-planes is (K−1)M,
the number of conditions in (45) is 2KM and the complexity
of estimating each probability is O(LK). In practice, we only
estimate the transmission rate of the top Ktop worker nodes,
and the transmission rate of the rest worker nodes adopts
the transmission rate of the Ktop-th worker node. As shown
in Fig. 9 in Section V-D, when a large number of worker
nodes have transmitted the local gradients to the parameter
server as side information, the transmission rate decreases
slowly with the index of worker node. Note that the com-
putation of gradient statistics estimator and rate controller
and the communication of model broadcasting can perform
in parallel. Hence, the gradient statistics estimator and rate
controller do not bring extra delay in the case of limited
communication bandwidth.
Now we demonstrate that LDPC decoding and comput-

ing LLR have polynomial complexity, and the throughput
of practical LDPC decoders is high enough. The complexity
of LDPC decoding is O(MKPtBPn), where tBP is the max-
imum iteration times of BP algorithm and n is the block
length. The complexity of computing LLR is O(PLK2M)
since the number of bit-planes is (K − 1)M, the num-
ber of LLR needs to be estimated in each bit-plane is P
and the complexity of estimating each probability in (47),
shown at the bottom of page 7, is O(LK). In practice,
the use of LDPC decoding can enjoy the benefits of its
mature chip technology. Specifically, many advanced hard-
ware architectures for LDPC decoders have been proposed
in the literature [33], [34], which achieve high information
throughput of 181Gbps and 588Gbps, respectively. Note that
the LDPC decoding at the parameter server and the transmis-
sion of the next syndrome are executed in parallel. Hence,
the extra delay can only be introduced by compressing the
local gradients and decoding the last bit-plane of the last
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FIGURE 6. The ground truth and online estimation of σ2
X (t) and σ2

N (t) over iterations for three models, where the models are updated with ideal gradients without any
transmission error.

local gradient in the case of limited communication band-
width. Furthermore, these extra delay introduced by DSC is
negligible in large-scale distributed learning systems since
the extra delay introduced by DSC does not scale with the
number of worker nodes and the communication delay in
distributed learning increases linearly with the number of
worker nodes.

V. EXPERIMENT RESULTS
In this section, we provide experiment results to evalu-
ate the gradient statistics estimator and the rate controller
equipped with semi-analytical Monte Carlo estimation. We
also show the communication benefits for model aggrega-
tion in distributed learning resulting from the proposed DSC
scheme.

A. EXPERIMENT SETUP
We conduct experiments in a simulated environment where
the number of worker nodes involved in each training
iteration is K = 10 if not specified otherwise. We evaluate
the model training on the real-world datasets MNIST, SVHN,
and CIFAR-10 datasets. The MNIST dataset consists of 10
categories ranging from digit 0 to 9 and a total of 70000
labeled data samples (60000 for training and 10000 for test-
ing). The SVHN dataset includes 99289 labeled data samples
(73257 for training and 26032 for testing). The CIFAR-10
dataset includes 60000 color images (50000 for training and
10000 for testing) of 10 different types of objects. In this
paper, we consider IID data distribution, and we randomly
partition the training samples into 100 equal shards, each of
which is assigned to one particular worker node. We adopt
multilayer perceptron (MLP) model on the MNIST dataset,
Resnet20 model on the SVHN dataset and Resnet56 model
on the CIFAR-10 dataset. The hyper-parameters are set as
follows: momentum optimizer is 0.5, local batch size is 128
and learning rate η = 0.01.

B. GRADIENT STATISTICS AND ESTIMATION
We first study the gradient statistics and evaluate the gra-
dient statistics estimator. Fig. 6 shows the ground truth and
estimation of σ 2

X(t) and σ
2
N(t) over iterations for three mod-

els, where these three models approach convergence at the

end of the last iteration. The ground truth of σ 2
X(t) and σ

2
N(t)

are calculated offline based on the perfect local gradients,
and the online estimation is based on the one-bit quantized
value of local gradients. It is observed that the gap between
the ground truth and the estimation of gradient statistics is
very small, which indicates that the proposed method for
estimating gradient statistics online is effective. Note that
σ 2
X(t) and σ 2

N(t) changes slowly with iteration t, which is
consistent with the result in [21]. It is also observed that
the global gradient variance σ 2

X(t) is large at the begin-
ning of the model training and gradually decreases over
iterations while the gradient noise variance σ 2

N(t) remains
approximately unchanged for all three models. Intuitively,
in SGD-based learning, the initial model is far away from
the converge point at the beginning of the model training,
and the global gradient dominates the local gradients, hence
σ 2
X(t) is large at the beginning. When the model almost

converges, the global gradient almost vanishes, hence σ 2
X(t)

gradually decreases to zero. On the other hand, the gradient
noise variance σ 2

N(t) remains approximately unchanged due
to the randomness of local batches throughout the training
process.

