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ABSTRACT Network operators can operate services in a flexible way with virtual network functions
thanks to the network function virtualization technology. Flow partition allows aggregated traffic to be
split into multiple parts, which increases the flexibility. This paper proposes a service deployment model
with flow partition to minimize the service deployment cost with meeting service delay requirements.
A virtual network function of a service is allowed to have several instances, each of which hosts a
part of flows and can be shared among different services, to reduce the initial and proportional cost.
We provide the mathematical formulation for the proposed model and transform it to a special case as
a mixed integer second-order cone programming (MISOCP) problem. A heuristic algorithm, which is
called a flow partition heuristic (FPH), is introduced to solve the original problem in practical time by
decomposing it into several steps; each step handles a convex problem. We compare the performances
of proposed model with flow partition and conventional model without flow partition. We consider the
formulated MISOCP problem with adopting a strategy of even splitting to divide flows in a special case,
which is called an even spitting heuristic (ESH). The performances of FPH and ESH are compared in a
realistic scenario. We also consider the formulated MISOCP problem as an original problem and compare
it to an FPH-based heuristic algorithm with the even-splitting strategy (FPH-ES), in both realistic and
synthetic scenarios. The numerical results reveal that the proposed model saves the service deployment
cost compared to the conventional one. It improves the maximum admissible traffic scale by 23% in
average in our examined cases. We observe that FPH outperforms ESH and ESH outperforms FPH-ES
in terms of the service deployment cost in their own focused problems, respectively.

INDEX TERMS Network function virtualization, service deployment, flow partition, queueing theory.

I. INTRODUCTION

NETWORK functions (NFs), such as firewalls and load
balancers, are able to be implemented in a flexible

way to share the infrastructure resources with the help
of network function virtualization (NFV) technology. By
decoupling NFs from their dedicated physical network equip-
ments, a given service can be decomposed into a set of
virtual network functions (VNFs) which can be deployed
on commodity servers [2], [3]. Given a set of services that
consist of requested VNFs, a critical problem is how to
deploy these VNFs, including placing VNFs and allocat-
ing computing resources, with meeting the requirements of
services.

The service deployment problem, or the deployment
problem of VNFs that belong to the services, is widely
studied in recent works [4], [5], [6], [7], [8], [9], [10], [11],
[12]. Usually, given a set of virtual machines (VMs), a set
of requested VNFs, and a set of coming services, the service
deployment problem decides which VM to host which VNF
assigned to which service to optimize an objective, such as
to minimize the required computing capacity, with satisfying
several constraints, such as the service delay constraint.
In literature, such as the above works, for each VNF

type required by a service function chain (SFC), one VNF
instance (VNFI) is usually assigned to handle all flows of
the SFC. Considering the capacity constraint on each VNFI,
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the number of feasible combinations of SFCs that share the
same VNFI is limited. Therefore, this approach is not flexi-
ble and efficient in terms of resource utilization. Intuitively,
for each VNF type, if the flows of an SFC can be parti-
tioned into different sets, each of which uses one of the
multiple assigned VNFIs or replicas, SFCs can combine
more freely. In other words, the degree of VNF sharing
among SFCs can be improved; network resources can be pro-
visioned more flexibly. We introduce this flexible approach
as flow partition.
The technology to enable flow partition has been studied

from different aspects. On one hand, the computing capacity
of a virtual middlebox can be split with maintaining the same
functionality, based on the works to develop multiple VNFIs
or replicas. Clearly, a stateless virtual middlebox, such as a
packet compression, can be easily split into a set of replicas
to process flows independently [13]. For a stateful virtual
middlebox, such as an intrusion detection system, the work
in [14] introduced a system called FreeFlow to support elas-
tic and correct execution among replicas. FreeFlow identifies
and divides a virtual middlebox’s states into two classes:
internal and external. The internal state is only required by
a single replica; the external state is shared among replicas.
Through ensuring that each replica can access the states,
internal and/or external, required to produce the appropriate
outputs for the incoming traffic, the consistency for traffic
processing is achieved. In other words, multiple replicas of
one VNF can exist in a network to work in parallel; traf-
fic for this VNF can be distributed among replicas. On the
other hand, the software defined networking (SDN) technol-
ogy provides flexible control and data planes that enable us
to partition the flows of an SFC and to transmit each flow
to its VNFI through an appropriate path. Several works uti-
lized the SDN paradigm with multipath routing to achieve
a high performance transmission, such as to improve the
reliability with the diversity coding [15] or to perform load
balancing [16].
As the previous works focused on either the frameworks

to run multiple VNFIs or the traffic routing schemes with
multipath, there is no study addressing a model to deploy
SFCs with considering flow partition. Such a model needs
to answer how much the ratio of each partition of flows is,
which VNFI is assigned to each partition of flows, where
to place each VNFI, and how much capacity needs to be
allocated to a component. This is the focus of this work.
This paper proposes a service deployment model with

flow partition to minimize the service deployment cost with
meeting the delay requirement of services. We set the max-
imum allowed number of partitions for each VNF in each
service. We provide the mathematical formulation for the
proposed model and transform it to a special case as a
mixed integer second-order cone programming (MISOCP)
problem. In order to solve the problem in practical time, a
flow partition heuristic (FPH) is introduced to decompose
the problem into several steps; each step handles a con-
vex problem. We consider the formulated MISOCP problem

with adopting an even-splitting strategy to divide flows in
a special case as a heuristic of the original problem, which
is called an even-splitting heuristic (ESH), and compare it
to FPH in a realistic scenario. We then consider the for-
mulated MISOCP problem as the original problem and an
FPH-based heuristic algorithm with the even-slitting strat-
egy called FPH-ES is introduced. The performances of ESH
and FPH-ES are compared in both realistic and synthetic
scenarios. The numerical results show that compared to the
conventional model, the proposed model saves the service
deployment cost. It improves the maximum admissible traf-
fic scale by 23% in average in our examined cases. The
results also reveal that FPH outperforms ESH and ESH out-
performs FPH-ES in terms of the service deployment cost
in their own focused problems, respectively.
This paper is an extended version of [1] with various addi-

tions, which are mainly described as follows. We extensively
survey existing studies related to service deployment in NFV.
We refine the heuristic introduced in [1], and analyze its time
complexity; the refined heuristic is called FPH in this paper.
We introduce ESH and FPH-ES as heuristics in addition to
FPH. We conduct more experiments on different aspects to
further evaluate the proposed model by using these heuris-
tics with the dependency of service deployment cost and the
number of activated VMs on traffic scale. We also evaluate
the heuristics with computation time and the dependency of
maximum admissible number of divisions. We analyze the
obtained numerical results to show the advantage of flow
partition and how flexibility of flow partition influences the
performance of model.
The rest of the paper is organized as follows. Section II

introduces related works. Section III describes the motivation
and background of this work. The problem is then formulated
and the mathematical transformation for a special case is
introduced. Section IV presents the heuristic algorithm for
the formulated problem. Section V shows numerical results
to evaluate the proposed model. Section VI concludes this
paper.

