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ABSTRACT With the rapid adoption of the Internet of Things, it is necessary to go beyond fifth-generation
applications and apply stringent high reliability and low latency requirements, closely related to strict
delay demands. These requirements support massive network connectivity for multiple Internet of Things
devices. Hence, in this paper, we optimize energy efficiency and achieve quality-of-service requirements
by mitigating co-channel interference, performing efficient power control of transmitters, and harvesting
energy using time-slot exchanges. Due to a nonconvex optimization problem, we propose an iterative
algorithm for power allocation and time slot interchange to reduce the computational complexity. To achieve
a high degree of ultra-reliability and low latency with quality-of-service-aware instantaneous reward under
massive connectivity, we efficiently employ multiagent reinforcement learning by addressing the intelligent
resource management problem via a novel Double Deep Q Network. The network prioritizes experience
replay to exploit the best policy and maximize accumulative rewards. It also learns the optimal policy and
enhances learning efficiency by maximizing its reward function to make decisions with high intelligence
and guarantee strict ultra-reliability and low latency. The simulation result shows that the Double Deep
Q Network with prioritized experience replay can guarantee stringent ultra-reliability and low latency. As
a result, the co-channel interference between transmission links and the high-power consumption density
associated with the massive connectivity of the Internet of Things devices are mitigated.

INDEX TERMS Internet of things, beyond fifth-generation, energy efficiency, massive connectivity.

I. INTRODUCTION

NEW ADVANCES in information technology
have increased the number of wireless devices

connected to the Internet of Things (IoT). The
main problem for Beyond Fifth Generation (B5G)
cellular IoT is to create effective multiple access
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that meets the performance criteria and service
characteristics [1], [2].

Massive Connectivity (MC) to many devices is one of
the key use cases of B5G wireless networks. Cellular IoTs
are an example of a large-access IoT application. Since
IoT devices have a limited range and low power, the MC,
storage, and processing capabilities of an IoT object are
also limited by the available resources [1], [2]. Wireless
Energy Harvesting (EH) technology can solve the power
problem and provide enough energy for large-scale deploy-
ment of IoT devices, which has attracted significant interest
as a viable technology to cope with the size and lim-
ited space. Centralized systems for resource allocation and
improving access efficiency in B5G networks are essential
to ensure the MC Quality-of-Service (QoS) requirements in
B5G networks.
In contrast, IoT devices must use excessive energy and

processing capacity to meet Ultra-Reliability and Low-
Latency Communication (URLLC) requirements. These
requirements are crucial for time-critical communication
of data rates for the lifetime of IoT devices with lim-
ited resources [3]. Therefore, URLLC plays a vital role in
the smooth operation of IoT devices. It transports critical
information with strict low delay and reliability requirements,
i.e., 99.999% service reliability and 1 ms End-to-End (E2E)
latency. To mitigate the radio access network congestion
caused by MC, the authors in [4] proposed contention-
based random access in the massive IoT network to improve
packet efficiency and reduce transmission delay. Many
studies have presented MC to meet the critical require-
ments of URLLC [5], [6]. A grant-free access scheme with
multiple packet reception and an estimation of the rela-
tionship between latency and packet size in URLLC were
discussed [2], [5]. Moreover, in [6], grant-free spectrum
access for URLLC was proposed to meet the latency require-
ments and increase the reliability to improve the spectrum
utilization scenario.
The Resource Management (RM) strategy was proposed

using time switching and EH to achieve optimal performance
with minimized computation time depending on the num-
ber of devices connected to the IoT [7]. In another study,
the authors focused on transmit power and EH of Radio
Frequencies (RF) using time slot interchange to maximize
Energy Efficiency (EE) and improve the battery life of IoT
devices [8], [9], [10]. Harvesting time achieves near-optimal
EE and reduces Computational Complexity (CC) based on
the optimization of RM.

A. RELATED WORK
Recently, several emerging B5G technologies have been
deployed to fully achieve the goal of MC over finitely avail-
able radio resources. In IoT networks, channel assignment
and power allocation have been proposed to optimize the
transmission power allocation of IoT Users (UEs) assigned
to the same channel to ensure the QoS of UEs [11]. The
authors in [12] proposed non-orthogonal multiple access to

serve MC and the transmit power values under mitigating
co-channel interference through successive interference can-
celation. In addition, the authors in [13], [14] presented
aspects and techniques related to URLLC to support massive
multiple-input multiple-output and MC. As a result, many
IoT devices that provide high reliability, spatial multiplexing,
and lower latency have been realized by increasing the
spatial degrees of freedom. A viable solution to the MC
congestion problem is to offload a large amount of traf-
fic, immediately reduce device energy consumption, and
improve reliability and delay performance to meet the
requirements of various IoT applications [15]. Moreover,
EE is crucial in green wireless networks. Energy con-
sumption in high-density scenarios is huge and expensive
since most devices have limited power. The authors [16]
improved the EE and transmitted power by considering three
constraints, namely EH, Simultaneous Wireless Information
and Power Transfer (SWIPT), and time slot interchange in
the wirelessly operated interference channel. The authors
in [17] proposed a channel allocation model and min-
imized the long-term power consumption of the whole
system to maximize EE and guarantee the transmission delay
requirements. This EE maximization [17] depends on allevi-
ating co-channel interference and increasing the performance
of EE under the MC of the IoT. Several QoS require-
ments were not considered in the above study [6], [11],
[12], [13], [14], [15], [16], [17], [18], where these QoS
requirements could be constrained to maximize EE. In
MC scenarios based on EE maximization, the various QoS
requirements (such as latency and reliability) in IoT devices
have not been sufficiently studied. Intelligence enables
intelligent decision-making and improves the QoS offered
to UEs in IoT applications [7], [13], [14], [19], [20]. The
application of Deep Reinforcement Learning (Deep-RL)
in MC management has been extensively researched
in [20], [21], [22], [23] based on applying DRL. This
becomes infeasible due to the steep requirement of computa-
tion and storage where every device can work as a centralized
agent to learn the overall policy.
Many works have used Double Deep Q-Network (DDQN)