C. RATE CONTROLLER
We evaluate the performance of the proposed rate controller
equipped with semi-analytical Monte Carlo simulation. For
the one-bit quantization scheme, we estimate the rate of a sin-
gle worker node by using traditional Monte Carlo simulation
and semi-analytical Monte Carlo simulation, respectively,
and each simulation is repeated 100 times, where the sam-
ples are drawn from the Gaussian CEO distribution with
given gradient statistics.
Fig. 7 shows the mean of the estimated rate versus the

number of samples L in each simulation, where σ 2
X = 10,

σ 2
N = 1, K = 10, the number of simulations is 100. The

ground truth is calculated by the semi-analytical Monte Carlo
simulation with a large enough L = 109. It can be observed
that the rates estimated by the semi-analytical Monte Carlo
simulation are unbiased throughout the whole regime of L
while there is a large bias in the rates estimated by tradi-
tional Monte Carlo simulation with low L. Specifically, the
mean of estimated rates approaches zero for the traditional
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FIGURE 7. The mean of the estimated rate versus the number of samples L, where
σ2
X = 10, σ2

N = 1, K = 10 and the number of simulations is 100.

FIGURE 8. Coefficient of variation of the estimated rate versus the index of worker
nodes k , where σ2

X = 10, σ2
N = 1, L = 100 and the number of simulations is 100.

monte carlo estimation when the number of samples is 10.
In this case, the number of samples that meet any condition
in (45) is not greater than 1 with large probability since the
number of the conditions (i.e., 29 = 512) is much larger
than L = 10. This implies that all the estimated conditional
probabilities in (45) are either 0 or 1, thus each conditional
entropy in (45) estimated by traditional Monte Carlo simula-
tion approaches zero. However, the ground-truth conditional
entropy is greater than 0. This brings the gap of transmission
rate between the ground truth and the traditional monte carlo
estimation when L is small. In contrast, even if the number
of samples L is small, the accurate conditional probabil-
ity in (45) can be calculated analytically for each sample
xl by the proposed semi-analytical Monte Carlo simulation.
Thus our scheme can estimate the transmission rate more
accurately as shown in Fig. 7.

Fig. 8 shows the coefficient of variation (CV) of the
estimated rate versus the index of worker node k, where
σ 2
X = 10, σ 2

N = 1, L = 100 and the number of simulations
is 100. It is observed that the CV of the rates estimated by
the proposed scheme is stable throughout the whole regime
of worker nodes k while the CV of the rates estimated by
traditional Monte Carlo simulation increases over the index
of worker nodes k. This is because the number of condi-
tions in (45) grows exponentially over k, and the number of
samples contained in each condition decreases dramatically

FIGURE 9. The rate of each worker nodes as a function of the ratio σ2
X /σ2

N for
one-bit quantization scheme, where the number of worker nodes is K = 5.

FIGURE 10. The rates of entropy coding and multilevel syndrome-based SW coding
over the quantization bits for multiple-bit uniform quantization, where the ratio
σ2
X /σ2

N = 100.

with k, leading to reduced precision of the rate estimation
for the traditional Monte Carlo simulation. In contrast, for
each sample, the probability of each condition and its cor-
responding conditional probability, i.e., the first and second
terms in (45), can be analytically calculated by the proposed
method even if the index of worker node k is large, hence
an increase in k does not reduce the precision of the rate
estimation for proposed semi-analytical Monte Carlo method.
In summary, the proposed semi-analytical Monte Carlo

simulation is unbiased and achieves higher precision than
the traditional Monte Carlo simulation.

D. COMMUNICATION COST
We first demonstrate the communication cost with different
gradient statistics and quantization bits by simulation and the
rates results are calculated by semi-analytical Monte Carlo
simulation with the number of samples L = 106.

Recall that the correlation between the local gradients
depends on the ratio σ 2

X/σ
2
N . Fig. 9 shows the rate of each

worker node as a function of the ratio σ 2
X/σ

2
N for the one-bit

quantization scheme, where the number of worker nodes is
K = 5 and the number of samples is L = 106. It is observed
that the communication cost of DSC decreases over the index
of worker node due to the fact that the side information at
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FIGURE 11. The test accuracy over epochs for uncoded SignSGD and DSC-based SignSGD on three models.

