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ABSTRACT It has been known that the insufficiency of linear coding in achieving the optimal rate
of the general index coding problem is rooted in its rate’s dependency on the field size. However, this
dependency has been described only through the two well-known matroid instances, namely the Fano and
non-Fano matroids, which, in turn, limits its scope only to the fields with characteristic two. In this paper,
we extend this scope to demonstrate the reliance of linear index coding rate on fields with characteristic
three. By constructing two index coding instances of size 29, we prove that for the first instance, linear
coding is optimal only over the fields with characteristic three, and for the second instance, linear coding
over any field with characteristic three can never be optimal. Then, a variation of the second instance is
designed as the third index coding instance of size 58. For this instance, it is proved that while linear
coding over any field with characteristic three cannot be optimal, there exists a nonlinear code over
the fields with characteristic three, which achieves its optimal rate. Connecting the first and third index
coding instances in two specific ways, called no-way and two-way connections, will lead to two new
index coding instances of size 87 and 91, for which linear coding is outperformed by nonlinear codes.
Another main contribution of this paper is the reduction of the key constraints on the space of the linear
coding for the first and second index coding instances, each of size 29, into a matroid instance with the
ground set of size 9, whose linear representability is dependent on the fields with characteristic three. The
proofs and discussions provided in this paper through using these two relatively small matroid instances
will shed light on the underlying reason causing the linear coding to become insufficient for the general
index coding problem.

INDEX TERMS Index coding, insufficiency of linear coding, nonlinear code, matroid theory, broadcast
with side information.

I. INTRODUCTION

INDEX coding problem was first introduced by Birk and
Kol [1] in the context of satellite communication where

through a noiseless shared channel, a single server is assigned
the task of communicating m messages to multiple users.
While each user requests one distinct message from the
server, it may have prior knowledge about a subset of the
messages requested by other users, which is referred to as
its side information. While sending uncoded messages leads
to the total m transmissions, by taking advantage of users’
side information, the server might be able to satisfy all the

users with a smaller number of transmissions. The canonical
model of index coding problem can be useful in studying
other research areas, including network coding [2], [3], dis-
tributed storage [4], coded caching [5], [6], and topological
interference management [7], [8].

Different settings have been defined for an index coding
instance. An index coding instance is said to be a unicast
instance if each of its messages is requested by a single
user [9]. However, when at least one of its messages is
requested by multiple users, it is referred to as a group-
cast index coding instance [10], [11], [12]. An index coding
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instance is referred to as a symmetric-rate instance if the
rates of its messages are all equal. Otherwise, it is said to
be an asymmetric-rate index coding instance [8].
Index coding schemes are broadly categorized into linear

and nonlinear codes. Although linear index coding has been
the center of attention due to its straightforward encoding
and decoding processes [1], [8], [13], [14], [15], [16], [17],
[18], for the general index coding problem, it can be outper-
formed by nonlinear codes. The insufficiency of linear coding
was proved in the context of network coding [19], where
two network coding instances were provided to illustrate the
reliance of linear coding rate on the fields with characteristic
two. In fact, it was shown that for the first network coding
instance, linear coding is optimal only over the fields with
characteristic two, while for the second instance, linear cod-
ing over any field with characteristic two cannot be optimal.
This implies that the insufficiency of linear coding is due to
the dependency of its rate on the characteristic of the field on
which it is operating. In [20], the authors illustrated how the
constraints on the linear space of the aforementioned network
coding instances can be equivalently modeled as the well-
known matroid instances, namely the Fano and non-Fano
matroids. While the Fano matroid is linearly representable
only over the fields with characteristic two, the non-Fano
matroid has no linear representation over the fields with
characteristic two.
The connection of network coding and matroid theory

with index coding was established in [2] and [3] by pre-
senting a reduction method to convert any network coding
or matroid instance into a groupcast index coding instance.
In fact, it was shown that the Fano and non-Fano matroids
can be equivalently mapped into two index coding instances.
In [8], a systematic technique of turning any groupcast index
coding instance into an asymmetric-rate unicast index cod-
ing instance was proposed, implying the insufficiency of
linear coding for the unicast index coding. This will convert
the Fano and non-Fano matroids into two asymmetric-rate
unicast index coding instances. In [21], two symmetric-rate
unicast index coding instances were directly built for which
linear coding can be optimal only over the fields with char-
acteristic two for one and odd characteristic for the other.
In [22], it was shown that for specific index coding structures,
the gap between the rate of optimal linear code and nonlinear
code can grow linearly with the number of messages, under-
scoring the importance of nonlinear codes. In terms of the
scalar linear coding problem, the authors in [23] provided
an explicit way of constructing index coding instances to
show that the gap between the linear coding rate over dif-
ferent field sizes can be significant, highlighting the strong
dependence of scalar linear coding rate on the field’s char-
acteristic. However, for the vector index coding problem, the
scope of linear coding rate’s dependency on the field size
has been limited to only the fields with characteristic two.
In this paper, this scope is extended to demonstrate the

reliance of linear coding rate on the fields with characteristic
three.