II. RELATED WORK
The service deployment problem is considered from differ-
ent aspects, each of which has their own objectives and
constraints. Table 1 shows the summary of works related to
service deployment problems. The work in [4] developed a
model to minimize the energy consumption, which is defined
as the summation of allocated computing resources and the
consumption of activated links and nodes. It considers the
robustness level of resource demand uncertainty and latency
constraints on SFCs, as well as the tradeoff between these
points. The work in [5] introduced a double deep Q network
(DDQN) model to deploy VNFs with the help of deep rein-
forcement learning technology. Learning from information
about network devices, traffic and resources, an optimal pol-
icy considering deployment cost and the rejection of SFC
request (SFCR) is generated. The work in [6] considered
to minimize the overall delay including inter-cloud and link
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TABLE 1. Summary of works on service deployment problem.

queueing delay with satisfying the link capacity and delay
requirements. The work in [7] jointly considered VNF place-
ment, resource assignment, and traffic routing for vertical
services. The work in [8] developed a model to minimize
the maximum of link utilization as well as the allocated com-
puting resources. It assumes that multiple types of VNFs can
be deployed on one VM, but the flows of one VNF are not
allowed to be divided. It also defines multiple VM tem-
plates, where the required cost of computing resources and
latency performance for one VNF are different in each VM
template. Compared to the work in [8], our work allows the
flows to be divided into more than one part and deployed on
different VMs. Our model uses an M/M/1 queueing system
to estimate the processing delay of VMs depending on the
allocated computing capacity and arrival rate of traffic flows.
Several works considered VNF decomposition to improve

the flexibility of resource utilization [9], [17], [18]. The work
in [17] introduced the evolved packet core (EPC) user-plane
function that is decomposed into serving gateway (SGW)
and packet data network gateway (PGW) sub-functions by
classifying them in meta function groups. The common func-
tion groups within different sub-functions can reduce the
cost by eliminating dedicated hardware and unleashing the
function placement restrictions. Function decomposition is
also utilized to analyze the components of EPC network in
a fine-grained level to find what type of functions can be
merged to improve the network structure. The work in [18]
decomposed one VNF into multiple sub-functions for virtual
network slice (vNS) so that the resources of the same type
of sub-functions in different vNS requests can be shared.
Interconnections among different VNFs are considered; the

node resource consumptions are reduced and the total cost
of substrate network is minimized. The work in [9] intro-
duced a service provisioning model with considering VNF
decomposition, where two types of VNF decomposition were
introduced. The first type is to decompose one function
into several sub-functions, each of which realizes a part
of functionality of the original function. In other words, a
flow needs to visit all the sub-functions for one functional-
ity. In the second type of decomposition, each sub-function
provides the whole functionality with reduced computing
capacity. It indicates that a flow can visit one of the sub-
functions for one functionality, which is similar to the idea
of the split/merge system presented in [14] and flow partition
in this paper. The work in [9] formulated a mixed integer
linear programming (MILP) problem for VNF deployment
with considering diversified VNF decomposition and hybrid
multipath routing, which is based on the resource-constrained
assignment problem. The VNF sharing among different
services is not considered in [9]. In addition, the queue-
ing and processing delays are assumed as a per-hop delay,
which is given in [9]; our work estimates them, which depend
on the result of resource allocation, based on queueing
systems.
Similar to our work, several studies considered the service

deployment problems based on the queueing systems to be
aware of service delay more explicitly [6], [10], [11], [12].
The work in [10] incorporated the Poisson distribution of
packet arrival rate and packet size in an M/M/1 system to
deal with non-uniform distribution of traffic flows. It focused
on the limited processing capacity of the NFV servers and
end-to-end delay including queueing delay in each server and
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link delay. The work in [11] adopted different approaches
of traffic priority for VNF sharing. The model introduced
in [11] considered the process of running a VNF on a
VM as an M/M/1 system with priority queueing. The work
in [12] solved the VNF deployment problem based on first-
in-first-out queueing. The model presented in [12] took traffic
uncertainty into consideration, where the traffic arrival rate is
not always deterministic in practical applications. Our work
defines the processing time of VNF belonging to the service
as well as the total processing time of a service based on
an M/M/1 queueing system.
Our work is also related to traffic splitting, which has been

widely studied for load distribution over multipath networks.
Typically, the traffic splitting can be classified based on the
level of splitting granularity, which mainly includes packet-
level, flow-level, and subflow-level [19]. The work in [20]
developed a multipath routing algorithm to solve the problem
of minimizing the maximum link utilization. The algorithm
proposed in [20] is able to adapt to dynamic change of
service demands and improve the throughput of links. The
work in [21] implemented a multipath transmission frame-
work with introducing a traffic splitting approach, where a
flow is split into several flow units with various sizes in
the source node based on NFV. The idea of flow partition
is based on flow-level splitting to partition flows of a ser-
vice such that different flows can use different VNFIs and
paths, instead of splitting packets of a flow into sub-flows.
The work in [20], [21] focused on the transmission aspect,
i.e., the multipath routing, for traffic splitting; the process-
ing aspect, i.e., the VNF deployment for services, was not
considered. Different from [20], [21], this work focuses on
the VNF deployment and computing resource allocation with
flow partition.

III. MODEL AND PROBLEM FORMULATION
A. MOTIVATION
We present an example to show our motivation to consider
the flow partition. Consider three VMs, each of which has the
maximum processing rate of 2. There are three SFCs, each
of which only requires VNF 1 with the traffic arrival rate
of 1, where the maximum admissible delay is 2. The initial
cost to activate a VM and the proportional cost to allocate
each unit of computing capacity to a VM are considered as
2 and 1, respectively.
Figure 1(a) shows the VNF deployment with the mini-

mum total cost required for the conventional approach, which
does not consider the flow partition. To guarantee the system
stability that the service rate needs to be greater than the
traffic arrival rate at each VM, a dedicated VNFI of VNF 1
is deployed in a VM for each SFC. To satisfy the maximum
admissible delay for each SFC, the minimum capacity allo-
cated in each VM is 1.5 such that the delay is 1

1.5−1 = 2,
as shown in Fig. 1(a); the delay is expressed by 1

μ−λ
in an

M/M/1 system with the traffic arrival rate of λ and the service
rate, i.e., allocated capacity, of μ. We observe that it requires
the total initial cost of 2× 3 = 6 to activate the three VMs,

FIGURE 1. Example of VNF deployments with and without flow partition.

where each VM is allocated with the capacity of 1.5, which
leads to the total proportional cost of (1 × 1.5) × 3 = 4.5.
As a result, the total cost of 6+ 4.5 = 10.5 is required for
the conventional approach.
Figure 1(b) shows the VNF deployment with the minimum

required total cost when the flow partition is considered,
where two VNFIs are deployed. The flows of SFC 3 are
equally partitioned into two parts, each of which goes to each
VNFI. In other words, a flow of SFC 3 has the probability
of 1

2 to visit each of the two VNFIs. To satisfy the maximum
admissible delay for each SFC, the minimum capacity allo-
cated in each VM is 2 such that the delay for flows at each
VM is 1

2−(1+0.5)
= 2, as shown in Fig. 1(b). We observe

that the total initial cost and the total proportional cost are
2 × 2 = 4 and (1 × 2) × 2 = 4, respectively, which leads
to the total cost of 4 + 4 = 8. Compared to the conven-
tional approach, 10.5 − 8 = 2.5 is saved for the total cost
when the flow partition is considered; both initial cost and
proportional cost are reduced.
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B. QUEUEING SYSTEMS WITH FLOW PARTITION
1) QUEUEING SYSTEM

Consider a set of services and a set of VNFs, which are
denoted by S and V , respectively. For each s ∈ S, the set of
VNFs is a non-empty subset of V . Let gsv denote a given
binary parameter; it equals one if service s uses VNF v ∈ V ,
and zero otherwise. A set of VMs, which is denoted by M,
is used to run VNFs. In the model, considering reducing
the complexity of VM operation for network operators, it
is supposed that each VM m ∈ M can run at most one
VNF v ∈ V . Let xsvm be a binary variable, which equals
1 if VNF v belonging to service s runs on VM m and 0
otherwise. The running process on each VM m ∈ M is con-
sidered as an M/M/1 system using queueing theory. The
computing capacity of VM m is denoted by am ∈ [0,Cm],
where Cm denotes the maximum value of computing capac-
ity that VM m can be scaled up. Let lv be the required
computing capacity of VNF v to process a flow with unit
time; the service rate of VM m, μm, is expressed as am

lv
.