to efficiently assign multiagent to exploit the best policy
to solve the intelligent RM and decision-making chal-
lenge in IoT networks. To efficiently accomplish deep-
sensing tasks for massive smart devices, the authors in [24]
proposed a DQN algorithm to achieve intelligent decision-
making to provide better travelling paths for mobile UEs.
Nevertheless, the authors proposed distributed Dynamic
Spectrum Access (DSA) approaches introduced based on
the integration of DQN to find the best resolution for
the DSA problem under could quickly learn and give
a higher successful transmission and lower transmission
collision without a central controller, which provides an
efficient solution for real-time services [24]. The intelli-
gent RM studied in [25] is based on RL on the Internet
of vehicles to maximize the network capacity while guaran-
teeing the strict URLLC requirements. The study in [25]
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presented an effective transfer actor-critic to learn the
best strategy for the intelligent RM and maximize the
data rate while ensuring the practical limits in each cell
to address the intelligent RM challenge. By focusing on
content sharing between content providers and content
requesters, the authors in [26] investigated smart objects
that can utilize social networks and distribute content
via the device to device-based caching in a social IoT sce-
nario. The study in [26] formulates this resource allocation
problem by designing a novel distributed algorithm with
a rotation swap that can improve spectrum utilization and
converge to a stable state with a limited number of iter-
ations. These studies [20], [21], [22], [23], [24], [25], [26]
did not focus on how to address the MC man-
agement difficulty in their reported spectrum access
options based on DDQN. Moreover, the above stud-
ies [20], [21], [22], [23], [24], [25], [26] have not investi-
gated the controlling of transmit power, EH to IoT devices,
and the strict reliability and latency constraints of the
optimization problem.
This work is different from the previously exist-

ing one [20], [21], [22], [23], [24], [25], [26]. This work
focused on addressing non-channel interference, efficiently
managing power control of transmitters, minimizing EH,
reducing CC to improve intelligent RM, and supporting
MC for several IoT devices. Also, to solve the intelligent
RM problem for supporting MC in the network, we effi-
ciently allocate multiagent-RL to ensure strict reliability and
latency for URLLC services in MC. We rely on a DDQN
with Prioritized Experience Replay (PER) to leverage the
best policy, maximize accumulative rewards, and guarantee
QoS with a high-level intelligence. However, the authors
in [1] only focused on DRL-based resource management
with multiple agents to optimize the joint radio block assign-
ment and transmission power control to improve network
performance and access success probability without reduc-
ing CC. Other authors in [7] studied the transmit-harvest
response involving the SWIPT to obtain the transmit power
and EH ratios that maximize the data rate. The study in [7]
designed an efficient Deep Neural Network (DNN) with
a hybrid training strategy that integrates supervised and unsu-
pervised learning to reduce the high computation time. In
another study, the authors in [23] studied mobile crowd-
sensing based on a proposed DDQN-PER to evaluate the
performance of mobile crowdsensing. They used three basic
solutions (ant colony system, greedy and random solutions)
without guaranteeing the optimal performance time required
to update the transmission power and EH ratio.

B. MOTIVATION AND CONTRIBUTIONS
The new approaches are required to address the intelligent
RM problem to support MC for several IoTs devices in the
network; one potential solution is DDQN. The DDQN is an
important type of machine learning to solve RM issues by
assigning a multiagent-RL to exploit the best policy and
maximize an accumulative reward in an environment by

observing state transitions and obtaining feedback to choose
an optimal policy with a high-level intelligence environment.
The main contributions of our article can be summarized as
follows:
• This research offers new insights into the influence of

the QoS, and EH on the performances of the RM in the co-
channel interference. To analyze a wireless-powered network
with distributed channel assignment using a time slot inter-
change for both data receiving and EH; the optimal Power
Allocation and Time Slot Interchange (PATSI) are proposed
for the non-convex EE maximization problem by using an
iterative algorithm and the Lagrangian method to achieve
near-optimal EE by reducing the CC.
• Due to the increased time to update a transmit power and

EH ratio, the proposed iterative technique becomes infeasible
for increasing network EE. Therefore, we proposed DDQN
to ensure both the strict reliability and latency requirements
on URLLC services in MC, to solve a distributed channel
assignment, transmit power, and guarantee QoS.
• To satisfy high levels of URLLC with a QoS-aware

immediate reward in massive IoT devices, a DDQN-PER
based intelligent RM proposed to stabilize DNN training
for efficient learning with PER to train the multiagent-RL
for efficient learning of MC. Every agent tries to choose an
optimal policy based on the priority of transition to obtaining
feedback on a new state for each agent to maximize reward
with a high-level intelligence environment and guarantee
strict reliability and low- latency in IoT networks.

II. SYSTEM MODEL
In this paper, we focus on the transmission of an IoT network
where the gateway has j channels. We assumed that both
the gateway and the IoT device are equipped with a sin-
gle antenna [27]. Let j and i denoted the channel set and
the IoT device, respectively. The channel set and corre-
sponding IoT devices are denoted by j = {1, 2, . . . , J}, and
i = {1, 2, . . . ,ℵ}, respectively. Let ki,j be the channel gain
from the IoT device to gateway i suffers from Rayleigh
fading on the j − th. Every IoT UE is equipped with an
RF-EH, and it has high reliability and low latency to pro-
vide a high data rate. We assume that every IoT device
can be allocated with multiple channels j, and every chan-
nel only serves most IoT devices in a one-time slot. The
time slot interchange of oi is used for information receiv-
ing and that of (1− oi) is used for EH, where 0 ≤ oi ≤ 1
for i ∈ ℵ = {1, 2, . . . ,N}, and n ∼ CN(0, σ 2) represents
a noise for a complex Gaussian distribution σ . Thus, the
achievable transmission rate Ri of the i − th IoT device
received is expressed as

Ri(P, o) =
∑

i∈ℵ
log2 (1+ �i)

=
∑

i∈ℵ
oilog2

⎛

⎝1+ Pi
∣∣ki,i

∣∣2

σ 2 +∑
j∈ℵ\{i} Pj

∣∣kj,i
∣∣2

⎞

⎠, (1)
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where oi represents a time slot interchange for information
received, Pi represent a transmit power, � denotes the Signal
-to-Interference-Noise Ratio (SINR) and n ∼ CN(0, σ 2).