First, by directly constructing two symmetric-rate unicast
index coding instances of size 29, we prove that for the first
instance, linear coding is optimal only over the fields with
characteristic three, while for the second instance, linear
coding over any field with characteristic three cannot be
optimal. It is shown that for each index coding instance, the
main constraints on the column space of its encoding matrix
can be captured by a matroid instance with the ground set of
size 9. Presenting the proofs using these two relatively small
matroids is useful to point out the key constraints causing
the linear coding rate to become dependent on the field size.
In addition, applying the mapping methods in [2] and [8]
to these matroids will lead to asymmetric-rate unicast index
coding instances, each consisting of more than 1000 users,
while the corresponding symmetric-rate unicast index coding
instances constructed in this paper are significantly simpler
as each instance is of size 29.
Second, we design the third symmetric-rate unicast index

coding instance of size 58, which is a variation of the second
index coding instance. It is proved that while linear coding
over the fields with characteristic three cannot achieve its
optimal rate, there exists an optimal nonlinear code over the
fields with characteristic three. It is shown that the main
constraints on the linear space of its encoding matrix can be
captured by a matroid instance with the ground set of size
18, which is not linearly representable over any fields with
characteristic three.
Finally, connecting the first and third index coding

instances in two specific ways, namely no-way and two-way
connections, will result in two new index coding instances
of size 87, 91 for which linear coding is outperformed by
nonlinear codes.
The contributions and organization of this paper are

summarized in Table 1.

II. SYSTEM MODEL AND BACKGROUND
A. NOTATION
Small letters such as n denote an integer where [n] �
{1, . . . , n} and [n : m] � {n, n+ 1, . . .m} for n < m. Capital
letters such as L denote a set, with |L| denoting its cardi-
nality. Symbols in bold face such as l and L, respectively,
denote a vector and a matrix, with rank(L) and col(L) denot-
ing the rank and column space of matrix L, respectively. A
calligraphic symbol such as L denotes a set whose elements
are sets.
We use Fq to denote a finite field of size q and write

F
n×m
q to denote the vector space of all n×m matrices over

the field Fq. In denotes the identity matrix of size n×n, and
0n represents an n× n matrix whose elements are all zero.

B. SYSTEM MODEL
Consider a broadcast communication system in which a
server transmits a set of mt messages X = {xji, i ∈ [m], j ∈
[t]}, xji ∈ X , to a number of users U = {ui, i ∈ [m]}
through a noiseless broadcast channel. Each user ui wishes
to receive a message of length t, Xi = {xji, j ∈ [t]} and
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TABLE 1. Contributions and organization of the paper.

may have a priori knowledge of a subset of the messages
Si := {xjl, l ∈ Ai, j ∈ [t]}, Ai ⊆ [m]\{i}, which is referred to
as its side information set. The main objective is to minimize

the number of coded messages which is required to be
broadcast so as to enable each user to decode its requested
message. An instance of index coding problem I can be
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either characterized by the side information set of its users
as I = {Ai, i ∈ [m]}, or by their interfering message set
Bi = [m]\(Ai ∪ {i}) as I = {Bi, i ∈ [m]}.

C. GENERAL INDEX CODE
Definition 1 (CI : Index Code for I): Given an instance of
index coding problem I = {Ai, i ∈ [m]}, a (t, r) index code
is defined as CI = (φI , {ψ i

I}), where
• φI : Xmt → X r is the encoding function which maps
the mt message symbol xji ∈ X to the r coded messages
as Y = {y1, . . . , yr}, where yk ∈ X ,∀k ∈ [r].

• ψ i
I : represents the decoder function, where for each

user ui, i ∈ [m], the decoder ψ i
I : X r × X |Ai|t → X t

maps the received r coded messages yk ∈ Y, k ∈ [r]
and the |Ai|t messages xjl ∈ Si in the side information
to the t messages ψ i

I(Y, Si) = {x̂ji, j ∈ [t]}, where x̂ji is
an estimate of xji.

Definition 2 [β(CI ) Broadcast Rate of CI]: Given an
instance of the index coding problem I, the broadcast rate
of a (t, r) index code CI is defined as β(CI) = r

t .
Definition 3 [β(I) Broadcast Rate of I]: Given an instance

of the index coding problem I, the broadcast rate β(I) is
defined as

β(I) = inf
t

inf
CI
β(CI). (1)

Thus, the broadcast rate of any index code CI provides an
upper bound on the broadcast rate of I, i.e., β(I) ≤ β(CI).