λsv denotes the arrival rate of traffic flows belonging to
service s for VNF v, and λsv = 0 means that service s
does not include VNF v. The maximum delay of service s
is denoted by Dmax

s ; processing time of VNF v belonging
to service s, which is denoted by tsv, can be expressed as
tsv = 1

am
lv
−λsv−∑

s′∈S\{s} λs′vxs
′
vm
, where VNF v is deployed on

VM m. Total processing time of service s, which is denoted
by Ts, is calculated by adding up all the processing time of
VNFs belonging to it: Ts =∑

v∈V tsvgsv.

2) FLOW PARTITION

Consider that flows of service s ∈ S for VNF v ∈ V can
be divided into at most dsv parts, where dsv denotes a given
positive integer. Let yisv, i ∈ [1, dsv], s ∈ S, v ∈ V , represent a
binary variable; it is set to one if there exists the ith part of
flows, and zero otherwise. Let kisv, i ∈ [1, dsv], s ∈ S, v ∈ V ,
represent the proportion of ith part of flows. We have:

dsv∑

i=1

kisvy
i
sv = gsv, ∀s ∈ S, v ∈ V, (1)

0 ≤ kisv ≤ 1, ∀i ∈ [1, dsv], s ∈ S, v ∈ V. (2)

Equation (1) indicates that the sum of proportions equals one
if service s uses VNF v. Equation (2) shows the range of
each proportion. For yisv, we give the following constraints:

y1
sv = gsv, ∀s ∈ S, v ∈ V, (3)

yisv ≤ yi−1
sv , ∀i ∈ [2, dsv], s ∈ S, v ∈ V. (4)

Equation (3) ensures that the first part of flows always exists
if service s includes VNF v. Equation (4) indicates that the
ith part of flows can exist only when the (i − 1)th part of
flows exists. Let zmsvi be a binary variable, which equals one
if the ith part of flows is deployed on VM m, and zero
otherwise. We have:

∑

m∈M
zmsvi = yisv, ∀i ∈ [1, dsv], s ∈ S, v ∈ V. (5)

Equation (5) expresses that each part of flows is deployed
on one VM if this part of flows exists. Let wmv denote
a binary variable; it is set to one if VM m ∈ M hosts a
VNFI for VNF v ∈ V , and zero otherwise. We consider that
one VM can deploy at most one VNF [11], [22], which is
expressed as:

∑

v∈V
wmv ≤ 1, ∀m ∈ M. (6)

Note that the idea of flow partition can be extended to the
case that one VM can deploy more than one VNF. All parts
of flows are deployed on different VMs that host the VNFI
for VNF v. It is expressed as:

dsv∑

i=1

zmsvi ≤ wmv, ∀s ∈ S, v ∈ V,m ∈ M. (7)

The system stability constraint is given as:

∑

s∈S

∑

v∈V

dsv∑

i=1

kisvλsvz
m
svilv < am, ∀m ∈ M. (8)

Equation (8) indicates that the total arrival rate of flows
on VM m does not reach its allocated service rate. Time
required on VNF v including the processing time and the
waiting time for service s is expressed as:

tsv =
dsv∑

i=1

kisv

∑

m∈M
zmsvi

lv

am −∑
s′∈S

∑
v′∈V

∑ds′v′
i′=1 k

i′
s′v′λs′v′z

m
s′v′i′ lv′

,

∀s ∈ S, v ∈ V. (9)

3) PROBLEM FORMULATION

VNFs belonging to services need to be deployed such that
all services are finished in the maximum admissible average
delay. We form an optimization problem to illustrate the
service deployment model considering flow partition. The
optimization problem rigorously defines the objective and
constraints. The optimization problem can be a reference to
inspire heuristic algorithms and mathematical transformation
so that the problem can be solved in practical time. We
focus on the capital expenditure of the network operator
when implementing flow partition, i.e., the utilization of
computing capacity resources, in this work.
Table 2 summarizes the notations frequently used in this

paper. Let Kf
m be the initial cost to activate VM m ∈ M

and Ku
m be the cost of computing capacity for each unit in

VM m.
We formulate the flow partition problem to minimize the

total required deployment cost as the following optimization
problem:
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TABLE 2. List of notations frequently used in this paper.

min
∑

m∈M

(

Kf
m

∑

v∈V
wmv + Ku

mam

)

(10a)

s.t. (1)− (9) (10b)

am ≤ Cm
∑

v∈V
wmv,∀m ∈ M (10c)

∑

v∈V
tsv ≤ Dmax

s ,∀s ∈ S (10d)

yisv ∈ {0, 1},∀i ∈ [1, dsv], s ∈ S, v ∈ V (10e)

zmsvi ∈ {0, 1},∀i ∈ [1, dsv], s ∈ S, v ∈ V,m ∈ M
(10f)

wmv ∈ {0, 1},∀v ∈ V,m ∈ M. (10g)

Equation (10a) minimizes the total cost required to deploy
the VNFs. Equation (10c) shows that the allocated capac-
ity of VM m cannot exceed its maximum capacity if it
is activated; if there is no VNF deployed on it, the allo-
cated capacity is zero. Equation (10d) means that the average
processing delay of each service is within its maximum

admissible average delay. Equation (10e)-(10g) indicate the
ranges of decision variables yisv, z

m
svi, and wmv, respectively.

4) MATHEMATICAL TRANSFORMATION FOR
SPECIAL CASE

Since (10d) combined with (8) and (9) contains several
real variables, especially kisv, with the fraction form, it is
difficult to transform (10a)-(10g) to a formulation that can
be handled by optimization solvers [23], [24]. We describe
a special case that this issue is addressed. We assume that
the value of kisv is prepared by the network operator in
advance given the number of partitions, or

∑dsv
i=1 y

i
sv. Let

Kij
sv, i, j ∈ [1, dsv], s ∈ S, v ∈ V , denote a given parameter

indicating the proportion of ith part of flows when the flows
are divided into j parts. Let bjsv denote a binary variable; it
is set to one if the flows are divided into j parts and zero
otherwise. We replace kisv with

∑dsv
j=1 Kij

svb
j
sv. We have:

dsv∑

j=1

bjsv = gsv,∀s ∈ S, v ∈ V (11a)

dsv∑

j=1

bjsvj =
dsv∑

i=1

yisv,∀s ∈ S, v ∈ V. (11b)

Equation (11a) indicates that the flows of VNF v belonging
to service s can only be divided by one certain j if the flows
of VNF v belonging to service s exist. Equation (11b) shows
that the number of divided parts of flows is in accordance
with the number of exisitng parts of flows. Then, (1), (8),
and (9) are transformed to:

dsv∑

i=1

dsv∑

j=1

Kij
svb

j
svy

i
sv = gsv,∀s ∈ S, v ∈ V (12a)

∑

s∈S

∑

v∈V

dsv∑

i=1

dsv∑

j=1

Kij
svb

j
svλsvz

m
svilv < am,∀m ∈ M (12b)

tsv =
dsv∑

i=1

dsv∑

j=1

Kij
svb

j
sv

∑

m∈M
zmsvi

lv

am −∑
s′∈S

∑
v′∈V

∑ds′v′
i′=1

∑ds′v′
j′=1 K

i′j′
s′v′b

j′
s′v′λs′v′z

m
s′v′i′ lv′

,

∀s ∈ S, v ∈ V. (12c)

Equation (12a) is further transformed to:

αijsv = bjsvy
i
sv,∀i, j ∈ [1, dsv], s ∈ S, v ∈ V (13a)

gsv =
dsv∑

i=1

dsv∑

j=1

Kij
svα

ij
sv,∀s ∈ S, v ∈ V, (13b)

where α
ij
sv is a binary variable introduced for linearization.