A. MINIMUM DATA RATE REQUIREMENTS OF
IOT DEVICES
The upcoming B5G ecosystem depends on improving the EE
of a URLLC without compromising on latency. Guarantee
the QoS requirements and improving packet transmission
in IoT devices depend on choosing an optimum channel
ki with a minimum transmission power in URLLC. The
URLLC requirements for real-time latency must be less
than 1ms and reliability 99.99999%. The packet loss rate
depends on the SINR value of the Rayleigh fading chan-
nel. To obtain low latency, the transmission delay should be
short, and the packet arrival process of the k−th (k ∈ Z) link
interference channel is independent identically distributed
(i.i.d) and follows a Poisson distribution with the Packet
Arrival Rate (PAR) γk [28], [29], where Z = j+ i total num-
ber of communications. According to the real-time traffic,
the packet size Fklatency transmit successfully on the k − th
communication based on analysing the average transmis-
sion delay (Ttr), queuing waiting delay (Tw) and processing
delay(Tpd) [29], which can be written as

Tlatency = Ttr + Tw + Tpd. (2)

In (2), decreasing the transmission delay of the packet under
the consideration of latency and reliability can be provided
by Ttr = Fklatency/(B× Rk), where B is the bandwidth of
every channel, and Rk is the achievable link data rate in (2).
Due to stringent constraints on latency and reliability, every
packet must be successfully transferred to assess real-time
data. The QoS evaluated based on the target latency for every
packet loss probability for URLLC, which can be written as

ρklatency = Pr
{
Tlatency > Tmax

} ≤ ρmaxlatency, (3)

where ρmaxlatency represents the maximum delay- violation prob-
ability, and maximum delay Tmax. The high data rate for
every URLLC service of the k − th communication should
meet the rate that can be guaranteed by applying the sta-
tistical QoS aspect in terms of latency outage probability
constraint in (3). Tmax is the maximum delay that IoT device
i tolerates. Due to the difficulty of achieving the outage prob-
ability in (3), we can convert the latency constraint into the
data rate [30].

RURLLC
k ≥

(
Fklatency/BTmax

)[
Lk − �−1

(
ρmaxlatencyLke

Lk
)]

� RURLLC
k,min ,

(4)

where �−1(.):[−e−1, 0) → [−1,∞)] represent the minor
branch of Lambert function meeting y = �−1(yey) [30],
Lk = γkTmax/(1− eγkTmax), and RURLLC

k, min represent the min-
imum data rate to guarantee the latency constraint. The
Transmission Success Probability (TSP) for a packet occurs
when the transmission latency is more than the maximum
latency threshold. Also, when the minimum data rate is

greater than the transmission data rate. In addition, to adopt
a good channel, the IoT device must understand the time-
varying and spatial characteristics of the channel. The SINR
is used to describe the reliability of URLLC, when the
received SINR is less than a minimum SINR. The con-
trolling for reliability is ensured by controlling the outage
probability in the link interference channel k−th. The outage
probability in terms of SINR can be written as:

ρ
k,j
out = Pr

{
�k,j < �mink,j

}
≤ ρmaxout , (5)

where �mink,j represents the minimum SINR of link
interference k on the j − th channel and ρmaxout represents
the maximum violation probability. From (4) controlling the
probability of the unsatisfied normal service being able to
satisfy the target reliability and guaranteeing the desired
arrival rate depends on minimum data rate requirements in
real-time is given by

ρkns = Pr
{
Ri ≥ Ri,min

} ≤ ρmaxns ∀ i ∈ ℵ. (6)

B. ENERGY CONSUMPTION MODEL
The usage of the signal power from every channel can be
determined for EH. The EH at every IoT device is given by
E(P, o) = (1 − oi)λi

∑
j∈ℵ Pj|ki,j|2 [31]. The power con-

straint of the device is imposed to ensure the desired power
control for data transmission at the beginning of every time
slot, which can be formulated as

∑

i∈ℵ
Pi ≤ Ptotal ∀ i ∈ ℵ. (7)

The constraint in (7) is imposed to ensure that the trans-
mit power is limited by the total allowable power of IoT
devices. It is important to include total power consumption
in the optimization complaint function for an energy-efficient
system. The total power consumption, including EH in the
system, can be written as

Ptotal(P, o) =
∑

i∈ℵ

(
PC + μPi − E(P, o)

)

=
∑

i∈ℵ

⎛

⎝PC + μPi − (1− oi)λi
∑

j∈ℵ
Pj

∣∣ki,j
∣∣2
⎞

⎠, (8)

where PC is the static circuit power consumption at
the receiver, μ is the power inefficiency of the power
amplifier [32], and λ(0 < λ ≤ 1) represents the energy
conversion efficiency.

III. PROBLEM FORMULATION
This paper aims to increase EE of the IoT networks by
jointly optimizing MC for channel, time slot interchange,
controlling transmit power, and EH to IoT devices. We can
formulate the problem as

maxP,oηEE = R(P, o)

Ptotal(P, o)
=

∑
i∈ℵ oilog2

(
1+ Pi|ki,i|2

σ 2+∑
j∈ℵ\{i}Pj|ki,j|2

)

∑
i∈ℵ

(
PC + μPi − (1− oi)λi

∑
j∈ℵPj

∣∣ki,j
∣∣2
)

(9)
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s.t (4), (5), (6), (7), (9a)

Ei(P, o) ≥ Emin ∀ i ∈ ℵ, (9b)∑

i∈ℵ
PiPi′ = 0 ∀ i �= i′, (9c)

Pi ≥ 0, (9d)

oi ∈ {0, 1} ∀ i ∈ ℵ, (9e)

where Emin represents the EH requirement at every IoT
UE. The minimum EH limitation in (9b) states that the
harvested energy must not be less than the minimum
EH requirement. The constraint in (9c) expresses chan-
nel power allocation in the Orthogonal Frequency Division
Multiplexing (OFDM) system. The constraint in (9d) is
the boundary condition for transmitting power allocation
variables that cannot be less than zero. (9e) is a binary
criterion for time slot interchange (simple time switching)
for information [33]. The optimization problem in (9) is
challenging because power allocation is still a nonconvex
problem and NP-hard [34]. It is hard to derive the optimal
solution analytically with a transmit power P and a time slot
interchange o in closed form. The number of iterations can
be determined numerically to obtain the optimal solutions by
quantizing each P and o with m evenly spaced and evaluat-
ing all combinations of the quantized parameters to identify
the optimal value. The mitigation of co-channel interference
and power consumption depends on the small-scale chan-
nel gains. The packets must wait for retransmission. Each
device has a time slot interchange oiε{0, 1}. The time slot
interchange oi is used for receiving information and that
of (1− oi) is used for EH, for i ∈ ℵ = {1, 2, . . . ,N},
which enhances Pi and oi well, even in interference-limited
environments.

A. OPTIMIZE EE FOR TRANSMITTING POWER AND TIME
SLOT INTERCHANGE BASED ON AN ITERATIVE
ALGORITHM
In this section, we propose designing an iterative algo-
rithm for EE to reduce the CC of exhaustive searches.
In OFDM, each IoT device has access to only one chan-
nel to improve EE and ensure optimal transmit power to
serve all IoT devices. To further reduce the CC, we use
the Lagrangian function and Karush-Kuhn Tucker (KKT)
conditions to solve this problem. The EE is multivariable
and subject to constraints (9a) through (9e). The Lagrangian
function of problem (9) can be written as follows.