D. LINEAR INDEX CODE
Let x = [x1, . . . , xm]T ∈ F

mt×1
q denote the vector message.

Definition 4 (Linear Index Code): Given an instance of
the index coding problem I = {Bi, i ∈ [m]}, a (t, r) linear
index code is defined as LI = (H, {ψ i

I}), where
• H : Fmt×1

q → F
r×1
q is the r×mt encoding matrix which

maps the message vector x ∈ F
mt×1
q to a coded message

vector ȳ = [y1, . . . , yr]T ∈ F
r×1
q as follows

y = Hx =
∑

i∈[m]

H{i}xi.

Here H{i} ∈ F
r×t
q is the local encoding matrix of the i-th

message xi such that H = [H{1} · · · H{m} ] ∈ F
r×mt
q .

• ψ i
I represents the linear decoder function for user ui, i ∈

[m], where ψ i
I(y, Si) maps the received coded message

y and its side information messages Si to x̂i, which is
an estimate of the requested message vector xi.

Proposition 1 [24]: The necessary and sufficient condition
for linear decoder ψ i

I ,∀i ∈ [m] to correctly decode the
requested message vector xi is

rank
(
H{i}∪Bi

)
= rank

(
HBi

)
+ t, (2)

where HL denotes the matrix [H{l1} · · · H{l|L|} ] for the
given set L = {l1, . . . , l|L|}.

Definition 5 [λq(LI ) Linear Broadcast Rate of LI Over
Fq]: Given an instance of index coding problem I, the linear
broadcast rate of a (t, r) linear index code LI over field Fq

is defined as λq(LI) = r
t .

Definition 6 [λq(I) Linear Broadcast Rate of I Over Fq]:
Given an instance of index coding problem I, the linear
broadcast rate λq(I) over field Fq is defined as

λq(I) = inf
t

inf
LI
λq(LI).

Definition 7 [λ(I) Linear Broadcast Rate for I]: Given
an instance of index coding problem I, the linear broadcast
rate is defined as

λ(I) = min
q
λq(I). (3)

Definition 8 (Scalar and Vector Linear Index Code): The
linear index code CI is said to be scalar if t = 1. Otherwise,
it is called a vector (or fractional) code. For scalar codes,
we use xi = x1

i , i ∈ [m], for simplicity.

E. GRAPH DEFINITIONS
Given an index coding instance I, the following concepts
are defined based on its interfering message sets, which are,
in fact, related to its graph representation [21].
Definition 9 (Independent Set of I): We say that set M ⊆

[m] is an independent set of I if Bi ∩ M = M\{i} for all
i ∈ M.
Definition 10 (Minimal Cyclic Set of I): Let M = {ij, j ∈

[|M|]} ⊆ [m]. Now, M is referred to as a minimal cyclic set
of I if

Bij ∩M =
{
M\{ij, ij+1

}
, j ∈ [|M| − 1],

M\{i|M|, i1
}
, j = i|M|.

(4)

Definition 11 (Acyclic Set of I): We say that M ⊆ [m] is
an acyclic set of I, if none of its subsets M′ ⊆ M forms a
minimal cyclic set of I. We note that each independent set
is an acyclic set as well.
Proposition 2 [25]: Let I = {Bi, i ∈ [m]}. It can be shown

that

• if set [m] is an acyclic set of I, then λq(I) = β(I) = m.
• if set [m] is a minimal cyclic set of I, then λq(I) =
β(I) = m− 1.

Definition 12 (Maximum Acyclic Induced Subgraph
(MAIS) of I): Let M be the set of all sets M ⊆ [m] which
are acyclic sets of I. Then, set M ∈ M with the maxi-
mum size |M| is referred to as the MAIS set of I, and
βMAIS(I) = |M| is called the MAIS bound for λq(I), as we
always have [26]

λq(I) ≥ βMAIS(I). (5)

Remark 1: Equation (5) establishes a sufficient condition
for optimality of linear coding rate as follows. Given an
index coding instance I, if λq(I) = βMAIS(I), then linear
coding rate is optimal for I. In this paper, the encoding
matrix which achieves this optimal rate is denoted by H∗.
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Example 1: Consider the index coding instance I =
{Bi, i ∈ [4]} where

B1 = {3},B2 = {1},B3 = {2},B4 = {1, 2, 3}. (6)

Now, it can be seen that set {1,2,3} is a minimal cyclic
set of I, and each set {1, 2, 4}, {1, 3, 4} and {2, 3, 4} is an
acyclic and also a MAIS set of I. Thus, βMAIS(I) = 3.
Now, it can be easily verified that the following encoding
matrix H∗ achieves the MAIS bound, and so, it is optimal
for I

H∗ =
⎡

⎣
1 0 1 0
0 1 1 0
0 0 0 1

⎤

⎦.