Equation (13a) is then linearized by:

αijsv ≤ bjsv,∀i, j ∈ [1, dsv], s ∈ S, v ∈ V (14a)

αijsv ≤ yisv,∀i, j ∈ [1, dsv], s ∈ S, v ∈ V (14b)

αijsv ≥ bjsv + yisv − 1,∀i, j ∈ [1, dsv], s ∈ S, v ∈ V. (14c)
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Similarly, (12b) is linearized by:

β ijsvm = bjsvz
m
svi,∀i, j ∈ [1, dsv], s ∈ S, v ∈ V,m ∈ M (15a)

∑

s∈S

∑

v∈V

dsv∑

i=1

dsv∑

j=1

Kij
svλsvlvβ

ij
svm < am,∀m ∈ M (15b)

β ijsvm ≤ bjsv,∀i ∈ [1, dsv], j ∈ [1, dsv], s ∈ S, v ∈ V,m ∈ M
(15c)

β ijsvm ≤ zmsvi,∀i ∈ [1, dsv], j ∈ [1, dsv], s ∈ S, v ∈ V,m ∈ M
(15d)

β ijsvm ≥ bjsv + zmsvi − 1,∀i, j ∈ [1, dsv], s ∈ S, v ∈ V,m ∈ M,

(15e)

where β
ij
svm is a binary variable introduced for linearization.

We then consider how to deal with (12b) and (12c):

δm =
∑

s∈S

∑

v∈V

dsv∑

i=1

dsv∑

j=1

Kij
svλsvlvβ

ij
svm,∀m ∈ M (16a)

δm < am,∀m ∈ M (16b)

tsv ≥
∑

m∈M

dsv∑

i=1

dsv∑

j=1

Kij
svβ

ij
svm

lv
am − δm

,∀s ∈ S, v ∈ V.

(16c)

Equation (16a) defines δm, which denotes the required
capacity to process traffic flows deployed on VM m.
Equation (16b), which is a replacement of (12b), ensures
the system stability. Equation (16c) is obtained from (12c)
indicating the sojourn time of service s on VNF v.
We introduce two types of variables, eijsvm and νm, for

transformation. Then, (16c) is transformed to:

eijsvm = Kij
svβ

ij
svm

lv
am − δm

, ∀i, j ∈ [1, dsv], s ∈ S, v ∈ V,m ∈ M
(17a)

tsv ≥
∑

m∈M

dsv∑

i=1

dsv∑

j=1

eijsvm, ∀s ∈ S, v ∈ V (17b)

νm = am − δm, ∀m ∈ M (17c)

eijsvmνm ≥ Kij
svβ

ij
svmlv,∀i, j ∈ [1, dsv], s ∈ S, v ∈ V,m ∈ M.

(17d)

With introducing a real variable of pijsvm, we then consider
how to transform (17d):

pijsvm = eijsvm + νm,∀i, j ∈ [1, dsv], s ∈ S, v ∈ V,m ∈ M
(18a)

(
pijsvm

)2 ≥
(
eijsvm

)2 + (νm)2 + 2

(√

Kij
svlvβ

ij
svm

)2

,

∀i, j ∈ [1, dsv], s ∈ S, v ∈ V,m ∈ M (18b)

pijsvm ≥ 0,∀i, j ∈ [1, dsv], s ∈ S, v ∈ V,m ∈ M. (18c)

By replacing (1), (8), and (9) in (10a)-(10g) with (11a),
(11b), (13b), (14a)-(14c), (15c)-(15e), (16a), (16b), (17b),
(17c), and (18a)-(18c), we transform the problem to an
MISOCP problem in the special case, which can be handled
by optimization solvers [23], [24].

FIGURE 2. Flowchart of FPH-d ′.

Algorithm 1 Flow Partition Heuristic (FPH)
Input: d
Output: Td
1: Initialize d′ = 1, T ′d = +∞
2: while d′ ≤ d do
3: Obtain Td′ by Algorithm 2 (FPH-d′)
4: T ′d = min(T ′d,Td′)
5: d′ ← d′ + 1
6: end while
7: Set Td = T ′d
8: return Td

IV. HEURISTIC ALGORITHM
We introduce a flow partition heuristic algorithm called FPH
(see Algorithm 1) to solve the problem in practical time. We
assume that dsv = d,∀s ∈ S, v ∈ V , in the algorithm. Given
d, FPH iteratively runs FPH-d′ (see Algorithm 2) for each
positive integer d′ ≤ d, and returns the smallest obtained
Td′ as the minimum deployment cost Td. Figure 2 outlines
the running process of FPH-d′ for a certain d′. After the
algorithm finishes running, d′ is updated as d′ +1 and FPH-
d′ starts running with new d′ from the initial case until
d′ reaches d. Figure 3 shows an example to demonstrate
different steps of FPH-d′. Consider that there is a set of
services requesting VNFs v1 and v2. Since the same VNF is
shared among different services, we categorize the services
requesting the same VNF into one set. Let Sv = {s|gsv =
1,∀s ∈ S} denote the set of services which requires VNF
v ∈ V . Let ξv denote the set of subsets of Sv, where the
intersection of any two elements in ξv is empty; the union
of all elements in ξv is Sv. Let ξ = ⋃

v∈V ξv denote the set
of elements in ξv, v ∈ V . In the initial case, we consider
that ξv = {Sv},∀v ∈ V , where ξv1 = {Sv1} = {{s1, s2, s3}}
and ξv2 = {Sv2} = {{s2, s3, s4}}, as shown in Fig. 3(a), and
ξ = {{s1, s2, s3}, {s2, s3, s4}}.

A. STEPS 1 AND 2: CREATE BIPARTITE GRAPH AND
OBTAIN MINIMUM WEIGHT MATCHING
At Step 1, FPH-d′ creates a bipartite graph considering a set
of services and VMs, where a node on one side refers to an
element in ξ , and a node on the other side refers to a VM.
There exists an edge if the maximum computing capacity
provided by a VM is larger than the total traffic rate of an
element in ξ , and the cost to deploy the requested VNF on

2184 VOLUME 3, 2022



FIGURE 3. Algorithm steps, where dashed lines in black and red represent possible and removed matchings, respectively; solid lines represent obtained matchings.

Algorithm 2 FPH With Specific Maximum Number of
Divisions d′ (FPH-d′)
Input: d′
Output: Td′

1: Initialize step = 1
2: while true do
3: if step = 1 then
4: Step 1: create bipartite graph
5: step = 2
6: else if step = 2 then
7: Step 2: obtain minimum weight matching
8: if a feasible matching is obtained then
9: step = 4
10: else
11: step = 3
12: end if
13: else if step = 3 then
14: Step 3: flow partition (see Algorithm 3)
15: if the algorithm meets the failure conditions then
16: break
17: else
18: step = 1
19: end if
20: else if step = 4 then
21: Step 4: allocate capacity
22: if a feasible solution is obtained then
23: return Td′
24: else
25: step = 5
26: end if
27: else
28: Step 5: remove an edge
29: step = 2
30: end if
31: end while

that VM, including Kf
m and Ku

m, denotes the weight on the
edge.
At Step 2, FPH-d′ finds a VM for each set of VNFs

to deploy by obtaining the minimum weight matching
based on the bipartite graph formed in Step 1. Hungarian
algorithm [25] is used to solve the matching problem in
polynomial time and obtains the matching whose total cost
is minimized.

