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ABSTRACT The undeniable potential of computation offloading has been attracting attention from
researchers for more than a decade. With advances in multi-access edge computing (MEC), compu-
tation offloading has become a more critical issue because of the heterogeneity in the computational
power of edge devices and the elevated importance of extending their lifespan. Due to the apparent
advantages, the use of MEC in 6G networks, where a vertical heterogeneous network composed of space,
air, and ground networks is only natural. The non-terrestrial networking elements constitute effective
computational resources. However, recent research investigating the potential of computational offloading
in 6G networks has involved models that do not adequately reflect the complexity of the underlying
processes. In this study, we propose a realistic computation model for 6G networks that considers crucial
properties of the offloaded job, including the inter-dependency of the job tasks and the decomposability
of the job. Our model is based on the mature application domain of MEC, where proven solutions are
already studied. We also investigate the potential of a high altitude platform station (HAPS)-aided MEC
platform using this model. The proposed model allows us to design offloading strategies to enable adap-
tive computational offloading. Through numerical analyses, we show that the proposed model provides

sufficient insight to reduce the total processing time significantly.

INDEX TERMS Computation offloading, high altitude platform station, multi-access edge computing.

. INTRODUCTION

OMPUTATION offloading is the process of transferring

a part of the computational workload of an over-utilized
host to another (group of) underutilized host(s) [1], [2], [3].
The main challenge in computational offloading is the deci-
sion process, whether the additional cost of this transfer
and processing compensates for the cost of delay caused by
utilizing the local computation resources [3], [4], [5]. As
the number of devices and resources continues to increase
exponentially as a result of technological advancements, the
opportunities to handle computational workloads of devices
collaboratively increases as well.

It is only natural to benefit from the computational
offloading aspects in the evolving wireless networks towards
the network vision of 2030’s, simply referred to as
6G [6]. The envisioned architecture will not only integrate

the terrestrial, aerial (drone swarms), and space (satellite
mega-constellations) networks from connectivity perspective,
but it also will serve as a computation platform. 3GPP is
working towards the consolidation of the potential impact
of low Earth orbit (LEO) mega-constellations and defini-
tion of related solutions in Release (Rel.) 16, TR 38.821
covered by 5G Evolution, which also includes connectivity
support from LEO satellites, unmanned autonomous vehi-
cles, and high altitude platform station (HAPS) systems. Yet,
the full benefit of LEO mega-constellations with advanced
routing features and mobile-edge computing (MEC) are
expected to be included in the near future [7] as the 3GPP
is shaping the network evolution towards 6G in Rel. 21
(expected to be finalized in 2028). The inclusion of MEC and
advanced routing features of mega-constellations is expected
to be incorporated in Rel. 21. MEC enables the network
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components to transfer a part of the computational workload
of an over-utilized host to another (group of) underuti-
lized host(s). Furthermore, as computational tasks can be
completed at closer proximity to the user, the task com-
pletion times and reliability can be significantly improved
in the presence of non-terrestrial network elements [8].
Interestingly, the MEC literature for 6G networks rarely
handles service and job-specific properties.

Specifically, uncertainties about the communication channel,
job decompositions, task dependencies, and task decomposi-
tion sizes are not taken into account. This application-agnostic
performance restricts the straightforward applicability of a
MEC framework for customized services over the vertical
domains towards 6G networks. As it will be presented with a
detailed literature survey in Section II, the current literature
on MEC for 6G networks is based on unrealistic models that
limit the applicability of the proposed techniques. However,
the benefits of MEC are well-studed in a number of industries
and applications such as vehicular networks.

In this study, our goal is to propose a realistic MEC
model for 6G networks. We analyze different aspects of
computation offloading for scenarios where traditional ter-
restrial networks are extended by vertical network services
offered by non-terrestrial network elements. We exemplify
our proposed approach through a simplified network model
that is composed of a high-altitude platform station (HAPS)
and a base station, as depicted in Figure 1. A HAPS is an
aerial vehicle, such as a fixed-wing aircraft, airship, or bal-
loon, that typically operates in the stratosphere at an altitude
of around 20 km.

HAPS:s are increasingly being used to provide communica-
tion infrastructure. An example of this is their use in vertical
heterogeneous networks [6]. Due to their high-altitude
deployment, HAPS systems have favorable characteristics,
including cooling advantages, mobility, and a wide coverage
range. These characteristics can benefit computer offload-
ing scenarios as well. The use of a HAPS for computation,
caching, and sensing has been studied by the authors in [9].
However, we also need to clarify that the proposed model is
also applicable to satellite offloading, or integrated networks
composed of aerial, space and ground components of 6G
networks.

One primary contribution of our study is that we use com-
munication models designed specifically for the networking
properties of vertical networks. Additionally, we take into
consideration some crucial properties of the offloaded job,
such as inter-dependency between job tasks and the decom-
posability of the offloaded job. In the literature on com-
putation offloading 6G networks, job properties are rarely
considered; when they are considered, they involve oversim-
plified assumptions. In our study, in addition to analyzing
the involvement of HAPS systems in computation offload-
ing, we also discuss important properties of jobs that should
not be ignored in such analyses.

In our numerical analyses, we have used our own discrete
event simulator developed in Python and provide the source
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FIGURE 1. Our exemplary system model. The base station and the HAPS can be
used to offload the computational tasks. The mobile user can also compute tasks
locally.

code of this simulator for the benefit of computation
offloading researchers.! In our simulation implementation,
in-line with our contributions, we have included software
modules specific to vertical network communication proper-
ties of a HAPS and job-to-task decomposition based aspects.
The insights offered by the realistic model that we propose
provides us an opportunity to design an adaptive offloading
strategy, which can significantly reduce the total processing
time of computation jobs.

Our contributions in this paper can be summarized as

follows:

o Section II, reviews related work from the computation
offloading literature in the vertical networking domain
towards 6G and focuses on job decomposition related
assumptions that may harm the validity of the studies.

e In Section IIl, we propose a system model for 6G
networks that considers important aspects related to
communication and job decomposition. We discuss sev-
eral assumptions that have been frequently made in
the computation offloading literature, and we explain
how we handle each of them in detail. Our proposed
approach is based on the techniques of the domains
where mature MEC solutions are already available.
Based on our findings and observations, we also present
a realistic communication and computation model.

« We present a discrete event simulation environment
based on a HAPS supported case study. We explain the
simulation environment’s design details in Section IV.