F. OVERVIEW OF MATROID THEORY
Definition 13 (N : Matroid Instance [2], [27]): A matroid
instance N = {f (N),N ⊆ [n]} is a set of functions f : 2[n] →
{0, 1, 2, . . .} that satisfy the following three conditions:

f (N) ≤ |N|, ∀N ⊆ [n],

f (N1) ≤ f (N2), ∀N1 ⊆ N2 ⊆ [n],

f (N1 ∪ N2)+ f (N1 ∩ N2) ≤ f (N1)+ f (N2), ∀N1,N2 ⊆ [n].

(7)

Here, set [n] and function f (·), respectively, are called the
ground set and the rank function of N . The rank of matroid
N is defined as f (N ) = f ([n]).
Definition 14 (Basis and Circuit Sets of N ): Consider a

matroid N of rank f (N ). We say that N ⊆ [n] is an inde-
pendent set of N if f (N) = |N|. Otherwise, N is said to be
a dependent set. A maximal independent set N is referred
to as a basis set. A minimal dependent set N is referred to
as a circuit set. Let sets B and C, respectively, denote the
set of all basis and circuit sets of N . It can be shown that

f (N ) = f (N) = |N|, ∀N ∈ B,
f (N\{i}) = |N| − 1, ∀i ∈ N, ∀N ∈ C. (8)

Definition 15 [(t)-linear Representation of N Over Fq]:
We say that matroid N = {f (N),N ⊆ [n]} of rank f (N ) has
a (t)-linear representation over Fq if there exists a matrix
H = [H{1} · · · H{n} ] ∈ F

f (N )t×nt
q such that

rank
(
HN) = f (N)t, ∀N ⊆ [n]. (9)

Now, based on Definitions 14 and 15, the concepts of
basis and circuit sets can also be defined for matrix H.
Definition 16 (Basis and Circuit Sets of H): Let N ⊆ [n].

We say that N is an independent set of H, if rank(HN) =
|N|t, otherwise N is a dependent set of H. The independent
set N is a basis set of H if rank(H) = rank(HN) = |N|t.
The dependent set N is a circuit set of H if

rank
(
HN\{j}) = rank

(
HN) = (|N| − 1)t, ∀j ∈ N, (10)

which requires that

H{j} =
∑

i∈N\{j}
H{i}Mj,i (11)

where each Mj,i is invertible.

Definition 17 (Scalar and Vector Linear Representation):
If matroid N has linear representation with t = 1, it is
said that N has a scalar linear representation. Otherwise,
the linear representation is called a vector representation.
Example 2: Consider matroid instance N with the ground

set of size n = 3 and rank f (N ) = 2 such that sets
{1, 2}, {1, 3}, {2, 3} are basis sets, and set {1, 2, 3} is a cir-
cuit set. Then, the following matrix H is a scalar linear
representation of N

H =
[

1 0 1
0 1 1

]
.

Remark 2: Note that the condition (2) requires that

rank
(
H{i}) = t, ∀i ∈ [m].

Thus, for matrix H, which is a linear representation of
matroid N with the ground set [n], we also assume that

rank
(
H{i}) = t, ∀i ∈ [n]. (12)

Remark 3: According to Definition 13, to define a matroid
instance N = {f (N),N ⊆ [n]}, a nonnegative integer value
must be assigned to f (N) for each set N ⊆ [n], such that the
three conditions in (7) are met. However, a matroid instance
can also be characterized by determining some of its basis
and circuit sets. This is because basis and circuit sets along
with equations (7) and (8) can determine the value of f (N)
for each set N ⊆ [n]. In fact, this representation is more
commonly used to characterize matroid instances, including
the Fano and non-Fano matroids [20]. The matroid instances
in this paper will also be characterized using their basis
and circuit sets. Example 8 is provided in Appendix A to
elaborate more on this.

1) THE FANO AND NON-FANO MATROID INSTANCES NF
AND NNF

Definition 18 (Fano Matroid Instance NF [20]): Consider
matroid instance NF = {(N, f (N)),N ⊆ [n]} with n = 7
and f (NF) = 3. Now, matroid NF is referred to as the Fano
matroid instance if set N0 = [3] is a basis set, and the
following sets Ni, i ∈ [7] are circuit sets.

N1 = {1, 2, 4},
N2 = {1, 3, 5},
N3 = {2, 3, 6},
N4 = {1, 6, 7},
N5 = {2, 5, 7},
N6 = {3, 4, 7},
N7 = {4, 5, 6}.