L(Pi, oi,m,h) =
∑

i∈ℵ
oilog2

⎛

⎝1+ Pi
∣∣ki,i

∣∣2

σ 2 +∑
j∈ℵ\{i} Pj

∣∣kj,i
∣∣2

⎞

⎠

+ m
∑

i∈ℵ

⎛

⎝PC + μPi − (1− oi)λi
∑

j∈ℵ
Pj

∣∣kj,i
∣∣2
⎞

⎠

+
∑

i=ℵ
hi(Ptotal − Pi), (10)

where mi ≥ 0, i = {1, 2, . . .N} and h ≥ 0, i = {1, 2, . . . ,N}
are the Lagrange multipliers corresponding to the constraints

of transmit power and the minimum EH. The corresponding
problem of (10) is given by

minm≥0,h≥0maxP≥0, 0≤o≤1L(Pi, oi,m,h). (11)

Let P∗i and o∗i denote the optimal solution of the correspond-
ing subproblems of transmit power allocation and time slot
interchange, respectively. Using (11), Pi and oi are itera-
tively updated to maximize L(Pi, oi,m,h) and m and h

are adjusted to minimize L(m,h). Due to the strong asymp-
totic duality of the RM problem, the outcome of this iterative
optimization procedure converges to the ideal solution as ℵ
increases (9). For the given time slot interchange oi, the
first order KKT concerning Pi of the Lagrange function
for obtaining the optimal transmit power for the EE can be
written as follows:

∂L(Pi, oi,m,h)

∂Pi
= 1

ln 2

⎛

⎝ oi
∣∣ki,i

∣∣2

σ 2 +∑
j∈ℵ\{i} Pj

∣∣kj,i
∣∣2

⎞

⎠

+ μ− (1− oi)λi

(
∑

i=ℵ

∣∣kj,i
∣∣2
)
+ hi. (12)

The KKT conditions can be satisfied for a given oi by the
Lagrangian function (10), where the transmit power is written
as (13). The optimal transmit power satisfy in (12) when the
partial derivatives condition is equal to 0 as follows:

P∗i =
⎡

⎣ 1

ln 2
[
hi −

(∑
i=ℵ (1− oi)λi

∣∣kj,i
∣∣2
)
+ τi

]

− σ 2 +∑
j∈ℵ\{i} Pj

∣∣ki,j
∣∣2

oi
∣∣ki,i

∣∣2

⎤

⎦
Ptotal

0

. (13)

The SINR must adopt a good channel and guar-
antee the desired PAR to every IoT device τi =
�kok|ki,k|2/σ 2 + ok ∑j∈ℵ\{i} PI |kI,k|2 and {a}Ptotal0 denote

0≤ a ≤ Ptotal, where {at}Ptotal0 represents the taxation terms
for optimal power allocation. From (13), the transmit power
Pi is proportional to the EH and inversely proportional to
a taxation term τi. The optimal time slot interchange o∗i
for a given the transmit power Pi over channel i, taking
the first-order derivative of L(Pi, oi,m,h) to be zero with
respect to o, the optimal solution of time slot interchange
∂L(Pi,oi,m,h)

∂oi
= 0, can be written as:

o∗i

=

⎡

⎢⎢⎢⎢⎢⎣

− σ 2
(

2
∑

j∈ℵ\{i} ai + bi
)
+

(
σ 2 bi

[
bi +

4
(∑

j∈ℵ\{i} ai
)[∑

j∈ℵ\{i} ai+bi
]

ln 2mh
(∑

j∈ℵ\{i} ai
)[ ∑

j∈ℵ\{i} ai+bi
)]

])1/2

2
(∑

j∈ℵ\{i} ai
)[∑

j∈ℵ\{i} ai + bi
]

⎤

⎥⎥⎥⎥⎥⎦

1

0

,

(14)

where ai = Pj|kj,i|2, bi = Pi|ki,i|2, and {b}10 denote 0 ≤ b ≤
1. For a given Pi, the Lagrangian function (10) can satisfy the
KKT conditions equivalent to the transmit power Pi, and can
be expressed asPi = {pmax1 , pmax2 , . . . , pmaxi−1 ,Z

∗
k , 0, . . . , 0}. EE

is maximized by the ensuing optimal power allocation, given
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Algorithm 1 PATSI Iterative Algorithm for Updating
a Transmit Power and EH Ratio for Maximization of EE

1- Initialize P0, o0, τ0 ,m, and h randomly
2- j← 0
3- repeat
4- j← j+ 1
5- Pj ← Pj−1, oj ← oj−1, τ j ← vj−1

6- repeat
7- repeat
8- Compute Pj according to (13)
9- Update the Lagrange multiplier h, and m according (15)
10- Until Pj convergence
11- Compute τ j = �kok|ki,k|2

σ 2 + ok
∑

j∈ℵ\{i} PI |kI,k|2
12- Until τ j convergence
13- Compute oj according to (14)
14- Update (1) and (8)
15- Until Ej(P∗, o∗) = η∗EE, P∗ = Pj, and oj = o∗

as P∗i = min(max(0,Z∗i ), pmaxi ) with a feasible region {0 Z∗k}.
The EE increases as oi increase the minimum EH obtained
from the constraint (9), and optimal oi is denoted as (14).
The optimal solution is obtained using the gradient method
to update the Lagrange multipliers. Therefore, the ϕ and 
are the step size taken in dual variables and can be written as

mi+1 =
⎡

⎣mi − ϕi
⎛

⎝(1− oi)λi
∑

j∈ℵ
Pj

∣∣kj,i
∣∣2 − Emin

⎞

⎠

⎤

⎦
+
,

hi+1 =
[
hi −i(Ptotal − Pi)

]+
for i ∈ ℵ. (15)

Providing QoS guarantees will become challenging with
the expected increase in IoT devices and data traffic in
B5G networks. Every device might have very different QoS
requirements according to stringent transmission reliability
and latency. So, improving the QoS of the real-time traffic
depends on reducing the average E2E transmission delay. To
maximize network EE, we assume that EE and EH are exe-
cuted individually in different time slot interchanges. That is,
the transmit power Pi = 0 when the time slot oi for i ∈ ℵ is
allocated to EH. The convergence of the iterative algorithm
increases the time required to update a transmit power and
EH ratio, which do not guarantee optimal achievement and
nonconvex problems. Given the number of iterations needed
for the worst case [35], [36], its CC is O(N4i), where N4

is the number of computations required to calculate the Pi

and oi during each iteration.

