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ABSTRACT The efficient administration of network resources in Multi-Access Edge Computing (MEC)
is an active research topic these days. Task sharing, in particular, is one of the fundamental problems
regarding MEC architectures although the existing literature approaches the topic mostly from the mobile
user point of view. In this article, we present the chronicles of EdgeChain network, a proof of concept
demo of a blockchain-based model for secure and private task sharing collaboration specially designed for
edge computing servers. EdgeChain operates on a decentralized approach that counts on the blockchain
services provided by the Hyperledger Fabric platform. The network offers enhanced security features that
leverage the permissioned nature of Fabric, more specifically, it relies on Fabric’s membership service to
validate identities and allowed behavior of participant nodes in the network. This design choice restrains
external attackers from interfering with the normal operation of the task sharing scheme. The network also
offers enhanced privacy features powered by a smart contract design that makes use of multiple decoupled
Fabric channels with separate operation rules, ledgers, and peer-to-peer communication networks. This
design choice guarantees that the computational tasks circulating in the network are only exposed to
servers participating in task sharing services. The trait prevents other servers in the network to have
access to private tasks and their data. The article goes through the multiple stages of the design and
construction process of the proof of concept demo, from the blockchain-based task sharing framework
and system model, all the way to the implementation details of the network.

INDEX TERMS Multi-access edge computing, next-generation communication networks, consortium
blockchain, hyperledger fabric, task sharing.

I. INTRODUCTION

THE DEPLOYMENT of 5G networks will require a
huge amount of financial investment from telecom-

munication companies. Network operators must find new
revenue streams to level off the capital expenditure on infras-
tructure and technical support. Fortunately, the adoption
of the 5G standard will also open the door to rethink-
ing the ownership model for network operators that, in
our opinion, is outdated and not well equipped to handle
emerging business cases in the IT sector. Given the intense

capital expenditure, infrastructure cooperation seems to be an
alternative to lower infrastructure costs without affecting the
proper delivery of applications and services for businesses
and their consumers. In traditional ownership frameworks,
telecommunication companies may reach rigid agreements
in a centralized style where senior management teams get
together and discuss static cooperation mechanisms that, in
many cases, may include infrastructure sharing in any form
or shape. Unfortunately, traditional frameworks for infras-
tructure ownership may not adapt very well to the needs
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of emerging 5G business models that might require more
dynamic and self-organizing approaches [1], [2], [3].

The decentralized services offered by blockchain tech-
nologies could become the facilitator for automated resource
management schemes that adapt better to the complexities of
sophisticated 5G applications. Blockchain networks provide
a trust model for (1) record-keeping the truth of a network
(i.e., tamper-proof distributed ledgers), and (2) secure inter-
actions for network participants (i.e., immutable smart
contracts). Unlike centralized networks in which trust comes
directly from the reputation of a central node, the trust
model in blockchain networks relies on distributed con-
sensus algorithms and advanced cryptography to maintain
truthfulness in the system. Smart contracts, on the other
hand, are pieces of immutable software installed on the
blockchain. They hold definitions, rules, data, and processes
agreed by network participants to generate transactions that
update the ledger. The self-execute nature of smart con-
tracts allows network operators to automatically enforce
cooperation agreements previously negotiated by partici-
pant organizations. Blockchain technologies might represent
the opportunity to empower companies with a surfeit of
resources to participate in automatic on-demand trading
schemes that may otherwise be done statically.
The Hyperledger Fabric platform is a permissioned

blockchain that offers membership, ledger, consensus, and
chaincode services that support the implementation of multi-
purpose distributed solutions. Fabric is a lightweight, low
latency, and high throughput blockchain that may open
opportunities for the implementation of distributed trading
markets for network operators in the telecommunications
sector. In blockchain-based marketplaces, network operators
can trade scarce resources under competitive conditions in
self-governed and secure platforms. From a market perspec-
tive, network resources might become scarce either because
the resource supply is short as in the case of the frequency
spectrum, or because production costs are high as in the
case of computer processors. Moreover, the marketization
of network resources in the telecommunications sector may
impact network services such as wireless spectrum alloca-
tion, network slicing, and the lease of computer resources.
Moving from static methods to on-demand smart contracts
for infrastructure sharing may require blockchain-based mar-
ket models that can summon multiple market players to
trade network resources in both seller (provider) and buyer
(requester) roles.
A Hyperledger Fabric-based multilateral marketplace

would consist of a set of network operators willing to par-
ticipate in the system and a set of smart contracts that
facilitates the negotiation and trading of network resources.
The Hyperledger Fabric platform brings in two key fea-
tures to support the proper operation of the marketplace.
First, it maintains a distributed record of all transactions in
the network, and second, it supports the distributed execu-
tion of on-demand cooperation agreements through the use
of immutable smart contracts. The low latency and high

throughput characteristics of Fabric would make the execu-
tion of smart contracts in the marketplace highly dynamic
and ductile. In a Fabric-based marketplace, market appli-
cations would send trading proposals to the blockchain
network. The proposals contain requests for resources whose
details depend on the implemented market model (i.e., regu-
lar auctions, reverse auctions, or any other form of resource
allocation scheme). When trading transactions are received
by the blockchain, the marketplace logic is automatically
activated through the means of installed smart contracts.
The terms of trading schemes are pre-negotiated by the
market players and are subsequently embedded into smart
contracts available in the market network. Trading models
might be based on traditional resource allocation approaches
that maximize global objectives defined by the players (e.g.,
multi-processor task scheduling problems), or game the-
ory approaches where individually rational players seek to
maximize their utility functions (e.g., auction problems). If
trading proposals are successful, market players will endorse
the transactions so that they become ready to be added to the
blockchain network. Moreover, the ordering service will pack
successful transactions into blocks that are later appended to
the distributed ledger of the network. Once appended, trading
transactions become part of the official truth of the market.
This trading framework guarantees that market transactions
are transparent and immutable. Also, it might provide an
effective trust model for market players to deal with the
contentious nature of the relationships among participants in
the marketplace.
Although resource sharing is not a new idea and has been

used extensively in previous generations of communication
networks, sharing models typically consisted of long-term
static agreements where operators accept to share network
infrastructure without considering the short-term dynamic
variations of resource demands. Also, the aggressive compe-
tition among market players in the telecommunications sector
makes it almost impossible to have a trusted central interme-
diary to deal with tensions among market competitors. This
is true especially when it comes to decisions on pricing
and allocation of resources. On the other hand, the idea of
decentralized marketplaces for infrastructure sharing has the
potential to relieve market tensions, however, it requires the
active participation of multiple actors in the industry includ-
ing vendors, network operators, and regulators. In summary,
blockchain platforms, Hyperledger Fabric, in particular, may
power decentralized, transparent, and secure ownership mod-
els for emerging business applications based on 5G networks
that require flexible and on-demand resource delivery.
This work explores the use of the Hyperledger Fabric

platform to power a blockchain-based collaboration model
for edge servers in a MEC environment. Task sharing
is one of the fundamental problems in regards to MEC
networks. However, the literature connected to this topic
mostly approaches the problem from the mobile user point
of view. In fact, traditional MEC frameworks do not consider
task sharing schemes in which servers can independently
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coordinate their resources to increase the utilization of the
installed computer capacity at the edge level. To the best
of our knowledge, there are no current efforts to leverage
the idea of blockchain to complement task sharing schemes
for servers in MEC networks. The model discussed in this
article is powered by the Fabric platform to minimize poten-
tial security and privacy breaches. The security traits of our
network rely on the permissioned nature of Fabric. The plat-
form implements a membership module in charge of identity
authentication and role management in the network. In fact,
the module identities to roles and also defines permissions
over resources, access to data, and allowed behavior of
participants in the blockchain. This functionality prevents
external malicious actors to interfere with the normal oper-
ation of the task sharing scheme. In addition to that, the
enhanced privacy features offered by the network rely on
the possibility to implement multiple blockchain channels
within a single Fabric platform. Fabric permits the coex-
istence of several blockchain channels with separate rules,
ledgers, and peer-to-peer communication networks within
a single Fabric ecosystem. By leveraging this feature, the
tasks circulating in the network are kept confidential to edge
servers participating in task sharing services. The network
restrains non-participating actors from accessing private tasks
and their data.
The rest of the paper is organized as follows. Section II

presents the background and motivation of this work. We
include a brief analysis of blockchain networks, and a revi-
sion of the Hyperledger Fabric platform. Section III presents
the literature review. Section IV presents the methodology
and design elements of the proposed solution. In detail, we
include the Hyperledger Fabric framework for task sharing
collaboration in MEC networks, the design of the task shar-
ing model at the blockchain level, and the design of the
task sharing model at the server level. Section V presents
the implementation details of “EdgeChain”, the blockchain-
based task sharing service demo. Finally, Section VI
concludes this paper.

II. BACKGROUND AND MOTIVATION
A. THE PROMISE OF 5G AND BEYOND TECHNOLOGY
The new 5G standard is an upgrade from the previous gen-
eration of mobile systems that has promised to improve
access, bandwidth, latency, and performance with respect
to its predecessor. The 5G standard envisions a communi-
cation architecture that offers a very-high bandwidth, very
low latency, and the ability to handle a massive amount
of subscribers [4]. 5G networks may become the facilitator
of new business models with the potential to revolutionize
the way we manage, power, and move the economic life
of the planet. As a result, new 5G applications will emerge
from the infrastructure to serve business models such as
autonomous vehicular networks, smart manufacturing, smart
grids, e-health services, tactile Internet, immersive entertain-
ment among many others. The industry and academia are
currently making huge efforts to finalize the standard so that

commercial 5G networks can be deployed massively around
the world in less possible time. A Cisco report shows that
by the end of 2022 the number of devices connected to
the Internet will reach 28.5 billion and the global data traf-
fic will reach 122 exabytes (1018) per month, 64% of that
amount corresponding to mobile and wireless systems [5].
An International Data Corporation (ICD) report also shows
that the projected cumulative financial investment in 5G
technologies will also peak in 2022 reaching 370 billion
dollars [6]. These numbers can only mean one thing: mar-
ket conditions are favourable and 5G networks are at the
doorstep, ready to make a big entrance in our lives.
The 5G New Radio (5G NR) is the global standardiza-

tion of 5G networks that is currently being developed by
the 3rd Generation Partnership Project (3GPP). The stan-
dardization derives three relevant use cases for 5G networks:
(1) Enhanced Mobile Broadband (EMBB), (2) Ultra-Reliable
Low-Latency Communication (URLLC), and (3) Massive
Machine-Type Communications (MMTC). Also, the standard
states that 5G will not only support communication, but also
content delivery, computation, and control functions [7]. The
paradigm shift will power a surging marketplace for products
and services characterized by massive volumes of data and
whooping requirements of processing power. To meet the
demands, 5G relies on several technologies from different
fields, such as MEC, millimeter Wave (mmWave), Non-
orthogonal Multiple Access (NOMA), Dense Heterogeneous
Networks (HetNets), Machine Learning (ML), and Energy
Harvesting (EH) to name a few. MEC in particular is a
major enabler of 5G networks because it leverages the
idea of distributed computing to locate cloud services (i.e.,
processing power, memory, storage, and control functions)
near end users. The architecture introduced by MEC might
increase the available data rate and reduce the latency experi-
enced by subscribers using the infrastructure of 5G networks.
A detailed explanation of MEC technology is presented in
the next section.

B. BASICS OF MEC
MEC is the evolution of theMobile Cloud Computing (MCC)
paradigm that relocates cloud services such as processing
power, memory, storage, and control functions, spatially
close to end subscribers. In mobile systems, this can be
done by deploying intelligence capabilities to the edge of
the network within the RAN premises [8]. The intuitive
idea behind MEC is that the relocation of cloud services
might improve the QoS and overall performance of the
network. The distribution of intelligence across the network
is vital to deploy highly available, highly reliable, and high-
performance applications that can respond to users in near
real-time, a frequent requirement for upcoming 5G-based
business models.
In 2014, Cisco coined the term Fog Computing to label

their conceptualization of Edge Computing architectures.
Cisco’s Fog describes the migration of cloud computing
services from the core to the edge of a network that creates a
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FIGURE 1. Illustration of the Fog/Edge Computing paradigm.

metaphorical fog of distributed computing infrastructure right
outside cloud data centers [9]. Fog computing deploys pro-
cessing power, memory, and storage resources in locations
geographically close to subscribers so that they can exe-
cute computing-intensive applications in fog nodes outside
the cloud level. This arrangement reduces latency, con-
gestion, and infrastructure costs in the network. Although
fog nodes extend cloud infrastructure and services into the
edge, they cannot act as self-managed cloud data centers.
Indeed, coordination between the central cloud and the fog
is still needed for the proper operation of the system. Fog
Computing may provide services to mobile users, yet, it is
not integrated into the mobile network architecture. In fact,
Fog Computing nodes are typically owned by private service
providers separate from mobile network operators.
To upgrade Fog Computing, designers attempted to deploy

cloud services even deeper into the edge and gave birth to
the idea of MEC. In the upgraded architecture, MEC nodes
provide cloud services to the edge of mobile networks,
and Fog Computing nodes act as intermediaries between
edge nodes and the centralized cloud [10]. Fast forward
to recent years, the evolution of MEC technology has been
driven by many factors including the increasing number of
mobile users, huge volumes of data, and the need for high-
bandwidth and low latency infrastructure that may serve
5G-based business models. In general, MEC systems may
be described by four technical characteristics [11]. First,
MEC networks operate on-premises. They can run iso-
lated from the rest of the network and have access to
local resources. Second, MEC networks provide proximity.
They are deployed geographically close to end users and
may collect (and process) as much data as possible from

them. Third, MEC networks supply low latency infrastructure
with the potential to shorten communication and propaga-
tion times. And fourth, due to proximity, MEC networks
are capable of providing subscribers with precise location
services and contextual information about network conditions
for optimization purposes. An illustration of the Fog/Edge
Computing paradigm is presented in Figure 1. In prepara-
tion for the integration of MEC into the 5G standard, 3GPP
included MEC in the technical specification report TS 23.501
published by the group in 2019 [12]. The report defines 5G
network functions, their roles, and how they can seamlessly
interact with the MEC reference architecture. For further
explanation on this topic, we invite the reader to explore
the details of the report. The MEC architecture stands on
four key principles that are summarized in the following
subsections.