Proposition 3 [20]: The Fano matroid instance NnF is
linearly representable over field Fq if and only if field Fq

does have characteristic two.
Definition 19 (Non-Fano Matroid Instance NnF [20]):

Consider matroid instance NnF = {(N, f (N)),N ⊆ [n]} with
n = 7 and f (NnF) = 3. Now, matroid NnF is referred to
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as the non-Fano matroid instance if each set N0 = [3] and
N7 = {4, 5, 6} is a basis set, and the following sets Ni, i ∈ [6]
are circuit sets.

N1 = {1, 2, 4},
N2 = {1, 3, 5},
N3 = {2, 3, 6},
N4 = {1, 6, 7},
N5 = {2, 5, 7},
N6 = {3, 4, 7}.

Proposition 4 [20]: The non-Fano matroid instance NnF
is linearly representable over field Fq if and only if field Fq

does have odd characteristic (i.e., any characteristic other
than characteristic two).
It is worth noting that the Fano and non-Fano matroid

instances are exactly the same, with only differing in set
N7 = {4, 5, 6}. While set N7 is a circuit set for the Fano
matroid, it is a basis set for the non-Fano matroid.

III. MAIN RESULTS
This section presents two new index coding instances of
size 87 and 91 for which linear coding is outperformed
by nonlinear codes. Each instance is composed of two index
coding subinstances, which are connected using two specific
ways, referred to as no-way and two-way connections. In
the following sections of this paper, it will be proved that
for one of these subinstances, linear coding is optimal only
over the fields with characteristic three, and for the other
instance, while linear coding cannot be optimal over the
fields with characteristic three, there exists a nonlinear code
over the fields with characteristic three, which achieves its
optimal rate. This implies that although linear coding over
any field cannot simultaneously be optimal for these two
subinstances, there exists a nonlinear code over the fields
with characteristic three, which can achieve their optimal
rate at the same time.
Definition 20 (I1 � I2 : No-way Connection of I1 and

I2): Given two index coding instances I1 = {B1
i , i ∈ [m1]}

and I2 = {B2
i , i ∈ [m2]}, no-way connection of I1 and I2,

denoted by I1 � I2, is defined as a new index coding
instance I = {Bi, i ∈ [m]}, where m = m1 + m2 and

⎧
⎨

⎩

Bi = B1
i ∪ ([m]\[m1]), ∀i ∈ [m1],

Bi+m1 = B2
i ∪ [m1], ∀i ∈ [m2],

which means that the new instance I is a concatenation of
the two subinstances I1 and I2 such that each user in I1
has all the messages requested by the users in I2 in its
interfering message set and vice versa.
Definition 21 (I1 ↔ I2 : Two-way Connection of I1 and

I2): Given two index coding instances I1 = {B1
i , i ∈ [m1]}

and I2 = {B2
i , i ∈ [m2]}, two-way connection of I1 and

I2, denoted by I1 ↔ I2, is defined as a new index coding

instance I ′ = {B′
i, i ∈ [m′]}, where m′ = m1 + m2 and
{
B′
i = B1

i , ∀i ∈ [m1],
B′
i+m1

= B2
i , ∀i ∈ [m2],

which means that the new instance I ′ is a concatenation of
the two subinstances I1 and I2 such that each user in I1
has all the messages requested by the users in I2 in its side
information set and vice versa.
Proposition 5 (Blasiak et al. [22]): Let λq(I1) and λq(I2),

respectively, denote the linear broadcast rate of I1 and I2
over Fq. Then, for the linear broadcast rate of I = I1 � I2
and I ′ = I1 ↔ I2 over Fq, we have

{
λq(I) = λq(I1)+ λq(I2),

λq
(
I ′) = max

{
λq(I1), λq(I2)

}
.

Theorem 1: Other than the index coding instances in [2]
and [21], two new index coding instances of size 87 and
91 are designed in this paper, for which linear coding is
insufficient for achieving their broadcast rate.
Proof: We prove that for the following two index coding

instances I = {Bi, i ∈ [m = 87]}, I ′ = {B′
i, i ∈ [m′ = 91]},

linear coding is outperformed by the nonlinear codes:
{
I = I1 � I3,

I ′ = (I1 � Ia) ↔ I3,

where subinstance Ia is an acyclic index coding instance
of size 4, subinstances I1 and I3 are of size 29 and
58, respectively, and will be characterized, respectively, in
Sections IV-C and V, with the following properties:

• In Theorem 2, it is proved that λq(I1) = β(I1) = 4 if
and only if field Fq does have characteristic three.