B. DDQN-PER FOR INTELLIGENT RM
Every communication in an IoT network operates as a learn-
ing agent. The optimal transmit power and EH ratio for the
IoT device in (9) depends on enabling each agent to learn
MC policies efficiently. Furthermore, the optimization objec-
tive is only a single time slot exchange optimization issue
with a fixed optimization function, where the MC makes
a decision only depending on the current state. We apply
DDQN with PER to train the multiagent–RL to achieve effi-
cient learning for MC policies during the training process.

The optimization problem as a multiagent -RL is also called
an independent DDQN -based RM. The Q-learning is an
effective tool to solve problems in a Markov Decision
Process (MDP) to model the MC decision-making by defin-
ing state, action, and immediate reward functions in the RM
approach. Every communication operates as a learning agent
in every time slot interchange oi, by using the unknown
network’s state to balance the network state and then use it
for decision-making.
State Space: Is denoted by s ∈ S. The cur-

rent network state involves the channel information
and each agent’s behaviours, which can be defined as
s = {{ki}i∈ℵ, {oi}i∈ℵ, {�k,j}k∈k,j∈J, {RURLLC

k }k∈k, {ψi}i∈ℵ},
where ψ represents the QoS requirement for TSP for the
minimum data rate, latency, and reliability.
Action Space: Let a denote the action space. For the MC

management problem, every agent takes at ∈ A according to
the currently absorbed state s, as a = {{oi}i∈ ℵ, { Pi}j∈ℵ,i �=i′ },
where the action includes the transmission power and EH
signal by time-slot interchange oi. The action selection of
every agent should satisfy the constraints (9a) -(9e).
Transition Probability: The transition model ρ(st+1|s, a)

takes the probability that the agent takes the action at ∈ A

from the current state st ∈ S to a new state st+1 ∈ S for
the next time slot interchange. The agent stores the learning
experience in the test replays to expedite learning in the next
time slot interchange.
Reward Function: The immediate reward drives the learn-

ing process, and each agent makes decisions by maximizing
its immediate reward to make decisions in a high-level intel-
ligence environment and evaluate the quality of the action.
Our objective is to maximize EE and improve the QoS
requirements levels from URLLC to a minimum data rate
by proposing a QoS-aware immediate reward for differ-
ent communication (massive connectivity), which can be
given by

rk = ηkEE − v1

(
ρklatency + ρkout

)
− v2ρ

k
ns, (16)

where v1 and v2 represent the weights of the latter two
terms in (16). From (16), the first term represents the util-
ity EE. The second term represents the cost function for
unsatisfied latency for every packet loss probability ρklatency,
and reliability by controlling the outage probability in the
communication k − th to guarantee a minimum SINR ρkout.
The cost of extra power to preserve transmission efficiency
increases if the SINR of a channel is not high enough. The
third term represents the cost function for an unsatisfied
minimum Ri,min as shown in (6). The goal of MDP is to
exploit discounted cumulative rewards for every agent and
tries to choose an optimal policy π through interaction with
its environment, state–action value function a = π(s).

1) RM FOR MULTIAGENT DDQN-PER BASED MC

Every communication for IoT devices trying to access
spectrum resources performs as a learning agent, where
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each agent tries to learn an optimization policy under
QoS-aware immediate reward. The DRL method optimizes
each agent for the IoT device transmission power and the
EH ratio. A DDQN-PER-based solution for successful trans-
missions with QoS guarantees for discounted cumulative
rewards is proposed, and network performance is improved.
Considering the various QoS requirements for the DDQN
- PER learning algorithm, it is challenging to learn intelli-
gent RM that effectively improves learning speed, efficiency,
and stability and identifies the QoS metrics of each network
application. However, strict low latency and high reliability
can optimize the joint channel assignment and transmission
power control strategy without a centralized controller. In
addition, it is not yet clear how deep learning has been
used to improve the QoS of various IoT-based systems and
services. In this case, the requirement of a more varied QoS
is not guaranteed, but resources are reserved, renewed, and
released based on network traffic requirements. Q-learning
is effective in small RL situations and finds the optimal
policy π by recording Q : S× A in the Q-table and
updating it with an off-policy Temporal Difference (TD).
The Q value of this state-action value function is
estimated by:

Q∗(st, at)← (1− β).Q(st, at)
+ β.(rt + ξmaxaQ(st+1, a)), (17)

where β represents the transfer rate, which is gradually
reduced after each learning step to reduce the impact of the
transmitted DQN, ξ represents the discount factor ξ ∈ (0, 1),
and rt denotes the reward obtained when st moves to st+1
by an action at. When the state space S and action space
A are large, conventional RL approaches become infeasi-
ble due to the high computational and storage requirements
and thus are not suitable for optimizing power control poli-
cies in IoT networks. We adopt DQN to introduce neural
networks (NNs) with PER to address this issue and train
the multi-agent DDQN for effective learning. The Q-value
of this state–action pair is updated by:

Qt+1(st, at) ← (1− β).Qt(st, at)
+ β.(rt+1 + ξmaxat+1Qt(st+1, at+1)

)
. (18)

MC connections operate in a limited radio spectrum. This
challenge can be treated as a multi-agent DDQN problem.
Each communication is viewed as a learning agent that
interacts with the environment to gain experience and then
uses that experience to optimize its strategy for accessing
the spectrum. It decides on an action path under the learned
strategy to achieve this. Each agent then receives a new state
and an immediate environmental reward. In the following
time step, all agents skilfully learn new policies based on
the feedback. With an infinite number of time steps, the
DDQNs can be learned. Moreover, PER increases learning
stability, learning speed, and efficiency and finds the
best MC strategy. Then the DQN outputs make decisions
and choose an action according to the learned policy

Q(st, at; θ), where θ represents the NNs parameters used
to minimize the loss function in each time slot as L(θt) =
E(rt+1(st, at)+ ξmaxaQt(st+1, at; θt)− Qt(st, at, θt))

2.
Based on the feedback, every agent quickly learns new
policies in the next step to decrease the CC. Based on
the application of the gradient descent method, the DDQN
weight θ is obtained as θt+1 = θt + ∇ L(θt), where ∇L
represents the gradient descent for decreasing the loss
function in each time slot. The DQN contains two concepts,
a target network with parameters NNs θt and PER, which
contains a memory bank that stores observed transitions
during training and takes advantage of the rapid training
speed. In terms of the objective function in (19) depends
on the final output can be used to generate a new timeline
by taking advantage of the rapid training speed, whereas
each agent selects an action according to the learned policy
π(st, at) = arg maxaQt(st+1, at+1; θt) to minimize the loss
function in each time.