1) RESOURCE MANAGEMENT

The administration of network resources is a critical compo-
nent in MEC architectures. The tension between constrained
infrastructure and the increasing demand for resources makes
allocation methods an important research topic in the com-
munications community. The allocation of resources may
have multiple objectives and it is subject to the heterogene-
ity of the network. More specifically, it should account for
a massive number of heterogeneous devices with individual
demands, connecting mediums with different characteristics,
and running applications of different nature [7]. In that con-
text, task sharing is one of the fundamental problems in MEC
networks although most of the time it is only approached
from the mobile users point of view. However, a new trend
for task sharing focused on devices closer to the core of the
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network is emerging rapidly, and that is precisely the area
explored in our work.

2) MOBILITY

Emerging network architectures such as the Internet of
Things (IoT) come with the need to accommodate a mas-
sive number of subscribers that can move across multiple
service areas. User mobility in MEC networks may result
in frequent handovers that might cause service disruption
and affect the overall performance of the system. For exam-
ple, a mobile user can change coverage areas in the middle
of a task sharing service. In that scenario, MEC networks
must be capable to provide fast and reliable handover mech-
anisms that account for changes in the location of the user,
dynamic conditions of the access network, and time-varying
computation resources [13].

3) HETEROGENEITY

Edge servers may be deployed in different places within the
RAN premises to provide coverage to end users with het-
erogeneous characteristics and requirements [14]. Given that
scenario, MEC networks should provide seamless integration
of edge devices with the existing access and core infrastruc-
ture. Edge servers are deployed in the network to boost
available bandwidth and reduce the latency experienced by
user applications. However, the processing capacity of the
cloud is still way more robust than that installed at the edge
layer. Therefore, it may be a good strategy to let the cloud
handle tasks that are tolerant of delays to further optimize
the use of computing resources at the edge layer. In that
direction, MEC systems must provide means for efficient
interaction of the cloud and edge layers so that the two
instances can coexist and cooperate to the benefit of the
network.

4) SECURITY AND PRIVACY

Despite the many advantages of MEC networks, some secu-
rity and privacy downsides must be addressed. First, due to
the proximity of edge servers to end users, traditional MCC
security methods are not compatible with MEC architec-
tures. And second, mobile-edge or edge-edge task sharing
schemes may be insecure especially when they are exe-
cuted over wireless transmission channels. Although the
integration of cryptography algorithms might help solve
security issues, the added complexity can be a problem
in terms of propagation and execution delays. Fortunately,
emerging technologies such as blockchain may help miti-
gate these issues [15]. Precisely, this work explores the use
of the Hyperledger Fabric platform which is a lightweight
cryptography-based network that offers blockchain services
to help address security and privacy vulnerabilities in MEC
networks.

C. BLOCKCHAIN TECHNOLOGIES AND THE FUTURE OF
DECENTRALIZATION
Blockchain is an emerging technology that is revolutionizing
industries across the globe due to its unique ability to power

decentralized systems. In short, a blockchain is a peer-to-peer
computer network that uses sophisticated cryptography and a
consensus mechanism to maintain a distributed database on
a set of nodes that do not trust each other [16]. As a result,
the nodes in a blockchain network can interact without the
need of a central entity dictating the rules of the system.
Blockchain technologies were first introduced to the public
in 2008 with the appearance of Bitcoin, the first ever known
distributed payment system, that uses blockchain as its under-
lying operating platform [17]. To date, the communications
industry is being disrupted by the appearance of new man-
agement frameworks for future massive networks that move
from centralized to decentralized network administration.
Blockchain might be an option to take on this scenario due
to its ability to power the implementation of decentralized,
self-regulated, secure, and intelligent networks.
Blockchain is a peer-to-peer network that uses advanced

cryptography to maintain a distributed database of records
(i.e., ledger) among a group of independent nodes that do
not trust each other. The nodes in a blockchain can interact
with the network in the form of transactions validated by a
communal verification process known as consensus that nor-
mally involves a computing-intensive algorithm. Consensus
might be considered a form of digital democracy that allows
the nodes in the network to make collective decisions about
transactions without the supervision of a central authority.
Transactions are packed together inside a structure of data
blocks connected chronologically that resemble the form of
a chain. By keeping a local copy of the ledger, the nodes in
a blockchain become guardians of the history book of the
network. This feature provides a high level of transparency
and accountability to the system.
Blockchain networks derive directly from Distributed

Ledger technology (DLT) that is a database paradigm
that defines a set of cryptographic protocols that sup-
port the operation of distributed transaction records. The
DLT paradigm defines a way to access, validate, update,
and manage decentralized databases [18]. The protocols
guarantee the immutability, consistency, availability, and
transparency of the database records. An illustration of the
differences between Centralized Ledger Technology (CLT)
and DLT is shown in Figure 2. As a general rule, blockchain
networks must enforce three fundamental characteristics:
(1) immutability of the distributed ledger, (2) transparency of
information and (3) consistency of data across the nodes [19].
In recent years, blockchain technologies have been tailor-
designed to serve applications in a variety of economic
sectors such as finance, supply chain, energy, etc. The ability
of blockchain to power networks with decentralized gover-
nance, immutable data, and transparent information has been
a key motivation for the development of those solutions [20].
To date, research projects regarding blockchain integration
in engineering systems are very popular. We predict that this
trend will continue to grow due to the blockchain’s poten-
tial to revolutionize the way we design future engineering
systems.
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FIGURE 2. (a) CLT paradigm, (b) DLT paradigm.

Blockchain networks can be classified in many forms
depending on multiple factors such as type of governance,
consensus mechanism, rewarding system, code-base design,
membership management etc [21]. The membership category,
in particular, can further divide blockchain networks into three
different types: Public, Private, and Consortium blockchains.
This division is of significant interest to us because it provides
core ideas for the construction of the blockchain-based task
sharing framework presented in this work.
Public blockchains are un-permissioned platforms with no

restrictions to access the infrastructure. In fact, anyone with
an Internet connection can join the network and become
an authorized node. Participants in public blockchains may
have transparent access to data, invoke transactions, and
participate in mining activities like transaction verification
and block creation. Public blockchains typically have open
source design and use consensus mechanisms with high lev-
els of decentralization such as Proof of Work (PoW) and
Proof of Stake (PoS) [22]. One of the upsides of public
blockchains is that they do not abide by the concept of own-
ership. In fact, if the founding node leaves the system, the
network will continue to run on the remaining nodes with the
same operational characteristics. On the other hand, public
blockchains are slow and do not scale very well due to the
use of hyper democratic consensus to guarantee high levels
of decentralization. Popular applications that make use of
public blockchains are decentralized payment systems and
cryptocurrencies. However, public blockchains may also be
a good fit for applications that require fully decentralized,
transparent, notarized trust models for open collaboration
among the nodes of a network.
Private blockchains are permissioned platforms ruled by a

single node inside the network. Likewise their public counter-
parts, private blockchains operate as peer-to-peer networks,
however, the ruling node is in charge of establishing roles
for participants that may limit permissions over resources,
access to information, and allowed behavior within the
network [23]. Private blockchains are invite-only systems

meaning that they typically use a membership service that
enforces some kind of access control in the network. On
the upside, private blockchains may offer higher transac-
tion throughput compared to public blockchains due to
their hierarchical role-based structure. On the downside,
private blockchains may also have very limited use cases
because of the use of highly centralized consensus that is
counterintuitive to the idea of blockchain networks. The
source code used in private blockchains is typically closed
and proprietary meaning that the participants are unable
to audit it. Private blockchains are a good fit for appli-
cations that require cryptographic services in combination
with access control schemes where transparency is not nec-
essary and the ruling central node can be fully trusted. As a
side note, private blockchains operate on a much smaller
scale than public blockchains, typically inside a single
organization.
Finally, consortium blockchains are platforms with a com-

bination of features that resemble both, public and private
blockchains. In consortium blockchains, a set of nodes
belonging to multiple organizations (possible competitors
with different operational logic and incentive structures) join
together to form a decentralized network with a role-based
structure and distributed control over access, permissions,
security, and resources within the network [24]. The gov-
ernance of consortium blockchains is shared among the
participating organizations moving away from the central-
ized management approach used in private blockchains.
Consensus protocols are controlled by predefined consensus
nodes that validate transactions and create new blocks. The
consensus nodes implement mechanisms to enforce data con-
sistency that are normally more efficient than those available
in public blockchains. The design of consortium blockchains
is typically open source with a modular architecture that
offers plug-and-play components and services that adapt eas-
ily to many distributed solutions. Consortium blockchains are
popular in many industrial applications such as supply chain,
healthcare, banking, and more recently communications
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TABLE 1. Public vs. private vs. consortium blockchains.

engineering. A comparison between Public, Private, and
Consortium blockchains can be found in Table 1.

D. THE HYPERLEDGER FABRIC FRAMEWORK
Hyperledger Fabric is a consortium blockchain that provides
membership, consensus, ledger, and smart contract services
for the implementation of multi-purpose decentralized solu-
tions [25]. The technical design of Fabric relies on (1) an
open source approach, (2) modular architecture, (3) identity-
based roles, and (4) flexible programmable logic that make
it stand out from other blockchain platforms. First, Fabric is
open source, meaning that the copyright owners grant users
the right to use, modify, and distribute Fabric code without
restrictions. There is a community of more than 35 partner
companies and thousands of developers around the world
working on exploiting Fabric benefits. Second, Fabric has a
modular architecture with configurable membership, consen-
sus, ledger, and smart contract services that may fit a wide
variety of business cases. Third, Fabric uses identity-based
roles meaning that the nodes in the blockchain hold digi-
tal identities that are mapped to permissions over resources,
access to data, and allowed behavior in the network. This
feature brings a level of trust among network participants
even though some of them might be market competitors with
antagonistic interests and inherently untrustworthy relation-
ships. And fourth, Fabric offers flexible smart contracts that
can be programmed using general-purpose languages such as
Java, Go, and Node.js. This is different from other platforms
that may use their specific languages for smart contract code
(i.e., Ethereum’s Solidity programming language). In the

following subsections, we discuss the core elements of the
Hyperledger Fabric model: (1) membership, (2) consensus,
(3) ledger, and (4) smart contracts.

1) MEMBERSHIP

Hyperledger Fabric is a permissioned blockchain in which
participant nodes must hold a known digital identity.
Identities are assigned to every network component, namely,
organizations, peers, and client applications. Fabric makes
use of a Public Key Infrastructure (PKI) framework to cre-
ate, use, store, and revoke cryptographic identities. A PKI is
a combination of hardware, software, and advanced cryptog-
raphy that assigns a pair of public/private keys to network
participants through an enrolment process that results in the
creation of digital certificates. The x.509 standard is the
most common format for digital certificates in PKI systems.
PKIs provide trust services for secure communication over
the Internet and are widely used in applications such as
online e-commerce, banking, and confidential messaging.
The Hyperledger Fabric framework uses a PKI-based mem-
bership service to verify the identities of participants in
the blockchain network. The participants (i.e., administra-
tors, peers, and client applications) are required to have a
public-private key pair issued by a trusted CA to sign trans-
actions submitted to the network. As a result, Fabric can
grant identity-based permissions over resources, access to
data, and allowed behavior in the network. The permissioned
nature of Fabric is an attractive option for application sce-
narios where security and privacy are core to the use case
being implemented.
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2) CONSENSUS

The core idea of DLT is that network records must be kept
distributed among the participant nodes. To achieve that, it
is necessary to use mechanisms that can verify and order the
records that are added to the ledger. A consensus mechanism
is a transaction validation algorithm to reach agreements
on the data circulating in unreliable networks. Consensus
must keep track of data flows, build transaction blocks,
and give assurance that the data in the network is shielded
from security threats. Consensus in the Hyperledger Fabric
is blockchain operates on a deterministic structure based
on endorsements and signature verification for ordering and
committing transaction events. At the peer level, an endorse-
ment is a validation made by endorsing peers that consists
in the simulation of transaction proposals using their copy
of the chaincode. If the simulation produces the same out-
put as the proposal, endorsing peers then sign the proposal
and return the signed transaction to the client that originated
it. At the ordering level, endorsed transactions are received
and validated against the endorsement policy in place. If the
transaction complies with the policies, it is declared valid and
the consensus process continues with transaction ordering,
block creation, and broadcast of new blocks to committing
peers.