« We propose an offloading strategy that adaptively deter-
mines the offloading host in Section III-C and we
present the numerical analyses in Section V. Through
comparative scenarios we show that the proposed
approach reduces the total processing time of compu-
tation jobs.

II. BACKGROUND AND RELATED WORK
Computation offloading is a widely studied area in computer
networks and cloud computing [3], [4], [5], [10]. In this

1. https://github.com/ovatman/ComputationOffloadingSimulation

VOLUME 3, 2022



‘IEEES IEEE Open Journal of the
Com3oc  communications Society

TABLE 1. Recent computation offloading studies in the terrestrial context (not containing aerial vehicles).

Study Job Decomp. Task Dep. Task Comp. Sizes Data Rate

[18] No No Constant Channel capacity
[16] No No Uniform distr. Fixed rate

[19] No No Uniform distr. Channel capacity (uplink and downlink)
[20] No No Normal and Pareto distr. ~ Channel capacity
[21] No Partly Uniform Channel capacity
[22] No No Constant (4 classes) Channel capacity
[23] Yes (as missions) Yes Constant (3 classes) Channel independent
[24] No No Constant Channel capacity
[25] No No Constant Channel capacity
[26] No No Uniform distr. Channel capacity
[27] No No Exponential distr. Channel capacity
[28] No No Exponential distr. Channel capacity (with outage prob.)
[29] No Yes Uniform distr. Channel independent
[30] No Yes Not available Channel capacity
[31] No Yes Not available Channel independent
[13] Yes Yes (only comm.) N/A Channel capacity
[32] Yes (as programs) Yes Uniform distr. Channel capacity
[33] No Yes Constant (classes) Channel independent
[34] Yes (as app.s) Yes Random vectors Channel capacity
[35] No Yes (only sequent.)  Uniform distr. Channel independent
[36] No Yes Constant (3 classes) Channel independent

TABLE 2. Recent computation offloading studies containing aerial vehicles in their contexts.

Study Vehicle Job Decomp.  Task Dep.  Task Comp. Sizes Data Rate

[17] UAV Data decomp. No Constant Fixed rate

[37] UAV Data decomp. N/A Constant Channel capacity
[38] UAV N/A No Uniform Distr. Channel capacity
[39] UAV Data decomp. No Uniform Distr. Channel capacity
[40] UAV Data decomp. No N/A Channel capacity
[41] UAV Data decomp. No Constant Channel capacity
[42] UAV Data decomp. N/A Random Channel capacity
[43] HAPS Data decomp. No Constant Channel capacity
[14] UAV N/A Yes Uniform Distr. Channel capacity
This study HAPS Task decomp.  Yes Multi-modal Variable rates less than channel capacity

section we give an overview of the latest five years’ studies
on computation offloading in terms of multi-access edge
computing and aerial vehicles towards 6G networks. We
provide a brief comparison in Tables 1 and 2 enlisting the
properties related to the contributions of our studies.

To begin, however, we would like to clarify a major dis-
tinction in terms of computation terminology. Even though
they are sometimes used interchangeably in the literature
we will use the terms job and task as two separate enti-
ties with a one-to-many relation. More specifically, in this
paper we refer to a job as a collection of tasks, which may
have dependencies between them in terms of computation
or data [11], [12], [13]. An important ramification of this
definition is that we can break a job down into tasks, but
there may be constraints about inter-dependencies of tasks
that make up a job.

In reviewing related works in the literature, we focused
on the following properties:

VOLUME 3, 2022

e Domain of study: We classified the studies that we
reviewed into three categories. The first category
involved studies that do not specifically refer to aerial
or space vehicles; rather they approached the problem
from the perspective of terrestrial base stations or by
using more abstract or generic system models. The sec-
ond category involved system models that contained
Unmanned Air Vehicles (UAVs) as first order citizens.
In the last category, we included studies that focused
on systems involving high-altitude and/or non-UAV ele-
ments. Hence, non-terrestrial network elements towards
the evolution of 6G networks are covered.

e Job decomposition: We reviewed the studies to find
out if they use any kind of job decomposition during
offloading process. The majority of the vertical network
studies did not perform any kind of decomposition,
although they involved multiple agents offloading the
job. They basically either offloaded a job as a whole
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or not. Studies with aerial elements typically involved
a single agent offloading the jobs, so their approach
was to offload the input data over a replica of the job
instead of offloading the job itself. This approach was
applied even when there were multiple agents that per-
formed the same job, which may be limited according
to the computations’ domain because of possible data
dependencies.

o Task dependencies: Task dependencies in the compu-
tation offloading process are cumbersome to handle.
However, it is also naive to assume jobs can be broken
down into pieces arbitrarily, disregarding any kind of
possible process or data dependencies between them.
Even if we assume that a job is irreducible, it is still
realistic to assume that there may be data dependencies
among the jobs. Most of the time, arbitrarily distributing
input data is costly compared with caching the data and
dispatching the jobs at the cached agent. Yet hardly any
recent studies from vertical networks literature handle
task dependency as a part of their offloading scheme.
An exception to this situation is [14], where the authors
considered flow dependency between the tasks.

o Task computation sizes: We also compared the stud-
ies according to the workload distribution they used.
We found a variety of approaches used, from con-
stant work-loaded jobs to normal distributed workload.
However, it is well known especially in cloud literature
that the workload profile changes greatly according to
the domain and application area [15]. We may expect
to experience a distributed computation scheme fit-
ting a mixture model in case a job decomposition is
applied.

o Data rate: The majority of the studies in the literature
assumed that the data transmission can be achieved
by a data rate equal to the channel capacity. Noting
that the channel capacity is merely an upper bound for
the data rate that can be used to transmit information,
the necessity of a more realistic communication model
becomes apparent. As noted in Tables 1 and 2, only
two of the studies used fixed data rates [16], [17]; how-
ever, the communication standards also define multiple
transmission rates that change according to the sta-
tus of the channel. In this work, we consider variable
rate transmission as defined by the communication
standards.

Tables 1 and 2 presents recent studies from computation
offloading literature comparing studies that do not con-
tain aerial vehicles and studies that contain aerial vehicles,
respectively.

Especially in recent years, researchers began to focus
on building more realistic models that handle inter-task
dependencies, input and output sizes and task characteris-
tics especially in the horizontal domain as listed in Table 2.
However, lesser number of studies consider such concepts
in offloading for vertical networks as Table 2 suggests. Our
model is influenced by the studies in the horizontal domain
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and propose a model for the vertical networks that is able
to take those concepts into account.