Q∗t(st, at; θt) ← (1− β).Qt(st, at; θt)
+ β.(rt+1 + ξmaxaQt(st+1, at+1; θt)). (19)

In DQN the maxaQ(st+1, a; θt) selects inflated values,
resulting in overconfident value estimates. Double DQN is
proposed in [18] to decouple the selection from the evalua-
tion by using the policy network to greedily select actions
and estimate their values in the target network. The Q- value
in DDQN is updated by

Q∗t(st, at; θ) ← (1− β).Qt(st, at; θt)
+ β.(rt + ξ.Qt(st+1, arg maxaQ(st+1, at+1; θ); θt).

(20)

A fully centralized DQN is installed to jointly optimize all
IoT device operations using the feedback data they provide.
The efficiency of IoT device cooperation is increased by
the environment’s ability to combine all IoT device obser-
vations and activities as an action at, after which each agent
returns to all IoT devices for local offline learning. The
improvement of every agent’s learning ability and service
performance depends on the selected expert agent. Therefore,
the expert agent’s transferred DDQN model Qtransmi(s, a) and
the learning agent’s current native DQN model Qcurrent(s, a)
are used by the learning agent to generate the total DDQN
as Qnew(s, a) = βQtransmi(s, a) + (1 − β)Qcurrent(s, a). In
order to reduce the DDQN transmission from the expert
agent, the policy vector of all agents can be updated as
follows:

πt+1(st) =

⎡

⎢⎢⎣

π1
t+1(st)
...

πkt+1(st)

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

arg maxa1Q1
t+1

(
s1
t , a

1
t ; θ1

t

)

...

arg maxakQ
k
t+1

(
skt , a

k
t ; θkt

)

⎤

⎥⎥⎦, (21)

where Qkt+1(s
k
t , a

k
t ; θkt ) represents the Q-value state–action

pair of the k − th agent.
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2) ENHANCED COORDINATED MULTI-AGENT DDQN-PER
BASED MC

The PER is employed in DQN to stabilize DNN training
for efficient learning of MC. The classical DNN uses tran-
sitions in PER memory which may disregard the value of
transition samples during the training process. The PER is
proposed in [37], [38], [39] to make the PER more effi-
cient by assigning a priority to every transition based on
the TD-error, where the agent can learn more effectively
from some samples rather than from samples that are irrele-
vant or redundant. The TD-error can display how surprising
a transition is. The transitions with the most TD errors are
more likely to be chosen from replay memory during the
learning process. For every transition ρm ∈ χ . The TD-
error is denoted by τm. The priority of transition ρm is
determined by

ρm = |τm| + ϑ, (22)

where ϑ represents a small standard number that guar-
antees that even with a zero TD-error every transition
may be sampled. The policy network based on transitions
is updated and evenly sampled, as shown in (19). The
weight changes are calculated using importance-sampling
techniques θm = (u.ρm)−�, where u represents the size of
the PER buffer. By using the PER technique in the target
networks L(θt) = 1

u

∑u
m Lm(θm) to manage the amount of

correction for the size of the PER u [23]. The probability
of transition samples ρm based on the absolute TD-error is
determined by

Pr(m) = ρ�m∑
ñρ

�
ñ
, (23)

where ñ is the size of the PER unit, and � ∈ [0, 1] is
the influence value that controls the range of priority use
and weight of NNs, where

∑∞
t=0�t, and

∑∞
t=0�

2
t <∞.

If � = 0, the importance-sampling is not used, and
if � = 1 means greedy strategy sampling. With a big
absolute TD-error, the visitation frequency of experienced
events is altered, and hence causes the training process
of the NNs inclined to diverge [6], [39], [40]. Multi-agent
DDQN-PER is justified by assigning a priority to every tran-
sition based on the TD-error, where every agent tries to
exploit the best policy to maximize an accumulative reward
based on the probability of action selection at every step.
Therefore, the random selection probability O starts with
a big value Omax and then gradually decreases toward a small
value Omin. The probability of random selection can be
determined as

O
(
ñ
)
= max

(
Omin,−ñ

(
Omax − Omin

�

)
, (24)

where � is a decay factor that controls the decay rate, and ñ
represents the current episode. As the training progresses,the
agent is expected to acquire more reasonable behaviour to
keep the selection probability.

Algorithm 2 Multi-Agent DDQN-PER Based MC
1- Input: DDQN structure, QoS requirements of all IoT

devices, probability of random selection, and discount
factor

2- Output: Transmission power control, maximize EE
(enhance the network performance based on enabling an
agent to learn new policies from its own actions and
experiences)

3- Initialize: DQN with initial Q-function Q(st, at; θ),
parameter NNs θ , u PER buffer, and �

4- Start: DQN models should be loaded.
5- for every iteration step t = 0, 1, 2, . . . , T do
6- Every agent observes the environmental state st
7- Randomly select at with random selection probability O;

otherwise
8- Select action at = maxaQ(st+1, at; θ)
9- Execute at to observe rt and a new state st+1
10- Save (st, at, rt,st+1) into u PER
11- According to (22) and (23), sample a minibatch of

transitions u’ from u.
12- end for
13- for every agent ∀m = (st, at, rt,st+1) ∈ u’ do
14- if u is full, remove the least used experience from u then
15- �m = (rm + ξ.Q(sm+1, arg maxaQ(sm+1, a; θ); θt)
16- else �m = rm
17- Compute TD error as (22),
18- Compute importance-sampling techniques θm = (u.ρm)−�

weight
19- Update target network L(θt) = 1

u

∑u
m Lm(θm), and

a priority of transition (23)
20- Improve the probability of random selection O(n˜) to keep

the selection probability
21- end if
22- end for

3) COMPUTATIONAL COMPLEXITY ANALYSIS

For trained DQN models, the DNN may require a long com-
putation time. Let us define C and L as the number of hidden
layers and that the dimensions output for DQN is propor-
tional to the training layers. For each agent, the complexity
at each time step can be expressed as O(NL|2Ci), at every
training step. The CC between agents is O(|L|), and the
last issuing policy at each time step can be simplified to
O(NL|2Ci). In the training phase, as the agent Zl increases,
it increases the total CC in the DNN by O(Zl|NL|Ci),
O(Zitera

1
2TZLCi|NL|2) in the training procedure, where T is

the number of training episodes in time steps. The DNN
training phases can be performed offline at an increased CC
for the minimum required number of trainings [38]. When
the number of iterations for MC increases, the proposed
iterative PASTI algorithm scheme has a higher loss value
than the DDQN scheme.