3) LEDGER

The ledger in a blockchain is a physical database that holds
the history of the network and stores facts and data of objects
circulating inside it. Blockchain objects and their data may
change through the execution of transactions, however, trans-
action records are unique and immutable. A Fabric ledger has
two components: (1) the world state, and (2) the blockchain
database. The world state holds facts (i.e., states) of objects
in the Fabric network. The states are key-value (KV) pairs
that are updated by the ordering service every time a trans-
action has completed its lifecycle. Client applications can
submit transaction proposals to query, update, and delete
states in the world state, however, only accepted transac-
tions will induce changes in the database. On the other hand,
the blockchain database keeps the historical records of all
transactions (valid and invalid) in the Fabric network. In
other words, the blockchain database holds the record of
how Fabric objects arrive at their current states.

4) SMART CONTRACTS

Smart contracts are immutable pieces of software running on
a blockchain that define objects in the network and instruc-
tions on how to modify them. They are typically installed,
stored, and approved by blockchain participants before they
are ready to be used. Smart contracts follow through the
business logic of a blockchain application, specifically, they
determine how data and transactions are represented in the
network. In Fabric context, smart contracts implement the
terms, definitions, and processes that rule the interaction of
network participants. Smart contracts may submit transaction

proposals to query, create, update, or delete states of an
object in the network.

E. MOTIVATION
With the popularization of Open-RAN and Network
Function Virtualization (NFV) technologies in 4G and
5G systems [26], the current trend in regards to MEC
deployment tends to favor the utilization of vendor-neutral
Commercial Off-The-Shelf (COTS) servers at the edge
level [27]. Typically, each COTS unit has a limited amount
of resources in terms of computing power, memory, and stor-
age capabilities. In real implementations, MEC networks are
often filled with a high number of low-performance COTS
nodes that may struggle to deal with a massive number
of requests during peak load hours. In fact, the utilization
of network resources at the edge level may still be unbal-
anced to a great deal when compared to their total installed
capacity. There is an increasing interest to develop efficient
mechanisms for resource administration at the edge level so
that the vision of MEC networks can be fully exploited. We
believe that MEC networks can benefit from the notariza-
tion, ownership, and chain-of-custody services offered by the
Hyperledger Fabric blockchain to address security and pri-
vacy concerns related to collaboration mechanisms for edge
computing servers.
In this paper we propose a vision that integrates the open

standards and management technology of the Hyperledger
Fabric blockchain with the architecture of MEC to put for-
ward a powerful, lightweight, and extensible technology
foundation for secure management of computing resources
in MEC networks. Our framework is built on top of the
Fabric platform for a few reasons. First, Fabric is a per-
missioned blockchain that guarantees identity verification of
network participants before granting access permissions to
the network. Second, Fabric allows peer-to-peer communi-
cation between network nodes that eliminates the need for
a central intermediary with control of network interactions.
Third, every node holds a local ledger that contains trans-
action records. The ledger content may be different across
the network depending on the access rights granted to a
node. More specifically, only nodes with the same access
rights can share a ledger with a particular set of transaction
records. And fourth, Fabric uses smart contracts to submit
transaction proposals to the network and a notary service to
avoid double-spending problems.
The objective is to provide a Service Oriented Architecture

(SOA) for secure and private task sharing collaboration
specifically designed for MEC servers. To achieve that,
edge server nodes are instrumented in such a way that
Hyperledger Fabric is responsible for their monitoring and
management. The system is envisioned to discover servers
dynamically, allow peer-to-peer communication, and provide
the logic for task sharing services through the execution of
smart contracts. The proposed MEC framework will support
decentralized computing services with dynamic task schedul-
ing and unified management of resources while maintaining
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security capabilities with a special focus on the integrity
and confidentiality of tasks and their data. Our task sharing
framework will rely on two key principles:

1) Node Autonomy: edge servers can perform autonomous
connection, discovery, learning, and task sharing
through the integration of Hyperledger Fabric services
in the network.

2) Open Collaboration: edge servers can share tasks
with other servers or the cloud to provide elastic
networking, computing, and storage capabilities within
the network.

The relationship between any pair of edge servers will
change from master-slave to equal partnership through the
peer-to-peer communication nature of Fabric. Also, the nodes
selected to execute tasks in the network will be dynamically
chosen based on the amount of resources available for that
purpose. The selection procedure will involves a series of
optimization routines running at the busy server end. The
cloud level will have an overview of the candidate nodes
that volunteer to accept tasks. The model leverages Fabric
privacy features so that tasks themselves will not be exposed
to all candidate nodes or the cloud. Rather, they will only
be shared between busy servers and the nodes selected to
complete the tasks.

III. LITERATURE REVIEW
As we move towards next-gen communication networks in
which massive machine communication, ultra-low latency,
and enhanced broadband capabilities will be the dominant
trend, the complexity of the emerging standard will prompt
fundamental engineering problems related to resource man-
agement, heterogeneous collaboration, access control, and
network security models. The integration of blockchain
technologies with next-gen networks may bring to the pic-
ture prime features of blockchain such as decentralization,
self-governance, tamper-proof data, transparency, and secu-
rity attributes to solve some of the problems mentioned
earlier. In this section, we review current research work
related to the intersection of blockchain technologies with
communication networks and the impact that distributed
ledgers may have on the design of network architecture,
network services, and user applications for the envisioned
5G standard.

A. BLOCKCHAIN AND NETWORK ARCHITECTURE
Blockchain-based architecture for 5G networks opens new
possibilities for the implementation of new architecture
models that may fulfill the specifications of the stan-
dard. Blockchain networks may bring intelligence and
cryptographic services into architecture technologies such
as Network Virtualization, Software-Defined Networking,
Cloud Computing, and Edge Computing models. In the cloud
computing department, the authors Zhou et al. proposed
a Clean-room Security Service Protocol based on a con-
sortium blockchain that monitors the implementation of

illegal software on the user’s end in a cloud computing
setting. The authors claim that their protocol reduces the
security threats of the network and has major potential
in trusted network computing systems [28]. Next on, the
authors Sharma et al. proposed a blockchain-over-cloud solu-
tion designed for cloud service operators so they can share
their computing resources through smart contracts imple-
mentation [29]. Also, the authors Ricci et al. proposed a
decentralized cloud storage mechanism based on STORJ
blockchain platform. The mechanism breaks down the files
that need storage services and then distributes the pieces of
data to multiple nodes in the blockchain [30]. Finally, the
authors’ Xu et al. designed a machine-learned-based energy
management framework embedded in blockchain smart con-
tracts to minimize the energy consumption of cloud data
centers. The authors test their system on Google cloud clus-
ters and show that their proposed system is able to reduce
the energy cost of the data center when compared to other
benchmark approaches [31].
Blockchain technologies also present an opportunity to

introduce improvements into edge computing architectures.
For example, the authors Kotobi and Sartipi propose a
blockchain-based architecture for wireless networks in smart
city environments [32]. The system introduces a caching
mechanism to enhance the communication capabilities of
the network and enable massive data collection for smart
city applications. A distributed ledger is used to secure
communication between smart city applications and IoT
sensors deployed in the network. Moving on, the authors
Rawat et al. designed a blockchain-based architecture for
IoT networks that runs on a wireless network virtualiza-
tion model that allows multiple virtual network operators
with different resource requirements to be accommodated in
a blockchain-based ecosystem. The model leverages edge
computing to provide processing and storage services to
limited IoT devices in the network. The authors focus
their analysis on the double spending problem of wire-
less resources (i.e., frequency) for which they propose a
blockchain-based solution approach [33]. Finally, the authors
propose a decentralized data management protocol that
implements a distributed access control manager for end
users in mobile edge networks [34]. The authors make use
of blockchain and off-blockchain data storage to give end
users decentralized control of their data without the need for
a third trusted party in charge of storage services. A sum-
mary of the papers discussed in this subsection is presented
in Table 2.

B. BLOCKCHAIN AND NETWORK SERVICES
Efficient administration of available infrastructure in com-
munication networks must balance tensions between the
growing demand for resources (forced by the massive num-
ber of connected devices) and the limited infrastructure
owned by network operators. As seen in earlier sections,
blockchain can provide a trust model for resource collabora-
tion among a consortium of network operators. The authors
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TABLE 2. Application of blockchain technologies in next-gen network architecture.

Mafakheri et al. presented a blockchain-based distributed
authentication mechanism and infrastructure sharing model
for small cells in a 5G network [35]. They use a consor-
tium blockchain to store user subscription information in a
distributed ledger maintained by the core nodes of the partic-
ipant operators. In this way, the operators have a distributed
access control list to securely provide services to subscribers
in the consortium. The proposed model aims to reduce
Capital Expenditure (CAPEX) and Operation Expenditure
(OPEX) indexes and optimize the economics of the consor-
tium. In the same realm, the authors Rawat et al. proposed a
spectrum sharing model for virtual wireless networks based
on blockchain that allows primary spectrum owners to lease
their available resources to virtual mobile operators [36].
The blockchain network provides a trust model for device-
to-device interactions of primary spectrum owners and virtual
mobile operators. Next on, the authors Ling et al. proposed
a blockchain-based radio access network (BRAN) with a
decentralized architecture to manage access and infrastruc-
ture sharing in mobile networks [37]. The BRAN architecture
uses smart contract logic for network authentication and a
variation of PoW consensus based on the identity of the par-
ticipant to validate interactions between nodes. The authors
present a set of test results that suggest that their decen-
tralized model performs better than the centralized coun-
terpart in terms of latency and throughput provided by the
network.

The authors Kotobi et al. proposed a medium access con-
trol protocol based on blockchain in which multiple cognitive
networks compete in an auction game for a priced portion
of the available spectrum. They introduce the use of a cryp-
tocurrency in the network for spectrum transactions and a
distributed database that is visible to all participants with
the intention to enforce transparency in the auction mech-
anism [38], [39]. Moving on, the authors Fukumitsu et al.
proposed a distributed online data storage mechanism based
on a peer-to-peer network that does not need central storage
services. In the proposed model, the data generated by users
is divided into many parts and distributed to the blockchain
network using anonymous communication so that no data
remains in the user node. The security features provided by
blockchain prevent attacks from malicious nodes who may
want to tamper with user information stored in the blockchain
ledger [40]. Similar to that, the authors Wang et al. propose a
decentralized storage model framework for cloud datacenters
based on Ethereum blockchain and attribute-based encryp-
tion. They presented a demo implemented on the Ethereum
test network Rinkeby to show that their proposed scheme is
feasible. Finally, next-gen networks can leverage the cryp-
tographic nature of blockchain for security and privacy
services. In this context, the authors Kroonmaa et al. filed a
U.S. Patent for a data authentication system based on a dis-
tributed hash tree infrastructure supported by blockchain. The
model uses a blockchain-based hash tree structure formed
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TABLE 3. Application of blockchain technologies in network services.

from digital input records that reduces the possibility to make
unauthorized changes in the data structure. A summary of
the work discussed in this section is presented in Table 3.

C. BLOCKCHAIN AND NETWORK APPLICATIONS
5G networks open the opportunity for developing new
end-user applications with the potential to become game
changers for many economic sectors. On the other hand,
blockchain technology could be the facilitator to solving
some of the challenges related to the implementation of
5G applications, especially in areas such as decentralized
management, security, and privacy. For example, the authors
Biswas and Muthukkumarasamy proposed a blockchain-
based security framework for IoT applications in smart
city ecosystems [41]. Their framework runs on a four-layer
model that includes a database layer for the integration of
blockchain ledgers. The blockchain network serves as a com-
mon platform for secure and distributed interaction of smart
city devices. The authors claim that their framework could
deliver the grounds for direct collaboration between citi-
zens and local governments. Next on, the authors Li et al.
introduce a decentralized on-demand energy supply model
based on microgrids that provides energy to miner devices in
blockchain-based IoT networks [42]. The energy allocation

problem is modeled as a Stackelberg game to find optimal
profit strategies for both the microgrids and the miners. The
proposed system is supposed to alleviate energy limitations
for decentralized IoT networks in the presence of different
consensus mechanisms.
In the smart industry sector, the authors Fernandez-

Caramés et al. propose a smart inventory management system
that runs on Unmanned Aerial Vehicle (UAV) infrastruc-
ture [43]. The UAVs can scan products with Radio-Frequency
IDentification (RFID) tags and send items data to a con-
sortium blockchain that aggregates multiple actors in the
supply chain structure. The network validates entries using
smart contracts and enforces traceability of the items.
The system automates tedious inventory tasks that are
typically performed manually by humans. Moving on to
smart transportation, the authors Zhang et al. propose a
Vehicular Ad-hoc Network (VANET) based on blockchain
for self-organizing data transmission for autonomous driving
vehicles [44]. The model uses smart contracts installed on a
consortium blockchain network to securely process and store
vehicle data that feed assisted driving and safety applications.
The authors present performance evaluation data that suggest
a significant reduction in the consensus convergence time
of their blockchain network compared to other traditional
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blockchain platforms. Finally, the authors Ramani et al. put
forward a distributed data management model for the health-
care industry. The system runs on Ethereum blockchain that
provides privacy services for patients’ data so that it can only
be accessed by authorized parties [45]. The authors present
a demo network with the logic of the proposed data model.