For instance, task inter-dependency is mostly handled by
using task graphs and Directed Acyclic Graphs (DAG) in the
literature. We also use a similar approach and used connected
components in the task graphs to perform task dispatching.

Another novel concept (for vertical networks) that we use is
task classification. In horizontal networks task classification
is done in some of the studies in the augmented reality
domain [21], [33], in the big data domain [31] and in other
domains [32]. There also exist earlier studies that considers
differences in job requests and response sizes [19], [22]. In [22]
the authors classified computation jobs as either small or big.

In our study not only we use different profiles for
computation workload, computation data sizes (these two
are frequently separately handled in other studies as
well [23], [36], [14]). We also use different profiles for
response sizes, since it may not be possible to assume that
the input data and/or computation sizes are correlated with
response sizes.

In a preliminary study by [13], authors considered com-
munication dependency in their analysis. It may also be
possible to consider other types of dependencies, such as
process dependencies and data dependencies, among tasks
within a job and among jobs that have common domains
or users. Specific types of dependencies may be considered
to further elaborate the analysis of computation offloading
schemes.Here, however, we do not specifically focus on the
type, instead we accept any type of dependency to enforce
dispatching the related tasks to common agents. Recent
horizontal network literature also uses the term “work-
flow dependency” to broadly refer to mentioned types of
dependencies (see last few rows of Table 1).

Some studies, especially in the aerial domain, make depen-
dency tracking during offloading obsolete since the jobs are
offloaded to a single UAV [42] and [37]. But these two stud-
ies handle all the computation at the UAV level and do not
perform any local computation. If the local computation is
partially offloaded even to a single UAV, arbitrary decom-
position becomes susceptible to data dependencies of the
job. An example of such a job may be a time series anal-
ysis, which may require integrity of historical data during
computation.

As a summary, it can be seen that recently the horizontal
network literature has evolved to cover most of the aspects
that we cover in our model. However in the vertical networks
and especially for HAPS involved domains such evolution
has not yet taken place. In our study we provide a simple
yet holistic a model and validate it with realistic workloads
based on the cloud workload literature.

I1l. PROPOSED COMMUNICATION AND COMPUTATION
MODEL FOR INCLUSIVE NON-TERRESTRIAL NETWORK
ELEMENTS

In this section, we present our model for MEC offloading
scenarios for 6G networks based on our observations about
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TABLE 3. Symbols used in the definitions, in their order of appearance.

Symbol Definition

J An instance of a computation job.

T Set of tasks that is required to complete a certain job.

D A lower triangular matrix with Boolean entries that represent inter-dependency between two tasks of a job.
t; A task with IDi. Each task is defined with its computational size class, request size class and response size class for task 4.
i8; Input data size for for task .

0s; Output data size for for task 3.

DS; Processing requirement for task 3.

15t Input data size of the job. It can be either small or large input data.

Os! Output data size of the job. It can be either small or large output data.

psit Processing requirement of the job. It can require either small or large amount of processing power.

dp;,; A Boolean variable that represents presence of a dependency between tasks ¢ and j.

E Environment of the offloading host.

S Stations, known to host in its environment.

A Task assignment matrix that represents the assigned station IDfor each task of a job.

8 An task offloadable station with IDj. Index 7 = O denotes the host’s index (e.g. so is the host itself).
proc; Processing power of the station.

ul Uplink communication capacity between the host and the station j.

dl; Downlink communication capacity between the host and the station j.

Csmt Communication link capacity class. It can be either small, medium or large capacity.

d; Distance from the host to the station j.

op; Operational overhead of the station.

Yj Type of the station. It can be either host, terrestrial or HAPS.

a;,j A Boolean variable that represents if task ¢ has been assigned to station j or not.

Xi The computation characteristic of the offloaded job. This variable can take one of four values explained in Table IV.

the inadequacies of current models proposed in the literature.
As previously discussed, previous models either do not con-
tain any job decomposition or they contain oversimplified
assumptions about how a job can be decomposed into tasks.
Additionally, most of the studies contain debatable assump-
tions about how job/task characteristics like computation
size, data size, and response size should be determined on the
basis of the numerical analysis of the proposed offloading
schemes.

Before introducing our system model, we present the dia-
gram in Figure 1 that depicts a typical system architecture
that will be the subject of the computation offloading sce-
narios that we will examine. In a typical scenario, we handle
the jobs of mobile users in a given area with a combination
of terrestrial base stations and base stations mounted on one
or more HAPS, UAYV, or satellite.

We also present, as a reference, the list of symbols that
we use in our system model in Table 3. Below, we use these
symbols to refer to specific elements in our system model
definition.

A. JOB DECOMPOSITION AND TASK DEPENDENCIES
We begin with a system model presented in Definition 1
that supports decomposing a job into smaller tasks that
may contain inter-dependencies between them. In so doing,
we define a job as a set of tasks and a triangular matrix
with Boolean entries that represent the inter-dependencies
between the tasks.

In our task definition, o; is a Boolean variable that rep-
resents the offloading decision for task i. According to this
variable’s value, the task is either offloaded to the external

VOLUME 3, 2022

processing environment of the host or processed by the task’s
host itself.

Definition 1: Computation model with task characteristics
and dependencies
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Our system model separates request size from response
size while considering task properties. Only a handful of
studies in recent literature covered in former sections dis-
tinguish between the request and response characteristics
of computation jobs. There may be some cases, such as
image processing, where the request and response have sim-
ilar sizes (and characteristics), but the case is different if the
computation involves transforming the input into a totally
different output. While it may not be entirely possible to
determine the response size for a task when it is created,
previously analyzed distributions and estimations can be used
for this purpose. Recent literature performs such distinc-
tions according to domain of the study; for instance for
augmented reality domain a distinction is performed accord-
ing to the stages of the augmented processing [21], [33]. Our
study generalizes this approach and presents a more holistic
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TABLE 4. Overview of the computation classes that will be assigned to offloading
tasks.

t; class t; char. Definition Example case

(xi)

xXc {I*,0%,P'} Comp. intensive task  prime decomp.
XR {I*,0', P'} Reproductive task decompression
XI {I', 0%, P!} TInput processing task  hashing

XT {I',0!, P!} Input transform. task  image filtering
X0 {—,—,P%} Comp. small task simple calc.

approach since the number of classes in Definition 1 can be
expanded to produce a more fine grained classification in
Table 4.