Algorithm 3 Step 3 in FPH-d′

Let ξold and ξnew denote set ξ before and after Step 3,
respectively.
Input: ξold

Output: ξnew

1: Step 3.1: Calculate the approximate required capacity of
each set ζ ∈ ξold, and decide ζ 	 to be divided.

2: Step 3.2: Calculate the approximate required capacity of
each service s ∈ ζ 	, and decide s	 to be divided.

3: Step 3.3: Calculate 
.
4: if ζ 	 has been selected in previous loops then
5: move 
 from s	 to the created set.
6: else
7: move 
 from s	 to an empty set.
8: end if
9: ξold is updated as ξnew.

10: if any of the failure condition is met then
11: FPH-d′ fails.
12: else
13: Go to Step 1.
14: end if

B. STEP 3: FLOW PARTITION
If Step 2 fails, it indicates that the total arrival rates of ele-
ments in ξ are so large that the whole element of services
cannot be deployed on VMs. We consider using flow parti-
tion at Step 3 (see Algorithm 3) to divide one subset of ξv in
ξ and deploy the divided part on another VM. Step 3 con-
sists of three sub-steps: decide which set to divide (Step 3.1);
decide which service to divide (Step 3.2); and decide how to
divide the selected service for the selected VNF (Step 3.3).

1) STEP 3.1: DECIDE WHICH SET TO DIVIDE

We first decide which set to divide. In order to meet the
stability constraints of VMs, we approximately calculate the
required capacity of each set ζ ∈ ξ and divide the one
which requires the most. FPH evenly distributes the maxi-
mum admissible delay of service s on each involved VNF;
the admissible delay of each VNF belonging to service s
is expressed as: Dmax

s∑
v∈V gsv

. Let kζs denote the proportion of
VNF belonging to service s in set ζ . In the initial case, we
set kζs = 1,∀s ∈ ζ, ζ ∈ ξ . Therefore, the maximum admis-
sible delay of element ζ is expressed as: mins∈ζ Dmax

s∑
v∈V gsv

,
and the approximate required capacity is expressed as:
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lv(
1

mins∈ζ Dmax
s∑

v∈V gsv

+∑
s∈ζ k

ζ
s λsv). Let Uζ , which is a given

parameter, denote the number of times that element ζ ∈ ξ

can be selected. The element that can be selected, or Uζ > 0,
and is the largest approximate required capacity is selected,
which is denoted as ζ 	. Let v	 denote the type of VNF in
set ζ 	. We divide ζ 	 into two sets by placing the divided
part from the original set into another set.

2) STEP 3.2: DECIDE WHICH SERVICE TO DIVIDE

Then we decide the VNF of which service in ζ 	 is divided.
Similarly, we estimate the required capacity of the VNF of
service s in ζ 	, which is expressed as: lv	 ( 1

Dmax
s∑

v∈V gsv

+kζ 	

s λsv	 ).

The service with the largest approximated value, which is
denoted as s	, is selected and divided in order to meet the
stability constraint of VMs, if the number of partitions for
this service is not larger than its maximum admissible one,
or ds	v	 ; we select the largest one that is feasible following
a decreasing order of the approximated values, otherwise. If
it is the first time that ζ 	 is selected and all the services in
it reach their own maximum admissible number of division,
FPH-d′ puts the whole flows of service s	 for VNF v	 into
a new set and activate a new VM to deploy it. This ensures
that FPH-d′ can handle all possible dsv	 ,∀s ∈ ζ 	.

3) STEP 3.3: DECIDE HOW TO DEVIDE SELECTED
SERVICE FOR SELECTED VNF

Then we consider how to divide the VNF v	 belonging to
service s	. Let 
 denote the amount of flows that the algo-
rithm moves from s	 to another set. We intend to set the
value of 
 small enough to make sure that the VNF belong-
ing to service s	 can be divided successfully in each loop; the
precision of division is taken into consideration to ensure that
the remaining capacity of VMs is used sufficiently. On the
other hand, the number of required loops can increase as the

the value of 
 decreases. Here, we set 
 = mins∈ζ 	
kζ

	

s λsv	

dsv	
.

After each time of division at Step 3, the value of kζ
	

s	 is
updated, Uζ 	 is decreased by one, and FPH-d′ goes back to
Step 1. Considering improving the usage efficiency of VMs,
we define that in the new loop, if the selected set ζ 	 in ξ

is the same as the one in previous loops, FPH-d′ does not
create another empty set for it but use the set created for
the divided part in previous loops. As shown in Fig. 3(c),
after failing at Step 2, FPH-d′ enters Step 3. Let 
n denote
the value of 
 in the nth loop.

4) EXAMPLE

We use an example to show the process of flow partition
at Step 3, as depicted in Fig. 3(c). In the first loop, the
element ξv1 = {s1, s2, s3} is selected, and then VNF v1
belonging to service s3 is selected and 
1 = 1

3λs3v1 , where
we assume ds3v1 = 3. Therefore, the divided part is moved
from ζv1 to an empty set, and ζv1 is updated as {ζv1, ζ

′
v1
} =

{{s1, s2, 2
3 s3}, { 13 s3}}, where k

ζv1
s3 = λs3v1−
1

λs3v1
= 2

3 , and

k
ζv′1
s3 = 
1

λs3v1
= 1

3 . Then FPH-d′ starts from Step 1. Suppose

that FPH-d′ still does not obtain a feasible matching, which
indicates that it enters Step 3 for the second time. In the sec-
ond loop, the element ζv1 = {s1, s2, 2

3 s3} is selected, and then
VNF v1 belonging to service s3 is selected and 
2 = 2

9λs3v1 .
Therefore, the divided part is moved from ζv1 to ζ ′v1

, and
ζv1 is updated as: {ζv1, ζ

′
v1
} = {{s1, s2, 4

9 s3}, { 59 s3}}, where
k
ζv1
s3 =

2
3 λs3v1−
2

λs3v1
= 4

9 , and k
ζ ′v1
s3 =

1
3 λs3v1+
2

λs3v1
= 5

9 .

5) FAILURE CONDITION

There are some conditions that FPH-d′ is not able to obtain
feasible solutions: if Uζ = 0,∀ζ ∈ ξ , and there is still no
feasible matching obtained at Step 2; if the number of VMs
is not enough to deploy all the parts of flows; if the traffic
scale is so large that the capacity of a whole VM is not
enough to deploy one part of flows while the number of
parts reaches d′, FPH-d′ fails.