• In Theorem 4, it is proved that λq(I3) = β(I3) = 8 if
and only if field Fq does have any characteristic other
than characteristic three.

From Theorems 2 and 4, it is concluded that linear coding
over any field cannot simultaneously be optimal for both
subinstances I1 and I3. This is because if the characteristic
of Fq is three, then λq(I3) > 8, and if it is not three, then
λq(I1) > 4.
From Proposition 2, λq(Ia) = 4 over Fq with any

characteristic.
Thus, according to Proposition 5, the linear broadcast rate

of I and I ′ will be
{
λ(I) = minq

(
λq(I1)+ λq(I3)

)
> 12,

λ
(
I ′) = minq max

{
λq(I1)+ 3, λq(I3)

}
> 8.

(13)

Then,

• In Proposition 8, we show that for subinstance I1,
there is an optimal scalar linear code with the encoding
matrix H∗ ∈ F

4×29
q and four output coded messages

{y1, y2, y3, y4}.
• In Proposition 15, for subinstance I3, we design an
optimal nonlinear code with the encoder φI3 and eight
output coded messages {z1, . . . , z8}.
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• According to Proposition 2, λq(Ia) = 4. Assume that
the coded messages {y5, y6, y7, y8} are the optimal linear
code for Ia.

Now, it can be easily checked that the following coded
messages are the optimal code for I and I ′:

{
I : {y1, . . . , y4} ∪ {z1, . . . , z8},
I ′ : {y1 + z1, . . . , y8 + z8}, (14)

which completes the proof.

IV. THE DEPENDENCY OF LINEAR CODING RATE ON
THE FIELDS WITH CHARACTERISTIC THREE
This section presents two index coding instances I1 and I2.
We prove that while linear coding is optimal for I1 only over
the fields with characteristic three, it can never be optimal
for I2 over any field with characteristic three. To prove this,
we first define two matroid instances N1 and N2 and show
that their linear representation is dependent on the fields with
characteristic three. Then, we show that the main constraints
on the column space of the encoding matrices of I1 and I2
can be reduced to the constraints on the column space of
the matrices, which are the linear representation of N1 and
N2, respectively.

A. MATROID INSTANCES N1 AND N2
1) MATROID INSTANCE N1

Definition 22 (Matroid Instance N1): Consider matroid
instance N1 = {f (N),N ⊆ [n]}, where n = 9, f (N1) = 4,
set N0 = [4] is a basis, and the following Ni’s, i ∈ [9], are
circuit sets:

N1 = {1, 2, 3, 5},
N2 = {1, 2, 4, 6},
N3 = {1, 3, 4, 7},
N4 = {2, 3, 4, 8},
N5 = {1, 8, 9},
N6 = {2, 7, 9},
N7 = {3, 6, 9},
N8 = {4, 5, 9},
N9 = {5, 6, 7, 8}. (15)

Proposition 6: Matroid instance N1 is linearly repre-
sentable over field Fq, if and only if field Fq does have
characteristic three.
Proof: For the if condition, it can be checked that matrix

HN ∈ F
4×9
q , shown in Figure 1, is a scalar linear represen-

tation of matroid instance N1, where Fq has characteristic
three. The key part of HN is its submatrix HN9={5,6,7,8}

N ,
which is as follows

HN9
N =

⎡

⎢⎢⎣

1 1 1 0
1 1 0 1
1 0 1 1
0 1 1 1

⎤

⎥⎥⎦ ∈ F
4×4
q . (16)

FIGURE 1. HN ∈ F
4×9
q : If Fq has characteristic three (such as GF (3)), then HN is

a scalar linear representation of matroid N1, and if Fq does have any characteristic
other than characteristic three (such as GF (2)), then HN is a scalar linear
representation of matroid N2.

First, it can be seen that

rank
(
HN9\{i}
N

)
= 3, ∀i ∈ N9. (17)

Second, applying the Gaussian elimination method to HN9
N

will result in⎡

⎢⎢⎣

1 1 1 0
0 − 1 0 1
0 0 − 1 1
0 0 0 1 + 1 + 1

⎤

⎥⎥⎦ ∈ F
4×4
q . (18)

Now, if field Fq has characteristic three (such as GF(3)),
then 1+1+1 will be equal to zero, which leads to

rank
(
HN9
N
)

= 3. (19)

From (17) and (19), it is observed that set N9 is a circuit
set of HN ∈ F

4×9
q if field Fq has characteristic three.