D. TASK SHARING AND MEC NETWORKS
In connection to MEC architectures, most of the recent
work on task sharing has been approached from the per-
spective of mobile users. For instance, in 2015, the authors
Zhang et al. present a task offloading algorithm for energy
constrained mobile users in a cloudlet system that may be
intermittently available [49]. The model considers the mobil-
ity patterns and load of the user and the availability of
cloudlets to make offloading decisions. The authors for-
mulate a Markov Decision Process (MDP) to obtain the
optimal task offloading policy for mobile users with the
objective to minimize computation costs. In 2016, the authors
Xiao et al. proposed an attack-resilient task offloading model
for mobile devices [50]. In their work, the authors present a
secure mobile offloading game and prove the conditions for
the existence of the Nash equilibrium. They also propose a
Q-learning based strategy for the mobile users to find sta-
ble offloading solutions. In 2018, the authors Luong et al.
proposed a deep neural network architecture to make optimal
task sharing decisions in a mobile blockchain network [51].
They model the sharing scheme as an auction game between
edge servers and mobile users. The computing power of edge
servers is the commodity to be auctioned and mobile users
must submit bids to purchase processing services. The bids
become the inputs of the neural network and the outputs

determine the task sharing decision along with the associated
payments for the computing service.
Also in 2018, the authors Liu et al. studied a MEC-

enabled task sharing framework for a blockchain-based video
streaming architecture [52]. They design an incentive-based
collaboration model for communication systems composed
of a macro base station, a set of small-cell base stations,
and a set of mobile users all running on a blockchain. In the
model, the mobile users have the option to offload computa-
tion tasks to nearby small-cell base stations or offload them
to a group of device-to-device users to avoid the saturation
of macro base stations. The authors formulate the sharing
scheme using an adaptive block-size blockchain to minimize
the overall latency of the video streaming service. In 2019,
the authors Yang et al. propose a dynamic offloading frame-
work for MEC networks [53]. The uplink NOMA is used by
multiple users to upload tasks on the same frequency band.
The authors formulate the offloading decisions based on a
neural network model that jointly optimize the allocation of
wireless resources and computational cost.
In their 2020 work, the authors Xiao et al. investigated a

blockchain-based task sharing mechanism for mobile users
in a MEC network [54]. In their analysis, the mobile users
can make task sharing decisions based on the computa-
tional performance and latency response of their serving
edge server node through a Deep Reinforcement Learning
module. The mechanism uses a generic blockchain to keep
an immutable ledger of service records which are later used
to calculate the money payment earned by the edge servers
providing task sharing services. The authors suggest that their
approach suppresses the motivation of selfish behavior and
faked service record attacks by malicious edge servers. Also
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in 2020, the authors Mukherjee et al. study a task offloading
model for energy-constrained mobile devices in UAV-enabled
MEC networks [55]. In their framework, end users can pro-
cess tasks themselves or offload them to UAVs that act as
access points. The optimal offloading decisions are based on
a Deep Neural Network that is trained using Quadratically
Constrained Linear Program (QCLP) with Semidefinite
Relaxation (SDR) optimal decision generator. Finally, in
2022, the authors Niu et al. present a task offloading scheme
for MEC network with Wireless Power Transfer (WPT) and
NOMA capabilities [56]. The model optimizes the allo-
cation of computer resources by taking into account the
dynamic nature of the wireless channel. The optimal offload-
ing decisions are reached through a Deep Reinforcement
learning-based Online Sample-improving (DROS) model that
implements a deep neural network that takes channel gains
as inputs, and generates the optimal WPT duration as
output. Based on the WPT duration, the authors design
an optimization algorithm to compute the optimal energy
allocation for the offloading data.
In recent years, the focus of task sharing schemes has

expanded from models that only serve mobile users to
ones that include edge server nodes as well. In 2017, the
authors Chen and Xu proposed a collaboration mechanism
for small-cell base stations in an ultra-dense user setting [57].
They designed a coalitional game to distribute computa-
tion workload among small-cell base stations to summon
computing resources at the edge level. The design cov-
ers cooperation incentives, fair division of tasks, and a
social trust mechanism that helps manage security risks.
In 2018, the same authors presented an expansion of their
work that aimed to minimize the long-term system-wide
latency using Lyapunov optimization. The model proposes
an optimization approach that takes into account the capacity
and energy constraints of the small-cell base stations [58].
They analyzed two scenarios, one in which a central entity
makes task sharing decisions for the small-base stations,
and another in which the base stations coordinate their shar-
ing decisions in a distributed style using a coalitional game
approach.
In 2020, the authors He and Wang presented a task

sharing algorithm for MEC networks that provided a worst-
case latency response for latency-sensitive applications in
a mobile network [59]. They formulated a task sharing
problem for base stations formulated on a stochastic arrival
model that maximizes a utility function that depended on
the time-average throughput of the system. They built the
model based on the assumption that the tasks utilizing shar-
ing services carry on the same workload. This assumption
made the problem easier to solve, however, it does not
hold in a real network scenario. The same authors upgraded
their work in 2021 and presented a task sharing model in
which they allow the workload of the tasks to have different
profiles [60]. They presented a scheduler and an online algo-
rithm based on Lyapunov optimization theory that provides
a worst-case latency response model for the system. The

proposed algorithm guarantees that all non-dropped tasks
are served within a given latency bound. According to the
authors, their algorithm tends to overestimate the worst-case
latency of the system. In their simulations, it was found that
the latency bound provided by their method was considerably
larger than the actual value.
Finally, our work in 2020 proposed a framework for secure

and private resource collaboration in MEC networks using
the Hyperledger Fabric blockchain platform. The framework
was presented as an alternative to minimize security and
privacy vulnerabilities in MEC networks [61]. Although our
framework was presented in the context of MEC, it can be
generalized to cloud/fog computing frameworks. In 2021, we
followed up our previous work with a blockchain-based col-
laborative task offloading model for MEC servers based on
the Fabric platform. The model aims to maximize the utility
function of the system that depends on the characteristics
of the computational tasks and key performance metrics of
Fabric [62]. Fast forward to 2021, we further expanded our
work with a blockchain-based task sharing model that takes
into account the functional dependencies of the tasks [63].
The task sharing scheme is modeled as a multi-processor
task scheduling problem that allocates a set of precedent-
dependent tasks among a set of available edge server nodes
by jointly optimizing the utility function of the system and
the makespan of the tasks.
To summarize, the available literature on task sharing

schemes for MEC networks can be divided into two branches:
(1) task sharing models centered around mobile users, and
(2) task sharing models centered around edge server nodes.
The articles in [49], [50], [51], [52], [53], [54], [55] and [56]
leverage machine learning, game theory, and blockchain
technologies to support efficient and trusted task sharing
collaboration schemes for mobile users in MEC networks.
On the other hand, the articles in [57], [58], [59], and [60]
direct their attention to task sharing schemes for base stations
in mobile networks that act as edge servers. To the best of
our knowledge, our work in [61], [62], and [63] is currently
the only effort to explore the use of the Hyperledger Fabric
platform to power task sharing collaboration for servers at
the edge layer. A summary of the research work mentioned
in this section can be found in Table 5.

IV. THE HYPERLEDGER FABRIC FRAMEWORK FOR
TASK SHARING COLLABORATION IN MEC
The framework is built under the assumption that a collection
of S + 1 nodes, namely, S = {1, . . . , S} edge server nodes
plus the cloud level, get together to form a consortium in
the Hyperledger Fabric platform. At any given time, a busy
server node i ∈ S submits a task sharing service request
to the blockchain network to get additional resources to
process pending computational tasks. After the request is in
place, the cloud level shortlists a set of candidate servers
{1, . . . , j, . . . , k} ∈ S willing to process the pending tasks
based on the information provided by the monitoring tool
running at this location. With the information in hand, the
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busy server solves an optimization problem to select a few
nodes from the candidate list that will become the service
providers. After node selection is complete, the task sharing
scheme (i.e., upload, remote execution, download of results)
is overseen by the blockchain network through the execution
of smart contracts available on the platform. The illustration
of the proposed framework can be seen in Figure 3. The task
sharing request and the sharing scheme that comes after will
follow the sequence below.

1) The edge server node i ∈ S owns a set of computa-
tional tasks that require processing. The server is short

of resources and requests the task sharing service to
the blockchain network.

2) The cloud level runs a monitoring tool with an
overview of the network. It can shortlist a set of can-
didate nodes {1, . . . , j, . . . , k} ∈ S to take on the tasks
owned by server i.

3) With the information provided by the cloud, the busy
server i allocates the queued tasks among a few
selected candidate nodes. The selection procedure is
based on the optimization of particular objectives at the
busy server end. The selected nodes become service
providers.

2216 VOLUME 3, 2022



FIGURE 3. Illustration of the Hyperledger Fabric framework for task sharing collaboration in MEC networks.

4) Finally, the busy server i and every selected candidate
j invoke Fabric smart contracts to carry through the
sharing process.

5) The sharing process will complete its lifecycle follow-
ing the rules of the Hyperledger Fabric framework.

It is important to note that the nodes involved in task
sharing transactions must follow the ledger rules dictated by
the Fabric platform. More specifically, ledgers that receive
updates as a result of task sharing transactions are only
visible to nodes participating in the associated sharing ser-
vice. This feature guarantees confidentiality and privacy
of tasks and their data during the process. On a separate
note, the smart contracts installed on the blockchain will
implement the task sharing logic in the system and be
responsible for processing transaction requests. Any edge
server node can activate a smart contract by submitting
an initiation transaction to the network. When the initia-
tion is approved, the smart contract enters into an active
state and starts receiving transaction proposals from the
server nodes in the network. For an expanded explanation
on the Hyperledger Fabric-based task sharing framework, we
advise the reader to review our 2020 article “A Blockchain
Framework for Secure Task Sharing in Multi-Access Edge
Computing” [61].

A. TASK SHARING MODEL AT THE BLOCKCHAIN LEVEL
As discussed in previous sections, Hyperledger Fabric is
an open-source platform that offers blockchain services for

multi-purpose distributed solutions. Fabric offers a modular
architecture of peers, membership, ledger, consensus, and
smart contracts with enhanced cryptographic attributes for
decentralized applications. In our model, a set of edge servers
and the cloud level get together to form a consortium in the
Hyperledger Fabric platform. A set of computational tasks
that require processing services are Fabric objects, and the
logic of the proposed sharing scheme is embedded in the
chaincode installed on the network peers.
The proposed solution accommodates a Membership

Service Provider (MSP) in charge of identity authentication
and role management in the network. The players partici-
pating in the network (i.e., organizations, peers, and client
applications) receive standard x.509 identities and a public-
private key pair from trusted Certificate Authorities (CAs).
The MSP maps identities to network roles that define per-
missions over resources, access to information, and allowed
behavior in the blockchain. In addition to the MSP, the
network implements an Ordering Service module (OS) in
charge of transaction verification and consensus scheme.
Finally, the logic of the task sharing scheme is imple-
mented by smart contracts installed on the network peers.
The smart contracts are governed by the Hyperledger Fabric
architecture and the policies defined by the task sharing
logic. Together, they guarantee secure and private commu-
nication between nodes involved in the sharing scheme. The
dynamics of our task sharing solution can be described as
follows:
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1) Service Request: A resource-constrained edge server
node owns a task-flow computational job with a set
of precedent-dependent tasks. The server requests the
task sharing service to the blockchain network.

2) Discovery of Candidate Nodes: Upon receiving the
task sharing request, the monitoring tool sitting at the
cloud level shortlists a set of candidate nodes that may
offer the task sharing service.

3) Selection of Service Providers: With the help of
optimization tools, the busy server determines the
optimal allocation of tasks among the set of candidate
nodes. The allocation maximizes the utility function of
the server and minimizes the makespan of the sched-
ule of the set of tasks. The allocated servers are called
service providers.

4) Task Sharing Contract: The busy server and every ser-
vice provider start a task sharing contract that oversees
uploading, remote execution, and return of results of
tasks subject to the sharing service. The contracts will
use the blockchain services of the Fabric platform.