Additionally, y; represents task characteristics for task i,
where each task is classified as one of five different char-
acteristic instances. A characteristics instance contains a
tuple of random variables, each having different distribution
parameters according to their classification. These variables
are defined as task input data size (request size) and task
output data size (response size), denoted with / and O ran-
dom variables. To each of these variables, a superscript s
or [ is added (s for small; [/ for large) to indicate the class
of the characteristic. Similar approaches can be seen also in
previous studies, as covered in related work section.

A very important observation in computationally expen-
sive jobs is it may not be possible to estimate the workload
amount or workload characteristics of the job at all by only
considering its size. Most of the of current MEC literature
affiliates the workload amount for a task with its input data
size, which may be possible if the data of the job is packed
together with the job. However, especially in cloud environ-
ments, data being processed and the computational definition
of the job are often separate, which results in incorrect esti-
mations about the computational workload of the job when
the size is used.

A possible remedy to address this situation is to model
the computational workload of the tasks separately. This
approach is not uncommon; there are measures like millions-
of-instructions to represent the processing workload. We add
a new element to our task characteristic property to model
small and large sized computation workloads with three sep-
arate P random variables. This parameter is different from
both of the size parameters, since the required computa-
tional power may not always be correlated with the job’s
request and response sizes. For instance, some tasks may
share common data where there is no need to resend data
with each task every time. Take a video processing task as
an example: a video file affiliated with a set of processing
tasks are uploaded once to an offloading station; the rest
of the processing tasks are uploaded separately. These tasks
might be small in size, but their computational needs are con-
siderably higher since they all operate on frames of video
data.

In Table 4 we present task characteristic classes regard-
ing the amount of computation they require. Due to the task
dependencies, however, tasks that require smaller amounts of
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FIGURE 2. An example task dependency matrix.

computation may sometimes be offloaded as well; usually it
may be preferred to handle them locally. In the literature
there are some studies that employ such a classification
approach, such as [44].

We use the term inter-dependency to indicate any kind of
reason that requires two tasks to be executed in the same
host because of a temporal, input-output or data dependency
between the tasks. We would like to emphasize that we
currently do not consider dependencies that induce an exe-
cution order. These types of inter-dependencies transform the
problem into a scheduling problem, which we will focus on a
future study. For an example of the type of inter-dependency
we consider in this study, consider the dependency matrix of
a job with six tasks, shown in Figure 2. This matrix is upper
triangular, since our definition of dependency is undirected.
Examining this matrix it can be seen that 7o and #; constitute
a dependent group that should be assigned to the same pro-
cessing station just like #3, 74 and 5. On the other hand, 1,
does not have any dependencies with any other tasks, which
means it can be assigned freely to any stations or the host
itself.

Defining computational offloading jobs like this allows us,
in a fine grained way, to define possible inter-dependency
constraints that may be present for an offloading job. On
the one hand, it is possible to utilize this model to mimic
fully independent decomposition of tasks, as current liter-
ature suggests. On the other hand, it would be possible
to define in great detail the specific decomposition con-
straints for a job, as well as specific properties of a particular
task.

Even though there might be differences in minor details,
handling task inter-dependencies by using task graphs
is a commonly used approach in the recent literature
(Tables 1, 2). In contrast, our approach, initially consid-
ers undirected dependency graphs to form task clusters [33]
from connected components of the graph and perform a
cluster-wide dispatching to the resources.

It is important to note that properties of task dependencies
may also be diversified according to the context of the system
that is being modeled. However, we leave this discussion
about the relative value of considering diverse properties of
these dependencies to a future study. We would also like to
note that the proposed model is generic enough to be used
in other contexts as well, by adapting the model parameters
appropriately.
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B. ENVIRONMENTAL MODEL

Our last set of observations is about the environment used to
process the offloaded tasks. For a mobile computing envi-
ronment, transmissions over the wireless channels are not
performed at channel capacity. Only discrete valued rates
are allowed. Also, the processing stations that the tasks will
be offloaded to need to provide processing power that can
be used in the calculation of task completion times.

Definition 2: Processing environment model

E = {J,S,A}
S & {so,s1, ..., sk}
{prOCj, ulj, dlj, dj, Opj, yj}
0=<j<IS|
ul iy e [, o, !
yj € {thost, terrestrial, haps}
A = a;j € {0, 1}ITXISI )

[l

5j

In this model, we have four specific high-level compo-
nents, namely the jobs to be offloaded denoted by J, which
has been defined in detail in the previous sections, offload-
able processing stations denoted by set S, and the assignment
matrix denoted with A.

Set S contains a list of processing stations to which the
host may offload the task. Each station denoted by s; is repre-
sented by the processing capacity proc; of station j. Variables
ul; and dI; represent the uplink and downlink capacity of
the communication channel between the offloading host and
the station that the task is being offloaded to. The channel
capacity can be small, medium or large depending on the
different portions of capacity that can be used at a time
by the offloading host. Variable op; represents the opera-
tional delay experienced in a processing station. Operational
delay contains all the additional delay to communication and
processing times, which may be due to queuing and other
operational issues. Finally, y; variable holds the type of the
processing station since the communication time calculation
may change due to the type of station. For instance, if the
processing station is the host itself, there will be no commu-
nication delay. Additionally, the distance will have difference
effects on the communication time calculations depending
on the type of station (i.e., terrestrial or aerial).

The environment also contains an assignment matrix (A)
where each task is assigned to at most one station in the
environment. If the task is not assigned to any station, it
means that it has not been offloaded. More specifically, a; ;
contains a Boolean variable to indicate if task #; has been
assigned to station s; or not.

This model can be subject to expansion by adding new
properties to C, s; and H variables, such as energy consump-
tion for each processing station, or additional properties for
the offloading host. We wanted to build a simple yet exten-
sible model to be able to add new properties that might be
the focus of future research.
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Algorithm 1 Proposed Computational Offloading Strategy

Require: connected component ¢ from dependency graph
if Xp >> ¥;+ Xp then
assign to aerial
else if Xp << X; + Xp then
assign to local
else
count the number of tasks belonging to each x in ¢
max_class <= max(|xcl, |xgl, |xil. |xrl, 1xol)
if max_class = yo then
assign to local
else if max_class = xc then
assign to aerial
else
assign to terrestrial
end if
end if

TABLE 5. Channel parameters.