The converse is proved as follows.
First, since set [4] is a basis set, we get

rank
(
H[4]

)
= 4t. (20)

Since each Ni, i ∈ [9] forms a circuit set, we have

N1 → H{5} = H{1}M5,1 +H{2}M5,2 +H{3}M5,3, (21)

N2 → H{6} = H{1}M6,1 +H{2}M6,2 +H{4}M6,4, (22)

N3 → H{7} = H{1}M7,1 +H{3}M7,3 +H{4}M7,4, (23)

N4 → H{8} = H{2}M8,2 +H{3}M8,3 +H{4}M8,4, (24)

N5 → H{9} = H{1}M9,1 +H{8}M9,8, (25)

N6 → H{9} = H{2}M9,2 +H{7}M9,7, (26)

N7 → H{9} = H{3}M9,3 +H{6}M9,6, (27)

N8 → H{9} = H{4}M9,4 +H{5}M9,5, (28)

N9 → H{8} = H{5}M8,5 +H{6}M8,6 +H{7}M8,7, (29)

where all matrices Mj,i are invertible. Now, in (25)-(28), we
replace H{5},H{6},H{7} and H{8}, respectively, with their
equal terms in (21)-(24). Thus, H{9} will be equal to

H{9} = H{1}M9,1 +
(
H{2}M8,2 +H{3}M8,3 +H{4}M8,4

)
M9,8,

H{9} = H{2}M9,2 +
(
H{1}M7,1 +H{3}M7,3 +H{4}M7,4

)
M9,7,

H{9} = H{3}M9,3 +
(
H{1}M6,1 +H{2}M6,2 +H{4}M6,4

)
M9,6,

H{9} = H{4}M9,4 +
(
H{1}M5,1 +H{2}M5,2 +H{3}M5,3

)
M9,5.

Now, due to (20), the above four equations, representing
H{9}, are all equal only if their coefficients of H{1},H{2},H{3}
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and H{4}, are equal. Thus, by equating the coefficients of
H{1},H{2},H{3} and H{4}, respectively, we have

M9,1 = M5,1M9,5 = M6,1M9,6 = M7,1M9,7, (30)

M9,2 = M5,2M9,5 = M6,2M9,6 = M8,2M9,8, (31)

M9,3 = M5,3M9,5 = M7,3M9,7 = M8,3M9,8, (32)

M9,4 = M6,4M9,6 = M7,4M9,7 = M8,4M9,8. (33)

Now, we have

(30) → M9,5 = M−1
5,1M6,1M9,6 = M−1

5,1M7,1M9,7, (34)

(31) → M9,5 = M−1
5,2M6,2M9,6 = M−1

5,2M8,2M9,8, (35)

(32) → M9,5 = M−1
5,3M7,3M9,7 = M−1

5,3M8,3M9,8. (36)

Thus,

(34), (35) → M−1
5,1M6,1 = M−1

5,2M6,2, (37)

(35), (36) → M−1
5,2M8,2 = M−1

5,3M8,3, (38)

(34), (36) → M−1
5,1M7,1 = M−1

5,3M7,3. (39)

On the other hand, in (29), we replace H{5},H{6},H{7} and
H{8}, with their equal terms in (21)-(24). By equating the
coefficients of H{1},H{2},H{3} and H{4}, we get

0t = M5,1M8,5 +M6,1M8,6 +M7,1M8,7, (40)

M8,2 = M5,2M8,5 +M6,2M8,6, (41)

M8,3 = M5,3M8,5 +M7,3M8,7, (42)

M8,4 = M6,4M8,6 +M7,4M8,7. (43)

Now, if (41) and (42) are multiplied by M−1
5,2 and M−1

5,3,
respectively, we have

M−1
5,2M8,2 = M8,5 +M−1

5,2M6,2M8,6, (44)

M−1
5,3M8,3 = M8,5 +M−1

5,3M7,3M8,7. (45)

Now, combining (38), (44) and (45) results in

M−1
5,2M6,2M8,6 = M−1

5,3M7,3M8,7 (46)

→ M−1
5,1M6,1M8,6 = M−1

5,1M7,1M8,7 (47)

→ M6,1M8,6 = M7,1M8,7, (48)

where (47) is due to (37) and (39).
Now, we prove M5,1M8,5 = M7,1M8,7. From (31)-(33),

we have

(30) → M9,6 = M−1
6,1M5,1M9,5 = M−1

6,1M7,1M9,7, (49)

(31) → M9,6 = M−1
6,2M5,2M9,5 = M−1

6,2M8,2M9,8, (50)

(33) → M9,6 = M−1
6,4M7,4M9,7 = M−1

6,4M8,4M9,8. (51)

Thus,

(49), (50) → M−1
6,1M5,1 = M−1

6,2M5,2, (52)

(50), (51) → M−1
6,2M8,2 = M−1

6,4M8,4, (53)

(49), (51) → M−1
6,1M7,1 = M−1

6,4M7,4. (54)