Right after the Fabric network is launched, the ordering
service takes the lead as the first point of administration
to set up the network according to the configuration policy
agreed upon by participant organizations (i.e., Edge Service
Providers (ESPs) and Cloud Service Providers (CSPs)). The
configuration policy contains information regarding organi-
zations and peers, the setup of the membership service, and
the type of consensus running at the ordering service. Next,
the Fabric consortium creates a global channel where the
plenary of server nodes and the cloud level may commu-
nicate with each other and request task sharing services.
The channel implements a distributed ledger of records with
the history of submitted transactions to the channel space.
Once the global channel is configured, the Service Terms
Chaincode is installed and committed to the channel. The
Service Terms Chaincode will track (i) request, (j) reply, and
(k) decision transactions related to the terms of task sharing
services, however, it will not execute the task sharing itself.
This feature is an intentional design choice to protect the
privacy of the tasks and their data by not publicly exposing
them to the network.
The monitoring tool sitting at the cloud level has access to

information related to network resources and performance.
The module can shortlist a set of available servers that may
offer task sharing services to the network. On the other
hand, busy servers have an optimization module that can
map pending tasks on their end to a few available nodes
from the candidate list. Technically, the monitoring and
optimization modules (i.e., client applications) are not part
of the blockchain, however, they also receive digital identi-
ties from CAs and are integrated into the network through
the use Fabric APIs. Once integrated, the client applications
may use the global channel to submit transaction proposals
that follow the logic of the Service Terms Chaincode. When
a busy server requests the task sharing service, it invokes a

request transaction on the global channel. The cloud node
then uses its monitoring tool to discover available servers
that might become service providers after the selection pro-
cess. With that information in hand, the busy server uses the
optimization module to find the optimal subset of servers
from the candidate list that will be in charge of remote task
execution. Finally, the busy server and the service providers
make use of separate private channels equipped with the Task
Sharing Chaincode to oversee (m) task upload, (n) remote
execution, and (p) return of results transactions that complete
the lifecycle of the task sharing service. The global and pri-
vate channels are completely decoupled from one another,
meaning that they implement their own policy rules, ledgers,
and peer-to-peer communication. The decoupled channels
in our model separate the two pieces of chaincode in the
network (i.e., Service Terms and Task Sharing Chaincode) to
preserve the privacy of tasks and their data. In fact, under
the rules of our model, the tasks are only visible to servers
partaking in the sharing service restricting other nodes in
the blockchain to have access to this information. The task
sharing model at the blockchain level is summarized in
Figure 4.

B. TASK SHARING MODEL AT THE SERVER LEVEL
1) INTRODUCTION TO TASK SHARING

Task sharing refers to the partial or full migration of
computing-intensive tasks from resource-constrained devices
to near infrastructure with plenty of available resources. The
migration aims to solve resource shortcomings (i.e., pro-
cessing power, memory, storage, and energy deficiencies) at
strained nodes in a network [46]. Task sharing decisions deal
with three basic questions: (1) what to share, (2) where to,
and (3) at what time. The optimal answers might be based
on specific objectives than depend on network conditions
and user preferences, such as installed computing power,
available bandwidth, and latency requirements.
Computational tasks can be thought of as units of execu-

tion of software applications that perform specific activities
within the program. Their properties might be defined by
data size, required CPU cycles, release times, completion
deadlines, node exclusivity, and functional dependencies. It
is possible to analyze the sharing profile of a software appli-
cation in terms of three aspects: (2) separability, (2) a priori
data, and (3) dependencies. First, for applications that enable
code or data partitioning, not all the parts are candidates for
sharing. For example, input and output events are tasks that
typically need to be executed at the mother node, therefore,
they most likely cannot be offloaded. Second, for applica-
tions that process data, complete a priori knowledge of the
amount of information to be processed is not always possible,
for example, online gaming software that requires continu-
ous execution. For this type of application, task sharing can
become a very complex process. Finally, for applications
composed of tasks that receive (or provide) feedback from
(or to) others, parallel sharing might not be possible. In that
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FIGURE 4. Task sharing model at the blockchain level.

case, the dependencies among the tasks may play a decisive
role in the sharing decisions.
Depending on their sharing eligibility, software appli-

cations may apply three types of task sharing strategies:
(1) local execution (no sharing), (2) full sharing, and (3) par-
tial sharing [47]. The details of the sharing modes are
explained next.

1) Local Execution: the computation of tasks is done
entirely at local premises. This may happen when soft-
ware applications cannot be partitioned into shareable
tasks or when task sharing schemes do not bring ben-
efits to the network. The execution delay accounts for
time spent on the local execution of tasks.

2) Partial Sharing: the computation of tasks is done par-
tially at local premises and the rest is done at other
nodes in the network. This happens when software
applications are composed of both, shareable and non-
shareable tasks. The execution delay accounts for time
spent on local execution of non-shareable tasks plus
time spent on transmission, remote execution, and
return of results of shareable tasks.

3) Full Sharing: the computation of tasks is passed
entirely to remote nodes in the network. The execution
delay accounts for time spent on transmission, remote
execution, and return of task results.

In any case, task sharing schemes are strategies to hit cer-
tain performance targets defined by the network designers.
The targets may involve the maximization of utility func-
tions with user preferences, minimization of the execution
time of software applications and their tasks, minimization
of energy consumption, or any other system-defined opera-
tion. To implement a task sharing scheme, a network must
be equipped with three essential modules: (1) task pro-
filer, (2) system profiler, and (3) decision engine [48]. The
task profiler is the module that determines what parts of a
software application can be shared. It can translate appli-
cations into a set of tasks, computing requirements, and
dependencies. The system profiler is the module responsible
for monitoring the performance parameters of the network.
The parameters might include CPU power, storage, memory,
consumed energy, etc. Finally, the decision engine is the
algorithmic approach to making sharing decisions based on
the information provided by the task profiler and the system
profiler.

2) MATHEMATICAL REPRESENTATION OF TASK-FLOW
COMPUTATIONAL JOBS

As a general rule, computer applications are a combination of
software code and relevant data designed to perform specific
jobs for end users or other applications. They can be viewed
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as a set of computational jobs that need to be sequentially
executed to produce the desired output. More specifically,
a computational job is an independent unit of execution of
a computer application that performs computational work
with a specific pre-defined objective and is normally asso-
ciated with a computer process. Jobs can be further divided
into tasks that are smaller execution units that may hold a
relational dependency with other tasks inside the same job.
Computational tasks can range from a single instruction to
complicated code structures that may involve data manip-
ulation and optimization problems. The execution of tasks
is normally controlled by a job scheduler and once tasks
are finished successfully, the computational job is said to be
complete.
One of the fundamental design postulates of software

development is known as the Acyclic Dependencies Principle
(ADP). ADP states that “the dependency graph of pack-
ages or components in a software application should have
no cycles” [64]. The principle implies that the relational
dependencies among components in software applications
must flow only in one direction and may never form closed
loops. In that context, a task-flow computational job is a
unit of execution of a software application that contains a
set of tasks and a collection of data that requires a number
of computing resources to be completed. Formally, a task-
flow computational job is the tuple J = {A,G(A)}, where
A = {1, . . . ,A} is a set of tasks contained by J and every
a ∈ A is portrayed by the tuple (δa, ρa, τa) where δa is size
of the task in bytes, ρa represents the CPU cycles needed
for task execution, and τa is the deadline in seconds. G(A),
on the other hand, is a direct control-flow graph with no
cycles that captures the functional relationships (i.e., depen-
dencies) of the set of tasks A inside the job J . Moreover, the
vertices of G represent the tasks themselves, and the edges
represent their precedence dependencies. Every task a ∈ A
is labeled by its corresponding data size, CPU requirement,
and deadline time. At the same time, every edge dependency
in G represents the fact that any task a ∈ A must be com-
pleted before the execution of the successor task b ∈ A.
Finally, the edge weight δa,b represents the size of the data
transferred from task a to task b. Figure 5 shows the graph
representation of a task-flow computational job with general
dependent tasks. The mathematical framework of our model
is built upon the assumptions laid out in this section.

3) MATHEMATICAL FRAMEWORK FOR THE TASK
SHARING SCHEME

Let us consider a MEC network composed of a set of edge
servers S = {1, . . . , S} and a cloud level all running as inde-
pendent nodes on the Hyperledger Fabric blockchain. Thanks
to a decentralized architecture and the use of advanced cryp-
tography, Fabric provides a trust model for a secure and
private task sharing service in the network that does not
need a central authority in charge of sharing decisions. Let
us also consider a server node from the set S that owns
a task-flow computational job J = {A,G(A)} that may be

FIGURE 5. Graph representation of a task-flow computational job with general
dependent tasks.

decomposed in a set of indivisible tasks A = {1, . . . ,A}, and
the acyclic graph G(A). Each a ∈ A is the tuple (δa, ρa, τa)

where δa is the size of the task in bytes, ρa is the CPU
cycles needed for task execution, and τa is the deadline in
seconds. On the other hand, the acyclic task-call graph G
captures the task precedence dependencies in A. From G,
the general task precedence dependency matrix G is defined
in equation (1).

Ga,b =
{

1, if task a precedes task b
0, otherwise.

(1)

Also, from graph G, the immediate task precedence
dependency matrix I is defined as follows in equation (2):

Ia,b =
{

1, if task a immediately precedes task b
0, otherwise.

(2)

If a busy server is not able to provide computing services
to job J , the server is given the possibility to outsource the
execution of the tasks inside J to available infrastructure
in the network. In that case, the busy server can submit a
task sharing request to the blockchain asking for computing
resources. After the request is in place, the cloud shortlists
a set of available nodes s ∈ S that are well conditioned
to provide task sharing services. The process of shortlisting
servers is registered in the availability matrix B defined in
equation (3).

Ba,s =
{

1, if server s can execute task a
0, otherwise.

(3)

With the information provided by the cloud, the busy
server finds the optimal allocation of tasks among available
servers that maximizes its utility function and minimizes
the makespan of the tasks. Once a sharing decision is in
place, the rest of the task sharing process (i.e., task upload,
remote execution, and return of results) is managed by the
blockchain through the execution of task sharing contracts.
More specifically, if a server with CPU-clock frequency f
and hardware constant c is set to process a computational
task a locally, the execution time and consumed energy can
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be calculated according to equations (4) and (5). The term c
in equation (5) is the server’s hardware constant introduced
by the Dynamic Voltage and Frequency Scaling (DVFS)
computation model for MEC servers [7].

ta = ρa

f
. (4)

ea = cρaf
2. (5)

On the other hand, if a busy server is set to outsource
task a to another server s given that the two nodes share a
communication channel with bandwidth bws, then the total
round-trip time of a is defined in equation (6). The first
term o the equation represents the execution time of a in
s. The second term is the uploading time of a from the
owner to s given that δa is the size of the task. The third
term constitutes the downloading time of the results of a
from s back to the task owner given that

∑
b δab is the

aggregated size of the results of a that will be fed into all its
immediate successors b. Finally, the fourth term accounts for
the communications overhead introduced by the Hyperledger
Fabric platform. Specifically, the overhead is the latency
injected by the smart contracts in charge of the task sharing
process. The equation (8) shows the energy consumed by
the owner during the communication process where P is the
average power of the busy server.

ta,s = ρa

fs
+ δa

bws
+

∑
b δa,b

bws
+ tHFB. (6)

ea,s = δa

bws
P. (7)

From equations (4) and (6), we define the execution delay
matrix D with elements Da,s ∈ R that represent the execution
time of the tasks a ∈ A by servers s ∈ S . We also define the
communication delay matrix C with elements Ca,s ∈ R that
represent the round-trip communication time of a ∈ A from
the busy server to any other server s ∈ S in the system. The
utility that a busy server gets by outsourcing task execution
to other server nodes is represented by the weighted average
of four ratios. The first two ratios are time and energy savings
as a result of the task sharing service; They are defined in
equations (8) and (9).

r1 = ta − ta,s

ta
. (8)

r2 = ea − ea,s

ea
. (9)

Moreover, the last two ratios capture the reputation of the
server nodes inside the blockchain network. More specifi-
cally, r3 is the transaction success ratio that represents the
portion of transactions successfully endorsed by peers com-
pared to the total number of transactions submitted to the
network. This ratio can be interpreted as a measure of the
reliability of a node in the blockchain network. On the other
hand, r4 is the normalized block size ratio that measures the
relative block size used by a peer compared to the maxi-
mum block size allowed by the blockchain. As stated in [65],

bigger blocks may lead to a reduction of the latency intro-
duced by Fabric. This holds under the assumption that the
transaction throughput in the blockchain is not saturated. In
short, this ratio is a measure of how fast a server node man-
ages transactions inside the blockchain. At this point, the
elements of the utility matrix U are defined as the scalar
product presented in equation (10). The entries Ua,s ∈ R are
calculated as the weighted average of the performance ratios
ra,s = [ri]. The weight vector w represents the performance
preferences of the busy server. The sum of the elements of
w is equal to one,

∑
i wi = 1.

Ua,s = w · ra,s. (10)

The allocation variable Xa,s ∈ {0, 1} is defined in
equation (11).

Xa,s =
{

1, if task a is allocated to server s
0, otherwise.

(11)

The time at which every task must be released for remote
execution is represented by Ra. Then, the makespan of the
schedule of the tasks, Cmax ∈ R, is defined in equation (12).

Cmax = max
a ∈ A, s ∈ S

(
Ra + (

Da,s + Ca,s
) ∗ Xa,s

)
. (12)

Also, the aggregated utility of a schedule, U ∈ R, is
defined in equation (13).

U =
∑
a∈A

∑
s∈S

Ua,sXa,s. (13)

Finally, the dual objective function of the task sharing
model at the server level, F ∈ R, is defined in equation (14).