Parameter Value

Carrier frequency 10 GHz

Bandwidth 10 MHz

UE-to-HAPS Channel Ricean K, (K = 10)

HAPS Transmit Power 10 dB

HAPS Antenna Pattern ITU-R F.1336-5, recommends 3.2.1
HAPS Height 20 km

HAPS Beam
Supported Data Rates

Pointing directly towards UE
{7, 14.1, 21.1, 31.7, 42.3, 64.3, 85.7,
161.9} Mbps

C. OFFLOADING BY INTER-DEPENDENCIES AND TASK
CHARACTERISTICS

Our proposed offloading strategy is shown in Algorithm 1.
The presented strategy uses the computation classes defined
in Table 4. This strategy works for each cluster (connected
component) in the dependency graph, so we decide to offload
the tasks in the cluster altogether according to the majority
of the tasks. Exploring connected components in a graph
takes O(|V| + |E|) by known sequential algorithms [45].

In the first steps of the strategy, we compare the total
computation requirement of the cluster to the total input
and output size of the tasks in the cluster. If either one is
substantially larger than the other, we offload to aerial or
compute locally, respectively. This step is deemed necessary
since for some corner cases the cluster may contain a bal-
anced number of tasks from each computational group but
the overall processing requirement of the cluster is sub-
stantially larger than the input and output size (or vice
versa). This step requires computing the accumulated prop-
erties of tasks in the cluster so its computation complexity
is O(V).

Another point that needs clarification for the first steps is
the definition of “substantially larger.” For our application,
we use thresholds for the ratio between processing size and
input and output size but this comparison can be done in
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TABLE 6. Random variable distributions used in our study.

Variable Distribution ~ Unit Distribution parameters
Ps lognormal MI p=4.32and o0 =1.31
Pl power-law MI a=1.5
{1, 1} lognormal Mbytes p = 8.08, 0 = 2.58
{0%,0"} zipf Mbytes « = 1.7748
task per job  Pareto number o« = 1.517
job inter-  lognormal sec. @ =>5.15and 0 = 0.5
arrival
task graph Erdos- undir. n = task per job, p = 0.05
Renyi graph
G(n,p)

many different ways. We leave a discussion of this for a
future study.

Contents of the else statement in the strategy counts the
majority of the classes that belong to a certain computational
class in the cluster and decides where to offload the cluster
accordingly. Using majority voting might not result in the
best results but as we will discuss in the next section even
majority voting provides better results than offloading jobs
as a whole.

This step requires iterating through all the tasks in a given
cluster for each characteristic, so its computation complexity
is O(V). In our study, we use exactly five characteristics, so
it does not increase the overall complexity of the computa-
tion, but if we assume there might be a varying number of
characteristic classes, the computational complexity will be
bound to the number of these classes as well. However, it is
very unlikely that the number of characteristic classes will
surpass the number of tasks for the worst case, so we may
safely assume that the computation complexity for this step
is O(V).

In terms of computational complexity, the proposed strat-
egy as a whole has O(|V|+|E|)+0(V)+0(V) = O(JV|+|E|)
computation complexity. For our case |V| is the number of
tasks and |E| changes according to the amount (and charac-
teristics) of inter-dependency among the tasks. To measure an
estimate for the actual running time of the proposed strategy,
we used Python’s NetworkX package and performed con-
nected component extraction. For a graph with 10* nodes,
using parameters in Table 6 we obtained a running time
of less than 100 milliseconds. When we increase the inter-
dependency density to 0.9 the running time was still less
than one second.

IV. SIMULATION ENVIRONMENT AND EXPERIMENTAL
SETUP
The foregoing has allowed us to come up with an architec-
tural model for a job to be offloaded and the tasks contained
by the job definition in Definition 1. We also present a pre-
liminary model for the environment that the MEC is going
to operate in Definition 2.

For our experiments we use a very simple setup with a
single mobile device (or a group of mobile devices with
close proximity) that is the source of the generated jobs and
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tasks where the single source communicates with either a
base station within approximately 2 kilometers of distance
or with a HAPS station that is approximately within 20
kilometers of distance. A diagrammatic representation of the
physical environment used in the experiments is presented in
Figure 1. On this setup, we present some numerical values
and formulation for the calculation of variables presented in
Definitions 1 and 2.

A. STATISTICAL DISTRIBUTIONS

First, we begin by introducing the parameters of the distribu-
tions for the random variables belonging to various classes
presented in our former definitions. Table 6 presents a list
of all the random variable distributions, ranges and param-
eters that we have used in our experiments. Definitions in
this table should be interpreted by the help of the symbol
in Table 3 and Definitions 1 and 2.

Despite the obstacles noted above, we have focused on
workload studies that might be meaningful from computa-
tional offloading perspective, where the workload that has
been characterized fits into the definition of computation-
ally intensive cases. Most of the studies that we examined
were based on Google cluster data set [46] but there are
also studies that focus on different organizational or public
clusters.

We start with the computation workload distributions that
we use in this study. To be more precise, we only focus on
the size of the jobs and tasks in terms of the computational
work inherently present in them. Firstly, for almost all the
studies that we examined, there is a great emphasis on the
distinction between small and considerably larger jobs. This
supports our choice of using a bimodal distribution with
classes such as P* and P!. For instance, in Google cluster
data set, the top 20% of the jobs follow power law distribu-
tions [47]. On the other hand, a user-based analysis of the
same data set shows that, from the users’ perspective, task
lengths follow lognormal distributions [48]. An additional
study from Hadoop also supports the lognormal distribution
finding [49]. We have chosen to use a mixture model where
small jobs (80% of overall) follow a lognormal distribution
and larger jobs (20% of overall) follow a power law dis-
tribution for task computation requirement generation. We
should also note that most of the studies in this area, includ-
ing the ones cited above, states that an obvious distribution
is not present in their findings and it may also be suitable
to perform sampling from the data sets provided above.

Another important parameter in our simulation is the input
and output data size of the tasks. In terms of computationally
intensive Web-based tasks, workload characterization litera-
ture is not very rich on examining directly the request and
response sizes of the workloads. Instead, most of the time,
they naturally chose to examine the I/O behavior of the tasks.
An interesting exception might be the papers that analyze
the workload of Dropbox [50], [51]. However, these stud-
ies have focused more on I/O heavy workloads which does
not fit with our case. Nevertheless, those studies report that
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most of the requests are fairly small and follow Pareto-like
distributions. On the other hand, studies that fit better into
our case, such as in Hadoop and map/reduce jobs, similar
findings have been reported [49], [52], [53]. Furthermore,
a study of smartphone applications [54] also reported that
most of the requests and responses are small in terms of
data size. We chose to use distributions mentioned in a very
recent study [53]. It was reported here that the read data
sizes usually follow a lognormal distribution while written
data sizes follow a Zipf distribution.