IV. SIMULATION RESULTS
The performance of the DDQN-PER solution for the
proposed RM approach is evaluated in this section. The
proposed coordinated multi-agent DDQN-PER-based MC
approach in IoT is compared with the following approaches:
1- The DDQN-PER is achieved by solving the optimization
problem (9), where the DDQN can greedily select actions,
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TABLE 1. Computation complexity.

and the target network by using PER. 2- The DQN-learning
approach, where the training of DNNs is used to evaluate
the action and choose the policy corresponding to the high-
est Q-value. 3- The current QoS-level solution decomposes
problem (9) into three sub-problems: time slot interchange,
transmit power control, and EH. The issues can be solved
iteratively in a centralized manner. However, it is only a sin-
gle time slot optimization technique, which may lead to
a suboptimal result due to a lack of understanding of the
long-term benefits (denoted as the QoS level) [26]. 4- The
random MC technique, where each transmission link ran-
domly assigns its channel assignment and transmit power
strategy. We assume a single cell with a radius of 500 m.
The IoT devices are randomly distributed in the circular area,
with a total number of devices, i = 300. The bandwidth of
each channel is set to B = 180 kHz, using 0.5 ms in the
time domain. The SINR threshold is set at 5 dB, the trans-
mission reliability is set at 99.999%, the message size is
500 bytes, and the latency is 1 ms. The maximum transmits
power at the BS varies between 15 dBm and 40 dBm. The
noise spectral density is −174 dBm/Hz, and every packet
size in URLLC links is 1024 bytes. The DDQN learning
model is made up of three hidden layers, each with 500,
250, and 200 neurons [39]. Table 1 shows that the compu-
tation times for two algorithms increase with the number of
IoT devices i. However, the magnitudes and rates of increase
are very different. It can be seen that the DDQN-PER algo-
rithm achieves a much lower CC than the iterative PASTI
algorithm.
Interestingly, it shows that CC from DDQN-PER is almost

insensitive to the number of IoT devices and EH due to
the efficient matrix operations with a graphical processing
unit. We can assume that the proposed DDQN-based PER
achieves comparable performance to the optimal RM.

A. PERFORMANCE OF QOS REQUIREMENTS FOR HIGH
LEVELS OF URLLC
Fig. 1 illustrates the total transmit power against the QoS
requirement. Fig. 1 shows the QoS for outage probability
that satisfies depends on the minimum rate satisfaction prob-
ability in (4), and (6) by controlling the outage probability
in the link interference channel, when the Ri ≥ Ri,min. The
QoS satisfaction probability of four approaches enhances
monotonically with growing Ptotal because the received SINR
for every IoT device must adopt a good channel and guar-
antee the desired arrival rate when Ptotal increases. From

FIGURE 1. Performance QoS outage probability vs. power.

FIGURE 2. The performance of TSP vs. number of IoT devices.

Fig. 1, our proposed learning DDQN-PER has a slightly
higher QoS to IoT users, which offers better performance
than the DQN, QoS level, and random MC. In addition, the
DDQN can simultaneously facilitate a more favourable chan-
nel, while the QoS level [26] approach iteratively optimizes
the data. Furthermore, due to its efficient learning capability
by applying PER methods in the dynamic environment, the
DDQN-PER outperforms DQN in terms of both rate and
QoS satisfaction probability. This is because by determining
the probability of transition samples ρm based on the abso-
lute TD-error, which can control the range of priority use
and weight of NNs.
Fig. 2 shows that TSP reaches the good level for all

approaches with few devices. When the number of IoT
devices increases, the transmission success decreases due to
the limited radio resources. Furthermore, the received SINR
value decreases when there is severe co-channel interference.
Therefore, TSP decreases as the number of devices increases.
From Fig. 2, the proposed learning scheme DDQN-PER still
achieves a higher number of successful transmissions than
other approaches because the QoS-aware reward function
in (16) tries to satisfy the high TSP while guaranteeing the
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FIGURE 3. Outage probability vs. minimum require rate.

FIGURE 4. Related of URLLC latency vs. PAR.

QoS requirements. Furthermore, the proposed DDQN-PER
with the QoS-aware reward function in (16) achieves the
target of TSP of 0.9999 and can reduce the transmis-
sion time slots. Figure 3 shows the probability that the
transmission link rate is lower than the required rate. The
outage probability remains unchanged when the required
rate is less than 0.1bit/s/Hz. However, it increases when
the minimum Ri,min is more than 0.3 bits/s/Hz because the
restricted radio and power control can grant the increased
minimum Ri,min requirements. From (6) controlling the out-
age probabilityρk,jout of the normal service able to satisfy
the target reliability depends on applying the PATSI based
on an iterative algorithm for training more channel sam-
ples in real-time. From Fig. 3, the required rate increases
because the stable DNN training for efficient learning with
ER can ignore the importance of the transition samples
during the training process. The stable DNN training for
efficient learning with ER adopts a loss function to make
the output DNN reward as close as possible to the desired
requested to guarantee the desired arrival rate to every

FIGURE 5. Performance of EE vs. PAR.

IoT device. Fig. 4 shows the URLLC latency per packet
of different approaches with PAR. The URLLC latency
increases with increased PAR. This is because inter-cell
interference becomes more pervasive in wireless networks,
limiting the data rate improvement. When the packet size
Fklatency= 0.2 packets/slot/per IoT source [40], the proposed
DDQN-PER can deliver packets successfully to IoT devices
by allocating them more channels. However, when the PAR
is high, there are not enough resources to schedule all IoT
devices. In this case, the waiting time in the queue leads to
more power consumption. In addition, more PAR for a large
number of IoT devices becomes difficult, making the network
fail to support all the services requirements, which makes
the latency bound increase from 0.2 ms to 1.65 ms.