F = U − Cmax. (14)

4) PROBLEM FORMULATION

Scheduling Theory is the branch of mathematics that studies
algorithmic solutions for task allocation problems in sets
composed of autonomous agents. The task sharing problem
analyzed in this section considers a set of autonomous edge
servers S = {1, . . . , S} running as independent nodes on
the Hyperledger Fabric blockchain. Some of the servers are
available to share their processing resources to execute a
computational job J = {A,G(A)} owned by one of the
agents in the system. The job is composed of a set of discrete
computational tasks A = {1, . . . ,A}. The tasks may have
different sizes, CPU requirements, and deadlines. Also, their
precedence dependencies are modeled by the directed acyclic
graph G, with no specific release times. The servers may also
have different computing power and hardware characteristics.
The physical medium and available bandwidth between any
pair of servers may be different as well. The joint objective
of the problem is to determine an optimal mapping of tasks
and servers to maximize the aggregated utility of the busy
server and minimize the completion time (i.e., makespan) of
the resulting schedule.
As stated by Lawler and Lenstra [66], a collaboration

scheme of this type can be modeled as the R|PREC|F|JP
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multi-processor task scheduling problem. The notation is
explained in detail next:

• The unrelated servers condition R states that the pro-
cessing time of any task is a function of the chosen
executing server and the task itself.

• The precedence constraint PREC assumes that the
dependencies of the set of tasks form a directed acyclic
graph G. It is also assumed that the tasks may have dis-
tinct execution times and also no specific release times.
They may be scheduled as soon as their predecessors
are completed.

• The function F represents the optimal criteria of the
model. The dual objective of our task sharing problem
aims to maximize the aggregated utility of the busy server
and minimize the completion time of the schedule.

• The communication type JP states that the cost (i.e.,
delay) of communicating a task between a pair of
servers in the network depends solely on the servers
and the task itself.

In short, the problem is set to allocate a finite set of
precedence dependent tasks (A = {1, . . . ,A}) among a set
of available edge servers (S = {1, . . . , S}) with the objective
to maximize the dual function (F = U − Cmax). The edge
servers and the cloud level run as independent nodes on
the Hyperledger Fabric blockchain. The blockchain metrics
used in the model capture the health of the nodes in terms of
their transaction reliability, and the communication overhead
introduced by the blockchain platform. The resources of
the system and the performance of Fabric are tracked by a
monitoring tool sitting at the cloud level. The monitoring
tool provides input information to servers requesting the
sharing service so that they can make appropriate allocation
decisions. The formulation of the task sharing problem at
the server level takes the form of a Mixed Integer Linear
Program (MILP) presented in equations (15a). The summary
of symbols and notations can be found in Table 6.
The problem formulation has an MILP structure which is

by definition a non-convex problem. However, the relaxed
version of the model may have convex properties. If
this is the case, problem solutions may be approximated
in tractable time using well-established methods such as
branch-and-bound or heuristic techniques. Constraint (15c)
guarantees the one-to-one task-server mapping condition.
Constraints (15d) and (15e) force task sharing solutions
to available servers offering time and energy savings.
Constraint (15f) gives the assurance that a task (a) can-
not start before the processing of all its predecessors (b)
given that (Ia,b = 1). Finally, constraints (15g) to (15i) in
concert with the overlapping variable (θ) and the constant
(M) specify that the execution time of any two tasks (a) and
(b) in a server do not overlap given that (Ga,b = 0).

maxRa,Xas U − Cmax (15a)

s.t. Xa,s ∈ {0, 1} (15b)∑
s∈S

Xa,s = 1 (15c)

TABLE 6. Summary of symbols and notations.

Da,sXa,s ≤ ta (15d)

ea,sXa,s ≤ ea (15e)

Rb ≥ Ra + (
Da,s + Ca,s

)
Xa,s, |Ia,b = 1 (15f)

Rb −
∑
s∈S

Da,sXa,s − Ra ≤ M
(
1 − θa,b

)|Ga,b = 0 (15g)

Rb −
∑
s∈S

Da,sXa,s − Ra ≥ −Mθa,b |Ga,b = 0 (15h)

Xa,s + Xb,s + θa,b + θb,a ≤ 3 |Ga,b = 0 (15i)

θa,b ∈ {0, 1} (15j)
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FIGURE 6. Blockchain players, their roles, and available transactions in EdgeChain network.

V. EDGECHAIN: A BLOCKCHAIN-BASED TASK SHARING
SERVICE DEMO
A. PRELIMINARY ANALYSIS
EdgeChain is a blockchain-based solution designed for a
consortium of ESPs to share computational tasks between
organizations within a blockchain network. EdgeChain runs
on the Hyperledger Fabric platform which is an open source
permissioned blockchain with a trust model that consists
of membership, consensus, ledger, and chaincode services
so that server nodes in the network can engage in reliable,
secure, and private task sharing services. ESPs are typically
private tech companies (i.e., Google, Amazon, Microsoft,
IBM) with computing infrastructure deployed in strategic
locations near the end users they serve. ESPs might offer con-
tent delivery, Web services, and application services to users
located at the bottom layer of a communications network.
In our EdgeChain demo, five separate organizations, specifi-
cally, four ESP and one CSP, get into an infrastructure cluster
to form a blockchain consortium to pool computer infrastruc-
ture and process computational tasks coming from stranded
servers in the network. The whole premise of EdgeChain
relies on the idea that a consortium of ESPs willing to share
their idle resources would effectively reduce the latency asso-
ciated with the execution of queued tasks in the system,
and also increase the utilization efficiency of the computer
infrastructure installed on the consortium.

There are four distinct roles in EdgeChain: (1) busy server,
(2) cloud level, (3) available server, and (4) service provider.
The interactions between busy servers and the cloud are over-
seen by the Service Terms Chaincode available on the global
channel. More specifically, busy servers can request the task
sharing service using the (i) request transaction. The cloud
level, on the other hand, is equipped with a monitoring tool
with an overview of the resources in the network and is in
charge of replying to service requests with a set of candidate
servers to take on the tasks. To do that, the cloud makes
use of the (j) reply transaction. Finally, when busy servers
make task sharing decisions to allocate queued computational
tasks to a subset of available servers, they make use of the
(k) decision to communicate their decisions to the global
channel. After task sharing decisions have been reached, the
interactions between busy servers and service providers are
overseen by the Task Sharing Chaincode. In particular, the
servers make use of the (m) task upload, (n) remote execu-
tion, and (p) return of results transactions to complete the
lifecycle of the task sharing service on separate private chan-
nels. Figure 6 shows an illustration of the blockchain players,
their roles, and the available transactions in the EdgeChain
network. EdgeChain relies on the membership, consensus,
ledger, and chaincode services provided by Hyperledger
Fabric services to support the implementation of the task
sharing solution. The deployment strategy presented in this
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FIGURE 7. Lifecycle transitions of Service Terms objects.

chapter will reproduce the following sequence: (1) install
the pre-requisites and components of the Fabric platform,
(2) develop and deploy the chaincode with the logic of the
task sharing solution, and (3) develop and install the neces-
sary client applications that serve as the connection between
the outside world and the blockchain network.

B. SMART CONTRACTS
EdgeChain participants (i.e., CSPs and ESPs) use chaincode
available in the network to circulate computational tasks
queued in busy servers. The blockchain model presented
in Section III shows that the dynamics of the task sharing
service can be described by the following sequence: (1) service
request, (2) discovery of candidate nodes, (3) selection of
service providers, and (4) task sharing contract. In this section,
we present the details of the smart contracts that make up the
core logic of the task sharing solution presented in this work.

1) SERVICE TERMS CHAINCODE

Service Terms Chaincode contains the logic of the first three
stages of the task sharing model (i.e., service request, the dis-
covery of candidate nodes, and selection of service providers)
where the terms of the services are negotiated. We make use
of Java programming language and Fabric Contract Shim
API for coding the logic inside Service Terms Chaincode.
Fabric Contract API provides a series of classes, methods,
and interfaces to code contracts, transactions, and perform
ledger operations. The smart contract is shared on the global
channel and is accessible to the plenary of server nodes and
the cloud level. In fact, busy servers and the cloud level
might invoke transactions to negotiate computing resources
in the network.

The objects of value in the global channel are named
Service Terms. Service Terms Chaincode governs the pro-
cess that handles Service Terms objects from initial creation
to successful completion of their lifecycle. The transitions
can be described by transactions that change the state of
Service Terms objects circulating on the global channel.
An illustration of the lifecycle of Service Terms objects is
presented in Figure 7. From the lifecycle diagram, Service
Terms Chaincode logic can be explained in terms of four
transactions described as follows:

1) Service Request: Busy servers with queued compu-
tational tasks can initiate task sharing services with
serviceRequest() transactions. When this function is
invoked, busy servers hand over the strings servi-
ceID, serviceOwner, requestTime and the JSON object
requestedResources to put together transaction propos-
als for the network. If proposals are approved, new
Service Terms objects are created and written to the
channel ledger. The initial state of objects is set to
REQUESTED.

2) Service Reply: The cloud level can reply to ser-
vice requests with serviceReply() transactions. When
this function is called, the cloud level hands over
the strings serviceID, serviceOwner and the JSON
object availableResources to create transaction pro-
posals for the network. If transactions are approved,
the Service Terms objects associated with provided ser-
viceID parameters get updated on the channel ledger
with the list of available resources in the network. Also,
the state of the objects is moved from REQUESTED
to REPLIED.
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FIGURE 8. Lifecycle transitions of Computational Task objects.

3) Start Decision:When busy servers get notified that the
cloud level has replied to their service requests, they
must inform the network that they are ready to make
task allocation decisions. To do that, they use start-
Decision() transactions. When this function is called,
busy servers hand over the strings serviceID and deci-
sionStartTime to construct transaction proposals for
the network. After transactions are approved, Service
Terms objects get updated on the ledger with times-
tamps that inform the network that busy servers have
started to solve their task allocation problems. At this
stage, the state of Service Terms objects is moved from
REPLIED to DECISION STARTED.

4) Finish Decision: When busy servers have made their
task allocation decisions, they use finishDecision()
transactions to notify the blockchain network about
this event. When this function is invoked, busy servers
hand over the strings serviceID, finishDecisionTime
and the JSON object serviceproviders to create trans-
action proposals and send them to the network. When
transactions get approved, Service Terms objects get
updated on the ledger with the set of servers that
were selected to provide task sharing services. In
other words, finishDecision() transactions culminate
the negotiation process between busy servers and the
cloud level. At this stage, Service Terms object states
are moved from DECISION STARTED to DECISION
FINISHED which also means the end to their lifecycle.

2) TASK SHARING CHAINCODE

Task Sharing Chaincode oversees the logic of the final stage
of the task sharing model (i.e., the task sharing contract)

where Computational Tasks objects are privately shared
between busy servers and server nodes acting as service
providers. As in Service Terms Chaincode, we use Java as the
contract programming language and Fabric Contract API for
the development of the logic inside Task Sharing Chaincode.
This smart contract is shared on private channels and is
accessible in pairs of busy servers and service providers.
The objects of value within the private channels are

Computational Tasks. Task Sharing Chaincode controls the
process that moves Computational Task objects from creation
to successful completion of their lifecycle. Task transitions
can be described by transactions that change the state of
the tasks circulating on private channels. An illustration
of the lifecycle of Computational Task objects is presented
in Figure 8. From the lifecycle diagram, the logic in Task
Sharing Chaincode can be fully explained with the four
transactions described next:

1) Upload Task: Busy servers use uploadTask() transac-
tions to start the sharing process with service providers
over private channels. When this function is invoked,
busy servers hand over the strings taskID, uploadTime
and the JSON object taskCode to create a transaction
proposal to the network. If proposals are approved, new
Computational Task objects are created and written to
the channel ledger. The initial state of task objects is
set to UPLOADED.

2) Begin Execution: Service providers use beginExecu-
tion transactions to read Computational Task objects
that were previously uploaded by busy servers to
private channel ledgers. After tasks are read, they
become available for remote execution. When this
function is called, service providers hand over the

VOLUME 3, 2022 2225



VERA-RIVERA et al.: EXPLORING THE INTERSECTION OF CONSORTIUM BLOCKCHAIN TECHNOLOGIES AND MEC

strings taskID and execStartTime to create transaction
proposals for the network. If transactions are approved,
the Computational Task objects associated with the
provided taskID strings get updated with timestamps
to notify the blockchain network that remote execution
have started. Also, the state of the objects is moved
from UPLOADED to EXECUTION STARTED.

3) Finish Execution: Service providers use finishExecu-
tion transactions to notify the blockchain that task
execution have finished at their premises and also
upload task results to the channel ledger. When this
function is called, service providers hand over the
strings taskID, execFinishTime and the JSON object
taskResults to create transaction proposals for the
network. If transactions are approved, Computational
Task objects get updated on the ledger with times-
tamps that inform the network that remote execution
have finished. At this point, the state of Computational
Task objects is changed from EXECUTION STARTED
to EXECUTION FINISHED.

4) Download Task Results: When busy servers get noti-
fied that remote execution of tasks have finished, they
use downloadResults() transactions to download task
results from the channel ledger. When this function
is invoked, busy servers hand over strings taskID and
downloadTime to create transaction proposals for the
network. If proposals are approved, Computational
Task objects get updated on the ledger with times-
tamps that inform the network that task results have
been downloaded. Also, downloadResults() transac-
tions end the lifecycle Computational Task objects and
move their states from EXECUTION FINISHED to
DOWNLOADED.