Examining the distributions for processing requirement,
input and output sizes of the computational jobs, we continue
with computational job and task generation. Studies in the
literature indicate that, most of the time, workloads consist
of small jobs with single tasks, even for the Google cluster
data [55]. However, in an Hadoop environment, the rate of
smaller jobs, containing less than 10 tasks drops down to
40% of the workload [49]. These results are in-line with the
majority of tasks having small I/O values, so we use a Pareto
distribution in generating the number of tasks in a job.

For the task dependency graph generation, a number of
techniques are often used in the literature for similar sim-
ulation studies to ours [56]. However, in our study we do
not need a directed graph since we will not be focusing
on the scheduling of the tasks and hence the sequential
relations between the tasks may be ignored. We use the
undirected task graphs generated over Erdos-Renyi G(n, p)
generation and use connected components of this graph as
offloadable clusters. Note that a cluster represents a subset
of tasks which are interdependent. Examining more realis-
tic task inter-dependencies will improve the quality of our
simulation, but we leave this issue for a future study and
pseudo-randomly assign dependencies between the tasks by
following the randomly generated dependency graph.

In terms of selection of x; class of the tasks that are
going to be involved in job generation, there are a few
studies that use this perspective, such as [44]. However it
has been commonly mentioned that the majority of tasks
are smaller in terms of computation and data size. We apply
our first distinction in terms of xo and xc,xr,X1,XT classes,
or in other words between the tasks that require a small
amount of computation and those that require a large amount
of computation. Distribution of these classes are explained
above, but briefly we use a mixture model where 80% of the
tasks are small in terms of computation requirements. For the
input and output sizes, we just sample from the distributions
explained earlier because there are no studies that clearly
state if there is a relation between those classes, to the best
of the authors’ knowledge. In our classification we classify
the tasks that belong to the 20% tail of the distribution as
large and the rest as small.

Finally, we also cover job interarrival times. A relatively
more recent study reports that the jobs arrive in lognor-
mal distribution to Alibaba’s cloud servers [53], while for
the Google case it seems that they follow not a particu-
lar distribution at all [57]. Another interesting result from
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the literature focuses on task interarrivals and suggests that
interdependent tasks arrive at closer times, with a loglogis-
tic distribution in differences of arrival times [58]. Since
we will be offloading task clusters inside a job altogether
we believe following lognormal job generation should be
appropriate for our case.

B. RUNTIME CALCULATIONS

In our simulations, we have calculated a task’s end-to-end
processing time(t;) as in Definition 3. In this definition,
each task’s end-to-end processing time is comprised of three
components 7", tP°¢ and t°P¢" which refer to communi-
cation, processing and operation time respectively. Each of
these variables are affiliated with tasks and station IDs since
the times may vary according to the task and station that
the task was processed in.

Definition 3: End-to-end processing time of a task

+ 7 3)

7= TiL:;m + Tipi;oc

Next, we expand on these components by drawing on our
job-task model and environment model. Before the expan-
sion, we should note that we abstract away operational
overhead (7;7“") by using a random distribution to estimate
the overhead presented in Table 6. This estimation, of course,
may have important ramifications, but we leave the details
of this to a future study.

Definition 4: Communication time components of a task
com

) req resp
i (“t,O)(Ti,j +7, )

is; d;
Treq il + _]

T

i ul; ¢
resp oS d]
T. . = — —F — 4
b dlj c ( )

In this set of equations, we define communication time of
a task by adding its request’s communication time (tif;q) to
its response’s communication time (t;;'). However, this cal-
culation is done only when it is decided that the task should
be offloaded to the external processing stations. This decision
is modeled by multiplying ;o value from the assignment
matrix A. This value contains both the propagation and
transmission time of the task to be offloaded.

In our processing time calculation, we also show how the
request and response communication times are calculated
as in definition 5. In these equations, ul; and dl; represents
the uplink and downlink data rates. The propagation time is
calculated by the fraction of the distance between the host
and the j-th MEC server (d;) to the speed of light (c).

Definition 5: Processing time components of a task

. pSi
T = <—> )
proc;

We calculate the processing time by dividing the process-
ing requirement of the task (ps;) by the processing capability
of the offloaded station (proc;).
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With the help of the previous models and time calculations
defined above, we may define constraints for our computa-
tional offloading models below. In this definition we use 2
to represent the set of constraints.

Definition 6: MEC offloading constraints

Q=10<= Zjli() i js (©6)

dpy ., = (011 = 0,2) A (a,l = atz)

e 0; = Zjlﬂl a;j is used to represent each offloaded task
that should be assigned to exactly one station. Here the
value of o; will be true or 1 whenever it is decided to
be offloaded. For this case, the sum of the row in the
assignment matrix should be exactly one.

e dpy, = (a;, = as) ensures that dependent tasks
are assigned to the same processing element: either pro-
cessing stations or the host. It checks this by comparing
the offloading decision variables and assignment matrix
rows of dependent tasks.

Constraints presented in Definition 6 can be seen as a
minimal set of constraints that can be used to demonstrate the
validity of the proposed model. In different domains, under
different assumptions this set of constraints can be expanded
to exhaustively define the environmental assumptions.

For instance many of the studies presented in the related
work section consider energy related constraint to account
for the energy consumption in participating devices. Another
example might be given from vehicular domain where
offloading time is very limited. Studies in vehicular domain
mostly use computation time limits to ensure that offloading
is completed within a determined amount of time. Similar
constraints arise also in studies that involve drones as well.
Resource and/or cost based constraints can also be intro-
duced to account for the limited presence of resources in
offloading studies.

Lastly, we should also note that during our simula-
tions we assume the operational delay and storage based
operations of the tasks are included in the computational
workload of the tasks. Even though for specific domains
these parameters may more seriously effect the offloading
operation, we chose to focus on the perspective of deci-
sions related to communication delay versus computation
workload trade-offs.