C. STEPS 4 AND 5: ALLOCATE CAPACITY AND REMOVE
AN EDGE
If Step 2 obtains the minimum weight matching for all
the elements in ξ , FPH determines the allocated capacity
for each VM in Step 4 by solving (10a)-(10g). Since the
matching and the partition are given in Step 2, the problem
of (10a)-(10g) becomes a second-order cone programming
(SOCP) problem, which is convex and is able to be handled
by optimization solvers [23], [24].
If Step 4 fails, it indicates that the allocated capacity

for VMs is not enough to satisfy the delay requirements of
services, or the stability constraints of some VMs in (10c) are
not satisfied due to the deployment of services on matched
VMs. At Step 5, we select the VM whose remaining capacity
is minimum before the deployment of services on matched
VMs. Then, we remove the corresponding edge between the
selected VM and the element in ξ which is deployed on it;
FPH-d′ restarts at Step 2 with a modified bipartite graph. As
shown in Fig. 3(d), suppose that FPH-d′ obtains the min-
imum weight matching of the bipartite graph in Fig. 3(a),
but it cannot obtain a feasible solution at Step 4. The edge
between VM m1 and element {s1, s2, s3} is removed, and
then FPH goes back to Step 2.

D. COMPUTATIONAL TIME COMPLEXITY OF FPH
We show that FPH is with a polynomial computational
time complexity. It is obvious that FPH runs FPH-d′ for
d times. In FPH-d′, the element in ξ can be divided for
O(

∑
s∈S

∑
v∈V dsv) times, which indicates that FPH runs

Steps 1, 2, and 3 for O(
∑

s∈S
∑

v∈V dsv) times. At each time,
since there are O(|M|∑s∈S

∑
v∈V dsv) edges in the bipartite

graph, FPH runs Steps 4 and 5 for O(|M|∑s∈S
∑

v∈V dsv)
times. Then, we analyze the time complexity of each step.
Step 1 makes the sets in O(|S||V|) and compares the capac-
ity between each set and VMs in O(|M|∑s∈S

∑
v∈V dsv) to

create the bipartite graph, which means that Step 1 needs the
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time complexity of O(|S||V| + |M|∑s∈S
∑

v∈V dsv). Step 2
obtains the minimum weight matching by Hungarian algo-
rithm in O(|M|3). Step 3 determines the VNF to divide in
O(

∑
s∈S

∑
v∈V dsv), the service to divide in O(|S|), and the

amount of flows to divide in O(|S|). As a result, Step 3
runs in O(

∑
s∈S

∑
v∈V dsv + 2|S|). Step 4 allocates capac-

ity to VMs by solving the convex problem (10a)-(10g) that
includes O(|S| + |V||M|) constraints, and it can be solved
in polynomial time. Step 5 finds the VM with minimum
remaining capacity, which requires O(

∑
s∈S

∑
v∈V dsv) times.

Therefore, the computational time complexity of FPH is
polynomial.

V. NUMERICAL RESULTS
We conduct several experiments to evaluate and compare
the performances of conventional model, which does not
consider any flow partition, and proposed model as well
as its heuristics. The SOCP problems in the conventional
model, the proposed model, and its modified version, and
the MISOCP problem of the realistic and synthetic scenario
in Section III-B4 are solved by IBM ILOG CPLEX with
version 20.1 [23], running on AMD EPYC Rome 7502P,
32-core CPU, 128 GB memory.

A. EXPERIMENT SETTINGS
We consider a realistic scenario as introduced in [11]. In the
realistic scenario, we use five services that are included in
the smart-city domains [26], [27], [28]: intersection collision
avoidance (ICA) that vehicles broadcast related information
to avoid the collision, vehicular see-through (CT) that vehi-
cles display the captured video on their on-board screens,
urban sensing based on the Internet-of-Things (IoT), smart
robots that are controlled through the network in a factory,
and entertainment provided by streaming contents. 17 VNFs
are requested in total and some of them are shared among
services; the delay constraint of each service is set to 1[s].
The coefficient of each VNF, or lv, v ∈ V , is set to 1. Table 3
shows the VNFs and their arrival rates in each service con-
sidered in the realistic scenario. We consider 45 VMs; the
initial cost, the proportional cost, and the maximum capac-
ity of each VM are set to 450, 1, and 450, respectively.
We set a traffic multiplier n to regulate the scale of traf-
fic rates. We set maximum admissible number of divisions
dsv = d = 4,∀s ∈ S, v ∈ V , for all the experiments to investi-
gate the dependency of deployment cost on traffic multiplier,
n, which is sufficiently large so that it does not restrict the
division of flows.
We also design a synthetic scenario based on the real-

istic scenario, in which the scale is relatively small, to
obtain the optimal solution (with the relative optimality
gap of 0.001 [23]) of the MISOCP problem formulated in
Section III-B4. We consider three services and three VNFs
in total in the synthetic scenario. The arrival rate of flows
of each VNF belonging to each service is listed in Table 5,
where 0 means that there is no such VNF included in the

TABLE 3. VNFs and arrival rates in realistic scenario.

TABLE 4. Computation time [s] for results shown in Fig. 4.

service. We consider 15 VMs; the initial cost, the propor-
tional cost, and the maximum capacity of each VM are set
to 450, 1, and 300, respectively. Other settings are the same
as in the realistic scenario.
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TABLE 5. Service settings of arrival rate [flows/s] in synthetic scenario.

FIGURE 4. Comparison of service deployment cost and number of activated VMs
between proposed and conventional models of different values of n in realistic
scenario.

B. COMPARISON BETWEEN PROPOSED AND
CONVENTIONAL MODELS
We compare the proposed model with the conventional
model that does not consider flow partition. The two models
are handled by the introduced heuristic, FPH, and its modi-
fied version, respectively. In the modified version, we do not
divide the flows of VNFI that belongs to the selected service
at Step 3, but move the whole VNFI from the selected set to
another set, or kζs = 1,∀ζ ∈ ξ, s ∈ S. Figure 4 presents the
service deployment cost and the number of activated VMs

in the proposed and conventional models of different values
of multiplier n in the realistic scenario. Figure 4(a) reveals
that the service deployment cost increases as the value of n
increases in both models. This is because more capacity of
VMs is allocated and more VMs are activated as the traf-
fic rates of flows are getting larger. When n is 1.4 and 2.2,
the proposed model saves 9.4% and 7.3% of the deployment
cost compared to the conventional model. In other cases, the
deployment cost is comparable in two models. Figure 4(b)
shows the same tendency as Fig. 4(a), where the proposed
model needs to activate 13% and 11% less VMs than that of
the conventional model when n is 1.4 and 2.2, and the num-
ber of activated VMs is the same, otherwise. This is because
when the required capacity to deploy the set of VNFIs of
the same VNF belonging to different services exceeds the
maximum capacity of the VM, the proposed model moves
parts of flows of the VNFI belonging to the selected ser-
vice to another VM instead of moving the whole VNFI to
another VM in the conventional model, which makes use of
remaining capacity of the original VM to a larger extent. As
a result, when the number of current activated VMs is the
same in both models, the remaining capacity of each acti-
vated VM that deploys the same VNF can be accumulated
to one VM in the proposed model. If the remaining capacity
of that VM is enough to deploy the whole set of VNFIs of
newly considered services, which needs to activate another
VM to deploy in the conventional model, the deployment
cost of activating new VMs is saved. Consequently, it saves
the initial cost by activating fewer new VMs compared to
the conventional model, which also explains the reason why
the service deployment cost is less in the proposed model
when n is 1.4 and 2.2, as shown in Fig. 4(a). It also saves the
proportional cost by activating less VMs to deploy services.
The proposed model saves 20 and 10 units of proportional
cost compared to the conventional model when n is 1.4
and 2.2, respectively. It is noticed that when n is 2.6, 2.8
and 3.0, the conventional model does not obtain a feasible
solution in these cases. This is because when the value of
traffic multiplier n is larger than 2.6, the arrival rate of VNF
exceeds the maximum capacity of one VM. On the other
hand, the proposed model with flow partition is able to han-
dle such large-scale traffic arrival rates and obtains feasible
solutions by more flexiblely adjusting the assigned traffic
for each VM.
Figure 5 observes the dependency of service deployment

cost on the maximum admissible number of divisions with
different traffic scales in the proposed model. We assume
that dsv = d,∀s ∈ S, v ∈ V . In the proposed model, when
d = 1, it is the same as the conventional model; as d is
set larger, flows start to divide. Missing points in the figure
indicate that there is no feasible solution obtained in those
cases since the arrival rate is so large that flows for certain
VNFs need to be divided into more parts to get deployed on
more VMs. For all tested cases of different traffic multiplier,
n, it is noticed that the deployment cost decreases or keeps
the same as d becomes large. The larger admissible number
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FIGURE 5. Dependency of service deployment cost on maximum admissible
number of divisions, d , in proposed model.