C. CLIENT APPLICATIONS
Client applications can interact with the EdgeChain network
to submit transactions that may force changes on objects
stored in the blockchain. EdgeChain clients will connect to
the blockchain using a Fabric Java SDK (a set of connection
functions) and gateway peers inside their parent organiza-
tions to reach other nodes in the network. The configuration
of gateway peers may be found in the connection profile
generated by parent organizations before joining the network
consortium. They make use of their local copy of the chain-
code installed in the blockchain channel and the Fabric
Contract API to assemble transaction proposals that will
be submitted to the network.
The gateways provide an entry point for clients to access

channels and chaincode in the blockchain network. To do
that, clients first retrieve x.509 digital certificates from their
wallets corresponding to pre-authorized users with clearance
to access the network. Then, they load the connection profile
with designated gateway peers for their parent ESP organi-
zations. Both, identity wallets and connection profiles, are
available on the local file systems of the physical nodes
they run on. At this stage, clients may call the functionality

inside the chaincode to prepare transaction proposals and set
off the Fabric consensus mechanism. Client applications are
a key part of the EdgeChain solution due to their ability
to hook up the outside world to the blockchain infrastruc-
ture. An illustration of the sequence of events executed in
the network for proper interaction between clients and the
blockchian is presented in Figure 9.

Depending on their physical location in the network,
client applications may monitor the performance of edge
servers, manage queued tasks, and solve task allocation prob-
lems. More specifically, ESPs the CSP in EdgeChain can
invoke transactions available in Service Terms Chaincode
and Task Sharing Chaincode to circulate computational
tasks in the edge network. This section presents the
details of the three client applications developed for
EdgeChain: (1) BusyServerApp, (2) CloudLevelApp, and
(3) PrivateSharingApp.

1) BUSYSERVERAPP

BusyServerApp clients are Java programs installed on the
ESP servers that monitor incoming application requests (i.e.,
computational jobs) from mobile users and request computer
resources on their behalf. An instance of BusyServerApp may
call the Service Terms Chaincode installed in the global
channel to start the negotiation of task sharing services
with the blockchain network when the server nodes have
queued tasks that need processing services. BusyServerApp
may then submit transactions on behalf of stranded servers
looking to get resources from the edge network. The clients
are, in fact, the middle man between busy servers and
the blockchain network for the negotiation process of task
sharing services. In particular, they can request computing
resources, solve task allocation problems, and notify the
blockchain about allocation decisions. A summary of the
labor inside BusyServerApp clients is presented next.

1) Retrieve x.509 client identities from their local ESP
wallets

2) Connect to designated ESP gateway peers using the
information in the connection profiles of their parent
organizations

3) Access the global channel using the Java SDK
functionality

4) Connect to Service Terms Chaincode and submit
transaction proposals to the network

5) Stay alert of transaction notifications and process
responses accordingly

With respect to the decision engine of our model,
BusyServerApp clients integrate the Google optimization tool
(Google OR-Tools) [67] to solve the task scheduling problem
designed for the EdgeChain solution (the problem is explained
in section 3.E “Task Sharing Model at the Server Level”).
Google OR-Tools is an open source optimization software
available for multiple programming languages including Java
that offers a variety of solvers for combinatorial optimization.
Google OR-Tools specializes in finding optimal schedules for
allocation problems composed of a set of task objects that
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FIGURE 9. Communication sequence between client applications and the blockchain inside the EdgeChain network.

need to be distributed among a fixed set of resources that
provide labor. EdgeChain makes use of the GLOP solver to
find optimal solutions for the linear program in (15a).

2) CLOUDLEVELAPP

CloudLevelApp clients are Java programs installed on the
cloud datacenter (i.e., CSP) to negotiate task sharing ser-
vice requests with busy servers. The client calls functions
inside Service Terms Chaincode to reply to service requests
and notify the network with available computer resources
in EdgeChain network. An instance of the CloudLevelApp
may submit transactions on behalf of the monitoring mod-
ule sitting at the cloud level. The module has an overview
of the computer resources in the network and can shortlist
a set of candidate servers to take on computational tasks
queued in the system. From the gateway peer location, the
CloudLevelApp client may call serviceReply transactions to
update the blockchain ledger with the information about avail-
able computer resources in the edge network. A summary of
the labor inside CloudLevelApp client is presented next:

1) Retrieve x.509 client identities from the local CSP
wallet

2) Connect to the designated CSP gateway peer using
the information in the connection profile of the parent
organization

3) Access the global channel using Java SDK function-
ality

4) Connect to Service Terms Chaincode and submit
transaction proposals to the network

5) Stay alert of transaction notifications and process
responses accordingly

For our demo, we assume that all the servers in EdgeChain
are potential candidates to accept queued tasks in the
network. However, in production scenarios, there is a variety

of open-source applications available that might be installed
on the cloud datacenter to monitor computer resources
and blockchain performance in the edge network. This
information may be used as input for the allocation decision
engine of our model.

3) PRIVATESHARINGAPP

PrivateSharingApp clients are Java programs installed on
ESP servers to oversee the task sharing process between busy
servers and service providers. They may call the functionality
available in the Task Sharing Chaincode to upload/download
data of queued tasks and their results. An instance of the
PrivateSharingApp can submit transactions on behalf of busy
servers and service providers to privately manage the task
sharing process between each other. In fact, they can upload,
remote execute, and download the results of queued com-
putational tasks in the network. PrivateSharingApp clients
have two versions, one for busy servers and one for ser-
vice providers that get used depending on the server’s role
in the task sharing service. A summary of the labor inside
PrivateSharingApp clients is presented next:

1) Retrieve x.509 client identities from local ESP wallets
2) Connect to designated ESP gateway peers using the

information in the connection profiles of the ESP
organizations

3) Access private channels using Java SDK functionality
4) Connect to Task Sharing Chaincode and submit trans-

action proposals to the network
5) Stay alert of transaction notifications and process

responses accordingly

D. NETWORK SETUP
The first step towards launching a Fabric network consists
in the installation of a set of software pre-requisites on the
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nodes partaking in the network. Hyperledger Fabric is a
container-based platform that uses container management
tools, programming languages, packet managers, and binaries
to facilitate the operation of the blockchain network. Fabric
binaries, in particular, are the platform-specific machine
language executable files to set up and run the Fabric
blockchain. Once the required software is installed on the
blockchain nodes, the Fabric network is ready to be launched.
For the deployment of EdgeChain, we have four PCs to
simulate the infrastructure of the organizations taking part
in the blockchain consortium. Every computer will host a
set of docker containers with the assigned Fabric compo-
nents defined in the Fabric configuration files. The containers
include CAs, ordering service peers, organization peers, peer
databases, CLIs, chaincode packages, and client applica-
tion packages. The blockchain configuration files and smart
contract code that make up the EdgeChain network are
available in the angelovera/TaskSharingServiceDemo Github
repository [69].

E. PHYSICAL CONNECTIONS
The four EdgeChain PCs are physically connected to a hard-
wired Local Area Network with a data-rate capacity of 100
Mbps. The computers are logically organized in a clus-
ter with the help of Docker Swarm orchestration software.
Docker-swarm powers the implementation of container-based
networks across multiple physical or virtual hosts. This is
a deliberate design choice so that the set of available PCs
can be managed from a single administration point. In the
case of EdgeChain, the cluster is controlled by one node
that acts as cluster manager and another three nodes that
act as followers or workers. The manager node is the single
point of administration of the physical network, therefore,
all the Fabric components and their docker containers can be
deployed from this location. An illustration of the EdgeChain
docker swarm cluster can be found in Figure 10.

F. NETWORK COMPONENTS
Hyperledger Fabric is a container-based blockchain that
uses isolated software units (i.e., software containers) to
deploy network components on the physical infrastruc-
ture. EdgeChain is a Fabric-based network that recreates a
distributed version of a cloud/edge architecture. More specifi-
cally, four ESPs and one CSP get together to form a blockchain
consortium to launch a decentralized task sharing service that
delivers computing services to software applications located
behind the edge infrastructure. The consortium accommo-
dates five organizations (i.e., ESPs and CSP) across the four
computers available for EdgeChain. Every organization is
composed of one CA in charge of generating cryptographic
identities inside the organization, one organization peer that
hosts the chaincode with the task sharing logic, one instance of
a Couch Database (CouchDB) that keeps a copy of the world
state and blockchain, and a Command Line Interface (CLI)
to interact with the peers. In addition, EdgeChain implements
ordering peers for the ordering service, and the membership

FIGURE 10. Illustration of the EdgeChain docker swarm cluster.

service to validate identities within the network. An illustra-
tion of the arrangement of docker containers insideEdgeChain
participating organizations (i.e., CSP and ESPs) can be found
in Figure 11.
Fabric provides a CA tool called Fabric-CA that repro-

duces a PKI to create digital identities in the network.
Fabric-CA generates cryptographic identities through a pro-
cess called enrollment that is configurable to fit the amount
of crypto material required by the network. Fabric-CA might
be used during development stages, however, when moved
to production, it should be replaced with commercially avail-
able CAs that are trusted by the Internet industry [68].
Following the spin-up of containers with the CAs, Fabric-CA
tool generates cryptographic identities for network partici-
pants (i.e., organizations, peers, client users, etc). They use
the crypto identities to sign their attempts to interact with
the blockchain network. After crypto material generation, the
rest of Fabric components are brought up to complete the
formation of the network. The spin-up of network containers
is initiated by the manager node in the docker swarm clus-
ter using docker commands. At this point, ordering peers,
organization peers, CouchDB instances, and CLIs should be
deployed across network nodes. The container profiles are
available in YAML configuration files that are used by docker
commands during the spin-up process.
Following the creation of Fabric components, EdgeChain

consortium is ready to create application channels. To do
that, Fabric provides the ConfigTxGen tool that allows the
creation of channel configuration blocks and related chan-
nel artifacts (i.e., channel update transaction and anchor
peers information). For channel creation, the ConfigTxGen
tool receives the configuration file of the network as an
input. The network contains one global channel with the
plenary of edge server nodes, and

(n
2

)
private channels (n

is the number of server nodes) to privately connect every
combination of two servers in the network. A summary of
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FIGURE 11. Arrangement of docker containers inside participating organizations in the EdgeChain network.

the components of the EdgeChain network can be found
in Table 7.

VI. PERFORMANCE EVALUATION RESULTS
The EdgeChain network runs on a physical cluster of four
identical computers, the network consists of a Fabric-CA PKI
instance, a Raft-based Ordering Service module, a consortium
of five organizations, seven blockchain channels, two pieces
of chaincode, and three client applications that make up the
blockchain-based task sharing solution. Every computer has a
3.40 GHz x 8 i7 core processor, 7.16GiB of availablememory,
and 500 GBs of storage. In this section, we evaluate the impact
of a few configurable parameters of the Fabric platform on
the transaction latency and transaction throughput induced by
the blockchain network. Latency is defined as the time (in
seconds) taken by transactions from when they leave client
applications to when they get committed to the blockchain
ledger. Throughput, on the other hand, is defined as the rate (in
transactions per second) at which transactions are committed
to the blockchain ledger. The evaluation of transaction latency
and transaction throughput is the standard practice to measure
the response time and scalability of a blockchain solution. We
use these two quantities as the primary metrics to analyze the
performance of EdgeChain. If not otherwise specified, the
results presented in this section are averaged over multiple
runs of the same experiment. The configuration parameters
for the experiments presented in subsections A, B, and C can
be found in Table 8.

A. IMPACT OF STATE DATABASE
Let us recall that Hyperledger Fabric currently offers
two ledger implementations to store KV data related to
blockchain objects: (1) LevelDB and (2) CouchDB. LevelDB
ledger is the default implementation of a state database in
Fabric nodes that comes embedded inside core peers. It is

FIGURE 12. Average latency of Service Terms Chaincode transactions as a function
of state database.

lightweight but supports only a limited number of simple
operations on the database. CouchDB ledger, on the other
hand, is an SQL database that runs separately from peer
nodes. It supports advanced operations on the database, com-
plex indexing methods, and complex data structures. For
this experiment, all the Fabric configuration parameters are
fixed except for the ledger state database. Figures 12 and 13
show the impact of the type of ledger database on the aver-
age transaction latency experienced by transactions. Service
Terms Chaincode and Task Sharing Chaincode transactions
are taken into account. The number of transaction runs
is 5000.

1) OBSERVATION 1

The results show that the latency experienced by transac-
tions for the CouchDB ledger implementation is significantly
greater when compared to the latency experienced when
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TABLE 7. Hyperledger fabric components of the EdgeChain network.

FIGURE 13. Average latency of Task Sharing Chaincode transactions as a function
of state database.

LevelDB ledger is installed. Themain reason for the difference
is that LevelDB is a state database embedded in the peer nodes
while CouchDB is a database that runs separately from peer
nodes using REST APIs over a secure HTTP connection. The

communication between peer nodes and the REST APIs adds
additional steps to the write/read operations that transactions
force on the CouchDB ledger. Across transactions, there is
also a slight difference in the latencies introduced by the two
pieces of chaincode. As for the Service Terms Chaincode, the
complexity of ServiceRequest and ServiceReply transactions
is higher than that of startDecision and finishDecision. The
higher number of KV ledger operations introduced by the first
two has a slight impact on the latency being measured. This
effect can be seen in both, CouchDB and LevelDB, implemen-
tations. As for the Task Sharing Chaincode, the effect of KV
ledger operations can also be seen in the latency introduced
by uploadTask transaction with respect to the other three (i.e.,
beginExecution, finishExecution, and downloadTask) although
the effect is more noticeable in the LevelDB implementation.