FIGURE 12. The communication cost over epochs for uncoded SignSGD and DSC-based SignSGD on three models.

the parameter server increases. It is also observed that the
rate for all the worker nodes decreases with the ratio σ 2

X/σ
2
N .

This is because the correlation between the local gradients
becomes stronger with the ratio σ 2

X/σ
2
N .

Fig. 10 shows the transmission rates of entropy coding and
multilevel syndrome-based SW coding over the quantization
bits for multiple-bit uniform quantization, where the ratio
is given by σ 2

X/σ
2
N = 100. The multilevel syndrome-based

SW coding uses the quantized local gradient of one worker
node as side information. It is observed that the transmis-
sion rates increase with the number of quantization bits for
both coding schemes and the relative communication cost
reduction (i.e., the rate reduction of SW coding normalized
by the rates of entropy coding) decreases with the quan-
tization bits. Specifically, the relative communication cost
reduction is 72% when m = 1 and is 28% when m = 10.
This is because the mutual information between the quan-
tized gradient and side information is upper bounded by the
mutual information between the perfect local gradients but
the entropy of the quantized gradient increases without upper
bound as the quantization bits increase. Therefore, using
DSC for quantization schemes with low quantization levels
can achieve a higher relative communication cost reduction.
The rates of each bit-plane in multilevel syndrome-based

SW coding for multiple-bit uniform quantization are shown
in Table 1, where K = 3, ratio σ 2

X/σ
2
N = 10 and m = 6. It can

be observed that the rates of most of the top bit-planes are
almost equal to one, which indicates that the corresponding
bit-planes can be transmitted without compression in prac-
tice. Therefore, the multilevel syndrome-based SW coding

TABLE 1. The rates of each bit-plane in multilevel syndrome-based sw coding for
multiple-bit uniform quantization, where K = 3, ratio σ2

X /σ2
N = 10 and the quantization

bits is 6.

can only compress last few bit-planes almost without extra
communication cost.
Finally, we evaluate the communication cost of the

proposed adaptive SW coding scheme by experiments on
models MLP, Resnet20 and Resnet56. Considering that most
of the bit-planes of multi-bit quantization cannot benefit from
DSC and one-bit quantization can achieve a higher relative
communication cost reduction, we adopt signSGD quantiza-
tion to show the communication efficiency of the proposed
DSC. The practical syndrome-based SW encoder is based on
irregular LDPC codes. In our experiments, the block length
for LDPC code equals 2400, and the maximum number of
iterations is set to 100 for LDPC decoding.
Fig. 11 and Fig. 12 compare the test accuracy and the

communication cost, respectively, of the proposed DSC-
based scheme over training epoches t. It is observed from
Fig. 11 that the accuracy gap to the uncoded SignSGD
scheme is very small due to the fact that the proposed SW
coding design is lossless. Specifically, the decoding bit-error
rate of the LDPC code is less than 1%. It is observed from
Fig. 12 that the per-epoch communication cost of the SW
coding scheme is significantly less than that of the uncoded
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SignSGD. Moreover, the total communication cost to train
the model is saved by the DSC-based SignSGD. Specifically,
the DSC-based SignSGD saves 38%, 47% and 37% of total
communication costs for MLP, Resnet20 and Resnet56 mod-
els, respectively. It is also observed that the communication
cost reduction of the DSC-based scheme decreases when
the model almost converges (i.e., epoch > 20 in Fig. 12).
Intuitively, when the correlation between the local gradient is
stronger, the communication cost reduced by applying DSC
is larger. At the beginning of the training, the correlation
between the local gradients is strong considering that the
global model is far away from the optimal solution. Then,
the correlation decreases as the global model is converging
and the local gradients are very small and uncorrelated when
the model approaches the optimal solution. This observation
is consistent with the results in Fig. 1.

VI. CONCLUSION
This paper proposed a distributed source coding framework
for model aggregation in distributed learning. We proved that
this coding framework approaches the minimum communi-
cation cost for distributed learning. We provided a multilevel
syndrome-based SW coding scheme implemented by LDPC
codes when gradient statistics are known, which can be
applied to existing quantization schemes. We calculated the
statistics of quantization variables given the gradient statistics
by semi-analytical Monte Carlo simulation with low compu-
tation complexity. We also proposed an adaptive SW coding
scheme that estimates the gradient statistics based on the
observed quantized gradients at the parameter server and then
dynamically adjusts the LDPC codes in each iteration based
on the estimation results. The experiment results showed that
the proposed coding scheme reduces the communication cost
without any loss of the model accuracy.
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