We would like to emphasize that in our study we don’t per-
form any optimization; instead we demonstrate the validity
of the proposed model via simulations with realistic work-
load distributions. We try to provide only a very basic set of
constraints so that our model can be expanded for different
domains by additional constraint.

V. SIMULATION RESULTS AND DISCUSSION

Before presenting the results of the simulation experiments,
we are going to briefly explain the development environment
of our simulation. In our simulations we have developed a
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TABLE 7. Properties of the processing infrastructure.

Local Terrestrial Aerial (HAPS)
Proc. power  10°MIPS  10°MIPS 107MIPS
Data rate - 800 Mbit/s  calculated via Table V
Distance - 2 km. 20 km.

TABLE 8. Relative properties of the job’s tasks used in experiments.

Task clusters I o P
Tasks 1-2-3 X X X
Tasks 4-5-6 100X 100X  1000X
Tasks 7-8-9 X X 1000X

simple discrete time simulation using Python as program-
ming language. We have used networkx’ and numpy’
libraries to generate random graphs and probabilistic dis-
tributions respectively. A single run of an experimental
simulation for realistic amount of tasks/jobs presented below
takes about one minute in a powerful PC with 16 GB of
memory and ninth generation core i7 Intel processor.

In our experiments, when resolving task inter-
dependencies we follow a non-deterministic approach.
During the execution of interdependent tasks, the execu-
tion of the dependent task is blocked until the blocking
task finishes and thus the execution order is dynamically
determined. In real-world there might even be longer chain
of dependencies that affect the run-time of tasks but our
experiments show that even such a simple case provides
a significant difference. We repeat each of our experiment
twenty times and use average values in order to smooth out
the random errors; we provide error bars in our charts for
the cases where significant.

A. SIMULATION WITH A BASIC SET OF JOBS

In our first set of experiments, we use a basic job-task model
with a single job comprised of nine different tasks and a
typical infrastructure configuration for more comprehensive
results. Table 8 presents the relative sizes for input, output,
and the processing requirements of each task of the job used
in our experiments.

In Table 8, each row represents a task cluster that con-
tains three interdependent tasks with identical properties. For
instance, for our first experiment we set the input (/) and
output (O) unit size as 1 MB, results in the tasks in the
second cluster having an input and output size of 100 MB.
For this set of experiments, we aim to offload (or process
locally) all the tasks in the single job at once in the beginning
of the simulation.

For this set of experiments, we use the parameters in
Table 7 for the properties of the processing infrastructure.
We use ten times more processing power in the terrestrial
station compared to local computation power and again ten

2. https://networkx.org/
3. https://numpy.org/
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times more processing power in the HAPS compared to the
terrestrial station. The terrestrial station is assumed to have
a communication link with a data rate of 800 Mbit/s and
to be located two kilometers away from the local processor,
whereas the HAPS is located at a distance of 20 kilometers
and the data rate is calculated with parameters in Table 5,
the values of which are adapted from [59]. The supported
data rates are determined according to the provided rates,
according to 3GPP TS 36.211.

In our first experiment, we fix the unit / and O size to 1
MB and change the unit P size from 10? to 10° to observe
the effect of using larger sized tasks in terms of processing
requirements. The smallest unit size of 10? results in rela-
tively smaller tasks to be completed in approximately 1073
seconds locally and larger tasks are completed in approxi-
mately one second locally. By contrast, for the largest unit
size of 10%, a small task is completed in approximately 10
seconds locally and a large task completes approximately in
10* seconds (~ 2.7 hours). With a HAPS, however, for the
largest unit size of 10% a small task is completed within 10~
seconds and large tasks are completed in approximately in
100 seconds.

Figure 3 presents the results from our first set of exper-
iments. The label “PROPOSED” represents the proposed
strategy to consider the task characteristics in the cluster
during offloading. As expected, the local computation keeps
growing as the tasks become more computationally intensive.
Yet for terrestrial and aerial stations, the increase in comple-
tion time keeps stable for a few steps since the processing
time of the job is surpassed by the communication time of
the job by a great extent. This results in the communication
time of the job dominating the end-to-end processing time.
But after a few steps, as the tasks in the job get larger, the
terrestrial station and HAPS start to show a similar increase
in end-to-end processing time.

Figure 3 shows the proposed strategy provides, at worst,
as good performance as the best station in each experiment.
This is due to the strategy of offloading according to the job
characteristics and selecting the most appropriate station for
the job to be offloaded to.

In our second experiment, we fix the unit P size to 10* MI
and change the unit / and O sizes from 0.1 MB to 103> MB
to observe the effect of using larger sized tasks in terms of
input and output size. For the fixed task processing size in
this set, a small task can be processed in 0.1 seconds locally,
whereas a big task can be processed in 100 seconds locally
and one second in HAPS.

Figure 4 presents the results from our second set of exper-
iments. As expected, the local computation is observed to
be stable since it is not effected by the / and O size. On the
other hand for terrestrial station the increase in completion
time keeps stable for a few steps since the processing time
of the job surpasses the communication time of the job by
a great extent. Figure 4 also shows the proposed strategy
provides, at worst, as good performance as the best station
in each experiment.
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FIGURE 3. The total processing time vs. the processing requirements of a task.

10000
S
Q
2 1000
Q
£ = = » - ‘a
0
£ 100
(%]
g ———
2 ~8-LOCAL
s 10 ——TERRESTRIAL
= AERIAL
. =>=PROPOSED
0.1 1 10 100 1000

Minimum 1/O size of a task (MB)

FIGURE 4. The total processing time vs. I/O size of a task.

B. SIMULATION WITH REALISTIC JOBS

By using the distributions presented in Table 6 and explained
in Section IV we repeat our experiments by using station
configurations differing only by varying relative processing
powers.

For the results presented in Figure 5, each tick in the x-
axis presents a different base and relative processing power
between the processing stations. Each triplet in the tick label
represents the processing power of each station in MIPS
with respect to a unit processing power. The first element in
the triplet is the processing power of the local station. The
second element is terrestrial station’s processing power, and
the third is the HAPS’ processing power. The unit processing
power we use is 105 MIPS, which corresponds to the MIPS
value of an early Intel Core i7 processor.

In our experiments we limit the / and O size to be at
most one gigabyte when the distribution used (very rarely)
produces a larger value. For the processing power of the
tasks being used, we scale our distribution in two different
ways, so that for Figure 5(a) the largest job is 108 MI in
processing size, whereas for Figure 5(b) the largest job is
10° MI in processing size.
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FIGURE 5. Offloading jobs by the proposed model (a) Results for largest P of
108 M, (b) Results for largest P of 109 ML.