FIGURE 6. Comparison of maximum admissible traffic scale between proposed and
conventional models of different values of maximum VM capacity, Cm .

of divisions improves the flexibility of division of flows and
VM assignment of each part of flows to some extent. We
also notice that the trend of deployment cost keeps flat when
n = 2.6 and 3.2, and becomes flat after obvious decrease in
other cases, which indicates that the flexibility of partition
tends to be saturated after a certain d′.

Table 4 presents the computation time to obtain the results
in Fig. 4, where the value in the proposed model is the
summation of all cases that d′ ≤ d; and the hyphen symbol
means that there is no feasible solution obtained in those
cases. As we discussed in Section IV-D, the computational
time complexity of FPH, the introduced heuristic for the
proposed model, is polynomial. Table 4 observes that the
computation of proposed model is performed in a practical
time. It shows a tendency that the computation time increases
as the value of n increases in both models. This is because
VNFIs of the same VNF are deployed on more VMs as the
scale of flows gets larger. We notice that the computation
time of the proposed model when n = 2.0 and 2.4 is much

larger than the value around it. This is because in these
cases, the FPH algorithm enters the loop at Step 5 for more
times for a certain d′. We also observe that the proposed
model takes 21.34 times more computation time in average
than the conventional model. This is because compared to
the fact that the whole VNFI is moved in one time in the
conventional model, the process of moving parts of flows
from the same VNFI may repeat several times to finish one
time of flow partition, which consumes more time.
Figure 6 presents the maximum admissible traffic scales

for different values of maximum VM capacity. The max-
imum admissible traffic scale is the maximum value of
n that an allocation model can obtain a feasible solution
given the VM capacity. We observe that it increases in both
proposed and conventional models. This is because there is
more available capacity for a larger arrival rate of traffic
flows when the VM capacity gets larger. We also observe
that the proposed model improves the maximum admissible
traffic scale by 23% in average compared to the conven-
tional model. It indicates that the proposed model is able to
handle larger arrival rates of flows compared to the conven-
tional one when the maximum capacity of VMs is the same,
which further illustrates the advantage of flexibility of flow
partition.

C. COMPARISON BETWEEN EVEN-SPLITTING
HEURISTIC AND FPH
We consider the MISOCP approach for the special case
introduced in Section III-B4 as a heuristic for the origi-
nal problem, where the network operator adopts a strategy
of even splitting to divide the flows, or Kij

sv = 1
j ,∀i, j ∈

[1, dsv] : i ≤ j, and 0, ∀i, j ∈ [1, dsv] : i > j, s ∈ S, v ∈ V; we
call this approach an even-splitting heuristic, called ESH.
The maximum admissible computation time of ESH is set
to 3600 [s] for the realistic scenario. The maximum number
that VNF v belonging to service s is allowed to be divided is
set to 4, or dsv = 4,∀s ∈ S, v ∈ V . The maximum admissible
delay of each service is set to 1 [s].
Figure 7 shows the service deployment cost and number

of activated VMs obtained by FPH and ESH with different
multiplier n in the realistic scenario. It is shown in Figs. 7(a)
and 7(b) that FPH outperforms ESH in all tested cases in
terms of the service deployment cost and the number of acti-
vated VMs. This is because in ESH, the proportion of each
flow can only be selected from the assignments of equally
divided proportions which are decided in advance, while the
FPH algorithm that can flexibly regulate each proportion of
divided flows does not have such restrictions. Another reason
is that the results of ESH in Fig. 7(a) are feasible solutions
of the MISOCP problem obtained in limited computation
time, which indicates that the value of optimal solution can
be smaller. The numerical results reveal that FPH reduces
the service deployment cost by 1.6% in average, and the
number of activated VMs by 2.6% in average in the realistic
scenario, compared to ESH.
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FIGURE 7. Comparison of service deployment cost and number of activated VMs
between FPH and ESH of different values of n in realistic scenario.

We also analyze the two heuristic algorithms, FPH and
ESH, from the aspect of computation time in the realistic
scenario. From Table 4, we know that the largest com-
putation time of FPH (the proposed model with FPH) is
43.31 [s] when n = 2.0. On the other hand, the computation
of ESH is not completed within the maximum admissible
computation time of 3600 [s]. This is explained by the fact
that the integer and binary variables are determined in the
steps of FPH, which leads to an SOCP problem for capac-
ity allocation; it reduces the computation time of CPLEX.
In ESH, all the variables are determined in the MISOCP
problem by CPLEX, which causes longer computation time
even when the traffic scale is small.
Figure 8 observes the dependency of service deployment

cost on the maximum admissible number of divisions with
different traffic scales in ESH. We only examine the cases
with 2 ≤ d ≤ 4. This is because d = 4 is sufficient

FIGURE 8. Dependency of service deployment cost on maximum admissible
number of divisions, d , in ESH.

for n ranging from 1.8 to 3.0; more VMs are required if
flows are divided into more parts in ESH, which indicates
that the performance is not expected to be improved for
d > 4. Figure 8(a) obtains the feasible solution in the real-
istic scenario within the maximum admissible computation
time, which is set to 3600 [s]. We notice that as d grows
larger, the performance becomes worse in some cases such
as n = 2.6, 2.8, and 3.0. This is because the output results
are still in the process of converging to the optimal solution
of the MISOCP problem before CPLEX is forced to quit due
to the limitation of computation time. If the time limitation
is set to a larger value, the problem in which a solution
with smaller deployment cost is obtained in a larger value
of d can be solved. Figure 8(b) obtains optimal solutions of
the MISOCP problem in the synthetic scenario. We observe
that the deployment cost decreases as d changes from 2 to 3
when n = 2.6, 2.8, and 3.0 due to larger flexibility of flow
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FIGURE 9. Comparison of service deployment cost and number of activated VMs
between ESH and FPH-ES of different values of n in realistic scenario.

partition, and keeps the same in other tested cases. This
indicates that the optimal solution of ESH does not perform
worse when d becomes large due to the fact that the solu-
tion space of the case with larger d includes the one with
smaller d.

D. COMPARISON BETWEEN MISOCP AND INTRODUCED
HEURISTIC FOR SPECIAL CASE
We consider the MISOCP problem formulated in
Section III-B4 as the focused problem where a strategy of
even splitting is adopted to divide the flows. We introduce
an algorithm, a modified version of FPH, with adopting
the even-splitting strategy for a special case to solve the
problem in a shorter time; it is called FPH-ES. Similar to
FPH, FPH-ES iteratively runs FPH-ES-d′ for each positive
integer d′ ≤ d and returns the smallest obtained result. FPH-
ES-d′ is roughly the same as FPH-d′ except for the fact
that Step 3 of FPH-ES-d′ is modified (see Algorithm 4).