2) GUIDELINE

LevelDB ledger is a simpler and faster option than CouchDB
ledger andmight be a better design choice for latency-sensitive
applications that manage data with low complexity structures.
CouchDB, on the other hand, is slower but can handle more
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TABLE 8. Blockchain parameters for the experiments in subsections A, B, and C.

sophisticated data structures. It may be a good choice for
applications that can tolerate higher response latencies.

3) ACTION

Move on to the next experiments setting LevelDB as the
state database for EdgeChain network.

B. IMPACT OF ENDORSEMENT POLICY
Let us recall that, at the peer level, the consensus mecha-
nism in Fabric networks rely on the idea of endorsements.
Endorsement policies are the rules that define the mini-
mum number of digital signatures that must be collected
from the blockchain network before transaction proposals get
approved and moved to the ordering service. When client
peers submit transaction proposals to a blockchain channel,
they are sent to endorsing peers defined on the channel.
Endorsing peers receive the proposals and simulate them
with their local copy of the chaincode. If the simulation
process produces the same output as the proposals, trans-
actions are signed with the endorser’s private key and are
sent back to the client that created them. Endorsing signa-
tures are a method to validate that transaction results strictly
follow the installed logic on the blockchain. From a macro
perspective, endorsement policies dictate the level of democ-
ratization for the voting system to approve transactions, that
is, minority, majority, or unanimity approvals. The policies
are the result of the combination of three logic operators:
(1) AND, (2) OR, and (3) NOutOf. The operands are always
members of the organizations participating in the blockchain
consortium. For example, an endorsement policy defined by
the expression AND(Org1MSP.peer,Org2MSP.peer) means
that any peer in both, Org1 and Org2, must sign a
transaction proposal before it is declared valid. The expres-
sion NOutOf (1,Org1MSP.peer,Org2MSP.peer,Org3.peer),
on the other hand, means that at least 1 out of the 3 organiza-
tions in the policy (i.e., Org1, Org2, and Org3) must endorse a
transaction proposal to get it approved. For this experiment, all
the Fabric configuration parameters are fixed except for chan-
nel endorsement policies. Figures 14 and 15 show the impact

FIGURE 14. Average latency of Service Terms Chaincode transactions as a function
of endorsement policy.

of endorsement policies in the average transaction latency
experienced by transactions. Service Terms Chaincode and
Task Sharing Chaincode transactions are taken into account.
The number of transaction runs is 5000.

1) OBSERVATION 2

For the Service Terms Chaincode, we evaluate three endorse-
ment policies: (1) minority approval (20% endorsement
signatures, 1 out of 5 organizations), (2) simple major-
ity approval (≥50% endorsement signatures, 3 out of 5
organizations), and (3) unanimity approval (100% endorse-
ment signatures, 5 out of 5 organizations). For the Task
Sharing Chaincode, we evaluate two endorsement policies:
(1) weak majority approval (50% endorsement signatures,
1 out of two organizations), and (2) unanimity approval
(100% endorsement signatures, 2 out of 2 organizations). The
results show that the latency experienced by transactions is
indeed affected by the number of signatures required by the
endorsement policy. As for the Service Terms Chaincode,
the minority approval and simple majority approval show
similar latency times. The unanimity approval, on the other
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FIGURE 15. Average latency of Task Sharing Chaincode transactions as a function
of endorsement policy.

hand, slightly increases the latency compared to the other
two policies. As for the Task Sharing Chaincode, the una-
nimity approval forces a slight increment in the latency for
the weak majority approval, however, the increment is almost
negligible. In general, the increment in transaction latency
can be explained in terms of three main operations that take
place during the endorsement validation phase. First, x.509
identity certificates of endorsing peers are de-serialized from
the membership module back to the proposing peer. Second,
once de-serialized, the certificates are validated against the
list of organization MSP identifiers. And third, the signa-
tures of endorsed transactions have to be verified to confirm
the identity of endorsing peers. The three operations are
executed by the proposing peers every time endorsed trans-
actions enter their premises. We can see that the effect of
different endorsement policies is mostly experienced by the
Service Terms Chaincode which operates in the global chan-
nel. The global channel contains 5 organizations and an
equal number of peers, therefore, a change in the number of
required signatures to approve transactions in this channel
has greater latency impact than similar changes in channels
with less number of participants. This is true simply by the
lesser number of operations that must take place in smaller
channels during the endorsement validation phase. This can
be corroborated with the behavior of transactions in the Task
Sharing Chaincode which operates in private channels with
only two organizations and two peers.

2) GUIDELINE

The complexity of endorsement policies is a factor that
impacts the scalability of the blockchain network. When
a network requires a larger number of endorsements, trans-
actions must be simulated and signed at a higher number
of peer nodes during the endorsement phase. Therefore, the
higher the number of required signatures, the higher the
latency experienced by transactions. For better performance,
set endorsement policies with only a few required
signatures.

3) ACTION

Move on to the next experiments setting the endorsement
policy to one required signature (NOutOf, N = 1) for all
EdgeChain smart contracts.

C. IMPACT OF TRANSACTION ARRIVAL RATE AND
BLOCK SIZE
In a Fabric network, transactions are ordered and packed
into blocks at the ordering service. Once created, blocks
are sent back to organization peers for final verification and
committing to their local copies of the blockchain ledger.
The block size is a configurable parameter of the blockchain
network that defines the number of packed transactions in a
block. Unlike the endorsement phase in which processing is
done in a per-transaction style, the processing of blocks at
the peer level is done one block at a time. In fact, there is
a tight relationship between block size, transaction latency,
and transaction throughput inside the network. A deficient
pick of block size may impact the speed at which blocks
are created when the arrival rate is not sufficiently. This may
have transactions wait too long at the ordering service caus-
ing bottlenecks in the network. For a better picture of this
latency and throughput experiment, we study these parame-
ters in conjunction with the transaction arrival rate. For this
experiment, all the Fabric configuration parameters are fixed
except for the block size. Figures 16 to 19 show the impact
of block size on the average transaction latency and the aver-
age transaction throughput experienced by EdgeChain. The
network is tested under multiple block sizes and transaction
arrival rates.

1) OBSERVATION 3

We evaluate four block size policies (blocksize = 1, 3, 5, 7)
at different transaction arrival rates to catch potential bot-
tlenecks in the network. The tension between latency and
throughput becomes clear when the block size policy and
the transaction arrival rate vary. For blocksize = 1, the
throughput increases linearly as expected before reaching
the saturation point. When the arrival rate gets close to the
saturation point, the latency increases significantly from less
than half of a second to a few seconds. This effect can
be explained by the growing number of service transactions
waiting at the ordering service queue when the arrival rate
increases. The waiting time at the queue affects the ulti-
mate commit latency time and becomes a bottleneck in the
system. The behavior can be seen in Figure 16.

2) OBSERVATION 4

When we increase the block size to 3, 5, and 7, the transac-
tion latency remains unaltered at approximately 1.3 seconds
when the arrival rate is below the block size. This can be
explained due to the block generation time being conditioned
by the block timeout parameter that gains prominence when
the rate of incoming transactions is below the size of a
block. In this scenario, ordered transactions have to wait
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FIGURE 16. Average transaction latency and average transaction throughput
versus transaction arrival rate with block size equal to 1.

FIGURE 17. Average transaction latency and average transaction throughput
versus transaction arrival rate with block size equal to 3.

for at least “block timeout” seconds before getting com-
mitted to the network. In our tests, the block timeout is
set to 1 second. For arrival rates above the block size,
the transaction latency increases with the arrival rate. An
interesting behavior is spotted at the points where the arrival
rate matches the block size or its multipliers (blocksize = N,
multipliers = 2 ∗N, 3 ∗N, . . .). At these points, the network
experiences a decrease in transaction latency that can be
explained by a faster generation of blocks given that the
number of incoming transactions in a batch meets the block
transaction quota exactly hence no remaining transactions
have to wait in the ordering service queue for the next
round of block generation and commit phase. On average,
this effect translates in a slight decrease in committing times
that can be spotted on the grey bars in Figures 17, 18, and 19.

3) OBSERVATION 5

Same as transaction latency, the transaction throughput
increases as we increase the block size (blocksize =

FIGURE 18. Average transaction latency and average transaction throughput
versus transaction arrival rate with block size equal to 5.

FIGURE 19. Average transaction latency and average transaction throughput
versus transaction arrival rate with block size equal to 7.

3, 5, 7). Again, for arrival rates equal to the block size
or its multipliers, the transaction throughput experiments
a boost that can be explained in similar terms as the
latency case. At these points, blocks are created at a faster
rate because of the synchronization between the transac-
tion arrival rate and the transaction quota at the block
level that, on average, reduces the waiting time of ser-
vice transactions at the ordering service hence increasing
the throughput produced by the blockchain. The effect is
highlighted with grey square markers in Figures 17, 18,
and 19.

4) GUIDELINE

To achieve higher transaction throughput and lower transac-
tion latency, always match the block size to the transaction
arrival rate when the network sits below the saturation point.
We recognize that when the blockchain finds optimal latency
and throughput levels, the network may offer faster and more
scalable task sharing services.
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VII. CONCLUSION
We have proposed a conceptual framework for task sharing
collaboration in MEC architectures using the Hyperledger
Fabric platform. MEC networks can benefit from the nota-
rization, ownership, and chain-of-custody services offered
by the Hyperledger Fabric blockchain to address security
and privacy concerns related to collaboration mechanisms
for edge computing servers. The proposed MEC framework
supports decentralized computing services with dynamic task
scheduling and unified management of resources while main-
taining security capabilities with a special focus on the
integrity and confidentiality of tasks and their data
At the blockchain level, we have proposed a task shar-

ing design that accommodates a set of edge servers and the
cloud level that get together to form a consortium in the
Hyperledger Fabric platform. The dynamics of the solution
can be described in four phases: (1) service request, (2) dis-
covery of candidate nodes, (3) selection of service providers,
and (4) task sharing contract. The model offers enhanced
security features that leverage the permissioned nature of
Fabric to validate identities and allowed behavior within
the network. The model also offers enhanced privacy fea-
tures powered by a smart contract design that makes use of
multiple decoupled Fabric channels with separate operation
rules, ledgers, and peer-to-peer communication networks.
This design choice guarantees that the computational tasks
circulating in the network are only exposed to servers partic-
ipating in task sharing services. At the server level, the task
sharing scheme is modeled as a multi-processor task schedul-
ing problem that allocates a set of precedent-dependent
computational tasks among a set of available servers by
jointly optimizing the aggregated utility and the makespan of
the tasks. In summary, we introduce a reference task-sharing
model at the blockchain and server levels that establish a
block-based agreement among multiple ESPs that enables
macro deployment and cross-collaboration among them.
We also have presented the implementation details of

EdgeChain, a proof of concept demo of the task-sharing
model. EdgeChain is a Hyperledger Fabric-based solution
designed for a consortium of ESPs to share computational
tasks between organizations within a blockchain network.
EdgeChain network runs on a physical cluster of four
computers and consists of the combination of Fabric-CA
PKI, a Raft-based Ordering Service, a consortium of five
organizations (four ESPs and one CSP), seven blockchain
channels, two smart contracts, and three client applications
that make up the task sharing solution. The implementation
of EdgeChain shows that our task sharing model is feasible,
however, there is still much room for improvement to reduce
the latency introduced by service transactions, increase the
throughput produced by the blockchain, and improve the
overall features offered by the task sharing model.
Our results show that the latency overhead introduced by

task sharing transactions can be minimized by optimizing the
configurable parameters of Fabric (i.e., endorsement policy,
state database, block size, batch timeout, etc). Also, it is

possible to introduce changes to the task sharing model at
the blockchain level to minimize the number of required
transactions. A priori, the transactions in our model could
be re-organized to reduce the number of operations on the
ledger. Recall that transactions in a blockchain network ulti-
mately translate into KV write/read operations on the ledger
which add up to the latency overhead introduced by the
system, write operations in particular.
Sharing computational tasks can also be seen as a trading

problem rather than a multi-processor scheduling problem.
Our current approach does not bring market tensions to
the picture although we believe that market models such
as auctions and their variations might capture the nuances
of the sharing process more adequately. Recall that the ESPs
are normally private companies with profit-driven economic
incentives. In that case, a viable collaboration model for a
consortium of ESPs should include a pricing model that
captures the economic reward for the providers of shar-
ing services. A market model can seemingly introduce a
pricing mechanism for the payments and it can be easily pro-
grammed as a cryptocurrency in the logic of the Hyperledger
Fabric blockchain.
Finally, the mobility of end users is an issue that our

model does not address. Service break-offs may happen if
mobile users move across coverage areas of different edge
servers. In that scenario, the provision of smooth task owner-
ship handover between server nodes is one of the challenges
for the evolution of our task sharing model. Also, the com-
putational jobs in our model follows the acyclic dependency
restriction. However, that assumption may not necessarily
coincide with the structure and complexity of real end-user
applications.
We believe that any future evolution of our model should

focus on two tasks: (1) reduce the latency introduced by
the blockchain network, and (2) increase the overall features
offered by the task sharing framework.
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