In Figure 5, we have excluded the results of the local
computation, since it always produced the worst results for
the large number of jobs we use in our experiments. Results
in Figure 5 (a) and (b) show that the proposed strategy can
reduce the total processing time than simply offloading all
the jobs to any of the stations. The offloading decisions
in the proposed strategy rely on a realistic model that per-
forms clustering by inter-dependencies instead of arbitrarily
dividing a job for offloading.

C. COMPARISON WITH PER-TASK AD-HOC
ASSIGNMENT

In our experiments, as described earlier, we handle depen-
dencies between tasks in a non-deterministic way, where the
dependent task is suspended until the execution of a depen-
dent task finishes. In this section we present a comparison
between performing the task assignment in a dependency-
cluster based way, as proposed in this paper, and performing
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TABLE 9. Threshold values used in experiments.

Parameters in Fig. 7a

Local Terrestrial Aerial
BY IO > 5 GB I/O < 5 GB I/O <1GBIO
BY PROC <50 x 108 MI < 100 x 106 MI > 100 x 10¢ MI
BY RATIO < 1000 < 10000 > 10000

Parameters in Fig. 7b

Local Terrestrial Aerial
BY IO > 10 GB I/O < 10 GB I/O < 100 MB I/O
BY PROC < 10° MI < 107 MI > 107 MI
BY RATIO < 10 < 1000 > 1000

the assignment considering the characteristics between them
but disregarding the dependencies between the tasks (we
relax the second term of Definition 6). As a base-line we
also included the random assignment where we perform the
assignment without even considering task characteristics.
In Figure 6 we present the proposed model’s performance
over the baseline (random) and ad-hoc (assignment without
dependency consideration) task assignment. Naturally, when
the inter-dependencies are considered, a more performance
task assignment is achieved. Moreover, as typical I/O size
of the task increases, ignoring the inter-dependencies is task
assignment result in a larger performance degradation. This
situation is due to the increase in the communication time
between the base station and the computing stations which
also increases the suspended time of the inter-dependent task.

D. COMPARISON WITH OTHER OFFLOADING
APPROACHES

In Figure 7 we present performance comparison of our
approach with some other possible task dispatching
approaches. Very briefly, the proposed approach uses the
most dominant task characteristic in a cluster to decide where
to offload the cluster. In Figures 7(b) and 7(a) we use vary-
ing values for thresholds over (a) the total amount of input
and output data size of the cluster (BY 10) (b) the total pro-
cessing requirement of the cluster (BY PROC) and (c) ratio
between total processing requirement and total I/O size of
the cluster to decide where to offload the whole cluster (BY
RATIO). The selected set of parameters are given in Table 9.

Figure 7(a) uses an initial setting of the mentioned thresh-
olds which resulted in mostly worse performance than the
proposed approach, which corresponds to the first set of
parameters. An important point to note here is that the
proposed algorithm counts the dominant task characteristic
in a cluster and does not need to set any thresholds in this
final decision procedure. Other approaches need threshold
configuration that may need effort to determine the optimal
values for each different setting.

Figure 7(b) present the results after such an effort of
trials and errors in setting thresholds for the competitive
approaches, by using the second set of parameters. As seen,
the proposed approach still performs as good as the com-
petitive approaches. In a real world setting most of the
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FIGURE 6. Comparison of per-task offloading with relatively growing maximum input/output sizes.
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FIGURE 7. Comparison of the proposed approach with decision by I/O sizes, by processing requirements, and by a ratio between processing requirements and I/O size.

parameters relating to offloading domain (such as relative
processing power of the offloading stations, communication
quality, etc.) can change in time, it may be hard to obtain
optimal parameter configurations for competitive approaches
and rapidly adapt them to these changes. However, proposed
approach is more robust in this sense, it does not need
any special parameter tweaking for changing environment
conditions.

E. COMPARISON WITH FULL CHANNEL CAPACITY
ASSIGNMENT

Our experiments take into consideration the channel capacity
assignment specific to HAPS-based case study that we apply
our model on. We experiment with the channel capacity
assignment to compare the case where maximum channel
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capacity is used with the HAPS communication case in our
experiments. Figure 8 presents the case where the maximum
channel capacity is used for a basic set of experiments that
we perform in our study. As can be seen from thus figure,
by using the maximum rate possible achieves in a slightly
better performance than using the capacity rate assignment
model in our model, as expected.

VI. CONCLUSION AND FUTURE WORK

This paper highlighted the realistic implications for modeling
and provided performance metrics for task completion in
the presence of wireless fading channels for 6G networks,
exemplified via a HAPS-powered multi-access edge comput-
ing scenario. We proposed a realistic task offloading model
through four key observations, based on measurements and
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FIGURE 8. Comparison with full channel capacity usage.

insights provided in the literature. Our observations were
that;

o Tasks cannot be divided into infinitesimal intervals;

« Request and the response size distributions of real-world
tasks may independently vary;

o The computational load of each task is not necessarily
linearly proportional to the request frame size;

« Data transmission rates need to be selected from a set
of discrete values, in accordance with the capacity of
the wireless channel.

Our novel communication and computation offloading model
accurately validates these observations, specifically for the
presence of non-terrestrial network elements. We also
introduced a dynamic offloading algorithm that reflects
the characteristics of the proposed model. Numerical
results demonstrates that the total processing time could
be significantly reduced with respect total processing at
the local host, the base station of the HAPS system.
As future, we plan to extend the network architecture
to include multiple users and multiple networking ele-
ments. Additionally, we plan to investigate energy effi-
ciency aspects of the proposed computational offloading
approach.

Since the model proposed in this study targets an abstract
level, additional open problems include expansion of our
model to meet the needs of specific application domains.
Different task characteristic classes and statistical distribu-
tions may be chosen to address specific domains such as
more I/O intensive applications. Moreover, different domains
may need focusing different aspects of task inter-dependency
resolution and/or scheduling of tasks. For instance, applica-
tions in storage domain contain tasks with heavy I/O based
dependencies where applications of more time-critical nature
need adjustments based on how the tasks are scheduled.
Our model can be used to draw architectural guidelines
on building domain specific approaches in 6G computation
offloading. We believe such models with greater accuracy

1976

will speed up the way to future MEC deployments, making
them a part of our daily lives.
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