B. OPTIMIZE EE FOR TRANSMITTING POWER AND
PACKET ARRIVAL RATE
From Fig. 5, the EE increases to a high value with
a high packet transmission. After that, the EE starts to
decrease. This is because the higher priority of the inter-
cell interference channel becomes more pervasive due to the
required packet loss rate at the physical channel for diverse
traffic as the PAR, which increases the power consumption
during this process.
Compared to IEEE 802.15.6, the MAC protocol balances

traffic in the network to co-channel for transmissions, thus
mitigating the MC of a channel and reducing the collision
probability. From Fig. 5, we can also find that the DDQN-
PER gives better performance than the three approaches
when the average arrival rate increases. This is because the
DDQN-PER reduces the transmission delay of the packet
under the consideration of latency and reliability for wait-
ing time which reduces the power consumption at physical
layer transmission. Figure 6 shows that EE decreases as the
number of IoT devices increases. However, the EE value
curve for the three approaches for DQN, QoS level [26],
and random MC decreases more as the number of devices
increases due to more stringent constraints. As a result, the
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FIGURE 6. Performance EE vs. number of IoT devices.

transmit power and co-channel assignment must be carefully
designed to meet the strict URLLC constraints by reduc-
ing the interference between transmission links, limiting the
data rate, and reducing the high-power consumption density.
The performance of EE depends on the enhanced cumu-
lative rewards in an environment for RM and the optimal
strategy used to achieve high performance and power control
(see Fig. 6). The IoT devices need intelligent RM to find
the optimal policy π, that maximizes the network objec-
tives. The intelligent RM enables the communication links
to make smart high-level decisions. From [25], RM can han-
dle continuous-valued state and action spaces. By defining
state, action, and immediate reward functions in RM, the
DDQN-based RM can solve problems in an MDP to simu-
late the decision-making of MC. From Fig. 6, our proposed
DDQN-PER provides the high EE by employing the ER
to train the multiagent DDQN for effective learning mech-
anisms to decrease the loss function at every time slot
and optimize the global co-channel. Figure 7. illustrates the
EE against the maximum latency for a massive number of
IoT devices. With the increasing PAR, the EE performance
decreases slightly. When the PAR rises, the channel resource
can no longer keep up with the MC of transmission packets.
Moreover, the processing latency falls as transmitting power
increases the network EE decrease as reliability and latency
requirements grow, as shown in Fig. 7. The DDQN-PER has
a slightly greater improvement in EE satisfying services than
the DQN and of QoS level [26] under stringent constraints.
The constraint for URLLC is stringent, and the transmission
power control must be close to ensure the URLLC require-
ments and decrease the EH. The DDQN-PER searches for
a learning framework to provide the best power manage-
ment policy by selecting an optimal time slot interchange
o∗ that reduce EH to increase EE performance. Fig. 8 shows
that the TSP drops marginally for all approaches by increas-
ing the PAR. From (4), it can be seen that the TSP of
a packet occurs when the transmission latency is more than

FIGURE 7. Performance EE vs. maximum latency.

FIGURE 8. Performance TSP vs. maximum latency.

the maximum latency threshold or when the PAR is less than
a certain threshold. An increase in PAR results in a larger
transmission packet delay queue. In addition, a higher trans-
mission packet rate increases the high transmission power
and the co-channel interference, which limits the data rate
improvement in B5G to improve the packet’s TSP. Our
proposed DDQN-PER has a slightly higher probability than
the other three approaches as it meets stringent reliability and
low-latency requirements. It is necessary to reduce the dis-
crepancy between the evaluated and the targeted action-value
distribution to improve TSP and RM.

C. CONVERGENCE OF THE ITERATION PROCESSES
FOR AVERAGE REWARD AND GLOBAL LOSS
Fig. 9 shows the number of iterations of the four tech-
niques in reward performance as the number of IoT devices
grows. The proposed DDQN-PER strategy achieves the high-
est reward performance, the fastest convergence, and the
most stable learning process compared to the other three
approaches. The DDQN-PER algorithm achieves a better
reward value than the DQN learning algorithm because it
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FIGURE 9. Average reward vs. number of iterations.

requires fewer learning iterations to optimize the approx-
imation of the Q function. The delayed convergence may
not meet the stringent latency requirements of the growing
number of IoT devices. The MC approach has the worst
performance among the four techniques because its policy
depends only on the immediate reward and has a sim-
ple structure. The fluctuations in reward performance are
much smaller if we choose a learning rate that is too small
because it takes longer to reach convergence. Compared to
the actor-critic RM in [25], [41], our proposed DDQN-PER
is particularly good at using transfer and cooperative learning
mechanisms to increase learning efficiency and convergence
speed. When the training episode reaches about 200, the
performance converges gradually despite fluctuations due to
mobility-induced channel fading. Figure 10 illustrates that
the global loss value varies during increased training iter-
ations. When the number of iteration increases, the global
loss starts to decrease rapidly, and they tend to be nearest to
a horizontal level after 100 iterations for both training loss
and validation loss functions. Moreover, the validation loss
is marginally greater than the training loss, demonstrating
that the DNN weights developed can provide a generous fit
for input-output samples. From Fig. 10, when the DDQN-
PER model is overfitting, in this case, it needs to adjust the
regularisation factors when the validation loss is greater than
the training loss. While, if the validation and training loss
values are both high, in this case, the DDQN-PER is under
fitting, and the number of DNN may need to be increased.

D. CONVERGENCE OF TRAINING AND COMPUTATION
TIME
Fig. 11 shows that the iterative PASTI algorithm increases
exponentially with the computing time. Moreover, as the
computation time of the iterative PASTI algorithm for the
wireless network increases, it becomes increasingly difficult
to manage RM in real-time. However, DDQN-PER pro-
vides low computation time when the number of IoT devices
increases. The computation time of DNN DQQN-PER is less

FIGURE 10. Global loss of DNN for number of iterations.

FIGURE 11. Computational complexity vs. number of devices.

than 0.1 milliseconds, which is sufficiently low for practical
use compared to that of [7, Fig. 4]. From Fig. 11, DDQN-
PER provides a near-optimal EE with lower time complexity
than the iterative PASTI algorithm.

V. CONCLUSION
In this paper, we have investigated a multiagent RL-based
channel interference and power control to manage an RM
have been presented to handle the MC management chal-
lenge in future wireless networks. The proposed algorithm of
DDQN-PER improves the performance network by keeping
a large number of IoT devices with various QoS require-
ments. The proposed novel of DDQN-PER applies to learn
the optimal policy and enhance learning efficiency by maxi-
mizing its reward function and guaranteeing strict reliability
and low- latency in IoT networks. Finally, the simulation
result shows that the DDQN-PER can effectively learn to
ensure IoT’s latency and reliability requirements among
transmission links while decreasing the loss function at every
time slot and optimizing the global co-channel interference
in IoT networks. In future works, we will concentrate on
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designing efficient and robust DDQN algorithms to pro-
vide smart packet transmission scheduling in real-time in
large-cognitive IoT networks.
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