Algorithm 4 Step 3 in FPH-ES-d′

Let ξold and ξnew denote set ξ before and after Step 3,
respectively.
Set qsv = 1,∀s ∈ S, v ∈ V .
Input: ξold

Output: ξnew

1: Calculate the approximate required capacity of each set
ζ ∈ ξold, and decide ζ 	 to be divided.

2: Calculate the approximate required capacity of each
service s ∈ ζ 	, and decide s	 to be divided.

3: qs	v	 ← qs	v	 + 1.
4: for all s	 ∈ ζ ∗, ζ ∗ ∈ ξ do
5: kζ

∗
s	 ← 1

qs	v	
6: end for
7: if there exists created set for VNF v	 that does not

include s	 then
8: put the one new proportion of s	 to the created set.
9: else

10: put the one new proportion of s	 to an empty set.
11: end if
12: ξold is updated as ξnew.
13: if any of the failure condition is met then
14: FPH-ES-d′ fails.
15: else
16: Go to Step 1.
17: end if

At Step 3 of FPH-ES-d′, the number of parts which the
VNF belonging to each service is divided is set to 1, or
qsv = 1,∀s ∈ S, v ∈ V , in the initial case. After the service
to be divided is selected, the flows belonging to service s	

for VNF v	 are evenly divided into qs	v	+1 parts, where the
one new part of flows is deployed on another VM and the
proportions of all the old parts are updated. Step 3 repeats
until the algorithm moves to Step 4, or meets the failure con-
dition of the algorithm that the capacity of a whole VM is
not enough to deploy one part of flows while all the services
in the selected set reach the maximum admissible number of
divisions. We consider both realistic and synthetic scenarios
in Section V-D.

Figure 9 shows the service deployment cost and number
of activated VMs obtained by ESH and FPH-ES of differ-
ent traffic multiplier n in the realistic scenario. It is shown
in Figs. 9(a) and 9(b) that FPH-ES outperforms ESH in all
tested cases in terms of the service deployment cost and
the number of activated VMs. This is because ESH mainly
uses an optimization solver to solve the formulated MISOCP
problem with limited computation time, which indicates that
the obtained result is a feasible solution rather than the
optimal one. Especially as n becomes large, the results of
ESH are some feasible solutions obtained by the optimization
solver which are far from the optimal one due to the limited
computation time, which also explains the reason why the
difference between ESH and FPH-ES increases as n is larger;
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FIGURE 10. Dependency of service deployment cost on maximum admissible
number of divisions for certain d ′ in FPH-ES-d ′ .

while FPH-ES, which is similar to FPH, is also a heuristic
that decomposes the complicated problem into several sim-
pler steps. As a result, it obtains solutions with relatively
smaller cost within much shorter time in all tested cases.
Table 6 presents the computation time to obtain the results

of FPH-ES in Fig. 9. We observe that the computation time
tends to become large as the traffic scale increases except
for the case with n = 2.2. This is because the flows of
VNFs are divided into more parts and deployed on more
VMs as the traffic scale becomes large. We also notice that
the computation time with n = 2.2 is much larger than those
around it, which indicates that FPH-ES loops at Step 5 for
a certain value of d′.
Figure 10 shows the service deployment cost obtained by

FPH-ES-d′ for a certain d′ with different traffic multiplier
n in the realistic scenario. We observe that the deployment
cost reaches the lowest value at d′ = 3 when n = 1.8, 2.0,

and 2.2, and it reaches the lowest value at d′ = 4 when
n = 2.4, 2.6, 2.8, and 3.0. The reason why the deployment
cost of both sides are higher is as follows: for the left side,
it restricts the partition of flows due to the limited value of
d′, and therefore, the algorithm needs to deploy the whole
part of flows on a new VM; for the right side, it allows
one large flow to be divided into a larger number of parts,
each of which requires one VM to deploy, and can leave
other small flows not sufficiently divided. Both conditions
lead to a fact that the algorithm tends to use the whole VM
to deploy one part of flows, which causes the waste of VM
capacity and the increase of deployment cost. We also notice
that the value of d′ with which the lowest deployment cost
is obtained grows as n becomes large. This is because flow
partition is applied in a larger degree with larger n, and the
lowest point of d′ in terms of the deployment cost, which can
also be regarded as a tradeoff between the two conditions,
also becomes large.
We should notice that the solution obtained in FPH-ES

is only one possible case of ESH, which indicates that it
does not perform better than the optimal solution of ESH.

TABLE 6. Computation time [s] for results of FPH-ES shown in Fig. 9.

FIGURE 11. Comparison of service deployment cost and number of activated VMs
between ESH and FPH-ES of different values of n in synthetic scenario.

Figure 11 shows the service deployment cost and number
of activated VMs obtained by ESH and FPH-ES of different
traffic multipliers n in the synthetic scenario, where optimal
solutions of the MISOCP problem are obtained in ESH. It is
shown in Figs. 11(a) and 11(b) that ESH outperforms FPH-
ES when n ranges from 2.2 to 3.0, which indicates that ESH
provides an assignment of equally divided proportions of
flows that requires less deployment cost compared to the one
obtained by FPH-ES in these cases. For other cases, FPH-ES
obtains the solution with the lowest required deployment cost
as ESH does so that the results are the same in ESH and
FPH-ES. FPH-ES requires 4.0% more service deployment
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TABLE 7. Computation time [s] for results shown in Fig. 11.

FIGURE 12. Comparison of service deployment cost between ESH and FPH-ES with
dependency on maximum admissible number of divisions, d .

cost and 6.2% more activated VMs in average compared to
ESH in the synthetic scenario.
Table 7 presents the computation time of results shown

in Fig. 11. It shows that the computation time of FPH-ES is
around 0.1 [s] in the synthetic scenario, which largely saves
the computation time compared to ESH in all tested cases.
Figure 12 shows the comparison of service deployment

cost between ESH and FPH-ES with the dependency on
maximum admissible number of divisions, d, in the synthetic
scenario. We observe that, under a given value of d, ESH
obtains a solution with lower deployment cost compared to
the one obtained by FPH-ES. It reveals that ESH outperforms
FPH-ES under the same restriction on flexibility of flow
partition in even-splitting cases.

VI. CONCLUSION
This paper proposed a service deployment model with flow
partition to minimize the service deployment cost with
satisfying the service delay constraint. We provided the math-
ematical formulation for the proposed model and transform
its special case as an MISOCP problem to obtain the optimal
solution. A flow partition heuristic based on problem decom-
position, called FPH, was introduced to solve the problem in
practical time. We compared the performances of proposed
model with flow partition and conventional model with-
out flow partition. We considered the formulated MISOCP
problem with an even-splitting strategy in a special case as
another heuristic of the original problem called ESH; the

performances of FPH and ESH were compared in a real-
istic scenario. We also considered the formulated MISOCP
problem as an original problem and compared it to an FPH-
based heuristic algorithm with adopting the even-splitting
strategy, called FPH-ES, in both realistic and synthetic sce-
narios. The numerical results showed that compared to the
conventional model, the proposed model can save both initial
and proportional cost; it improves the maximum admissible
traffic scale by 23% in average in our examined cases. We
evaluated the performances of FPH and FPH-ES with the
dependency of maximum admissible number of divisions. We
found that the service deployment cost is saved by increasing
the maximum number of parts that flows can be divided to a
certain point, but it does not keep decreasing after the point.
We also observed that FPH outperforms ESH and ESH out-
performs FPH-ES in terms of the service deployment cost
in their own focused problems, respectively.
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