If (41) and (43) are multiplied by M−1
6,2 and M−1

6,4, respec-
tively, we have

M−1
6,2M8,2 = M−1

6,2M5,2M8,5 +M8,6, (55)

M−1
6,4M8,4 = M−1

6,4M7,4M8,7 +M8,6. (56)

Since, based on (53), M−1
6,2M8,2 = M−1

6,4M8,4, (55) and (56)
will lead to

M−1
6,2M5,2M8,5 = M−1

6,4M7,4M8,7 (57)

→ M−1
6,1M5,1M8,5 = M−1

6,1M7,1M8,7, (58)

→ M5,1M8,5 = M7,1M8,7, (59)

where (58) is due to (52) and (54).
Now, (40), (48) and (59) will lead to

0t = M7,1M8,7 +M7,1M8,7 +M7,1M8,7

= (It + It + It)M7,1M8,7, (60)

which is possible only over the fields with characteristic
three as both M7,1 and M8,7 are invertible. This completes
the proof.

2) MATROID INSTANCE N2

Definition 23 (Matroid Instance N2): Consider matroid
instance N2 = {f (N),N ⊆ [n]}, where n = 9, f (N2) = 4,
each set N0 = [4] and N9 = {5, 6, 7, 8} forms a basis, and
the following Ni’s, i ∈ [8], are circuit sets:

N1 = {1, 2, 3, 5},
N2 = {1, 2, 4, 6},
N3 = {1, 3, 4, 7},
N4 = {2, 3, 4, 8},
N5 = {1, 8, 9},
N6 = {2, 7, 9},
N7 = {3, 6, 9},
N8 = {4, 5, 9}. (61)

It is worth noting that matroid instances N1 and N2 are
exactly the same, with only differing in set N9 = {5, 6, 7, 8}.
While set N9 is a circuit set for matroid instance N1, it is a
basis set for matroid instance N2.
Proposition 7: Matroid instance N2 is linearly repre-

sentable over field Fq if and only if field Fq does have
any characteristic other than characteristic three.
Proof: For the if condition, it can be verified that matrix

HN ∈ F
4×9
q , shown in Figure 1, is a scalar linear represen-

tation of N2, where Fq does have any characteristic other
than characteristic three. The key part of HN is its submatrix
HN9={5,6,7,8}
N in (16). From (18), it can be seen that if field

Fq has any characteristic other than three (such as GF(2)),
then 1 + 1 + 1 will be a nonzero element, leading to

rank
(
HN9
N
)

= 4.

This means that set N9 is a basis set of HN ∈ F
4×9
q if field

Fq has any characteristic other than characteristic three.
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The converse is proved as follows.
Since sets N0, . . . ,N8 in matroid N2 are exactly the same

as the sets in matroid N1, equations (30)-(36) can also be
derived for matroidN2. Now, since matricesM5,j,M6,j,M7,j,
M8,j are invertible for all j ∈ [3], then according to
equations (34), (35) and (36), we have

col
(
M9,5

) = col
(
M9,6

) = col
(
M9,7

) = col
(
M9,8

)
. (62)

Now, equations (62) and (30)-(33) will lead to

col
(
M9,1

) = col
(
M9,2

) = col
(
M9,3

) = col
(
M9,4

)
. (63)

Thus, each M9,j, j ∈ [4] must be invertible, since otherwise,
it leads to rank(H{9}) < t, which contradicts (12) for i = 9.
Now, assuming that the field has characteristic three,

(30)-(33), respectively, will result in

0t = M5,1M9,5 +M6,1M9,6 +M7,1M9,7, (64)

2M8,2M9,8 = M5,2M9,5 +M6,2M9,6, (65)

2M8,3M9,8 = M5,3M9,5 +M7,3M9,7, (66)

2M8,4M9,8 = M6,4M9,6 +M7,4M9,7, (67)

which can be rewritten as

2

⎡

⎢⎢⎣

0t
M8,2
M8,3
M8,4

⎤

⎥⎥⎦M9,8 =

⎡

⎢⎢⎣

M5,1
M5,2
M5,3
0t

⎤

⎥⎥⎦M9,5

+

⎡

⎢⎢⎣

M6,1
M6,2
0t

M6,4

⎤

⎥⎥⎦M9,6 +

⎡

⎢⎢⎣

M7,1
0t

M7,3
M7,4

⎤

⎥⎥⎦M9,7,

which means that

2H{8}M9,8 = H{5}M9,5 +H{6}M9,6 +H{7}M9,7. (68)

Now, since each M9,5,M9,6,M9,7 and M9,8 is invert-
ible, from (68), it is concluded that set {5, 6, 7, 8} forms
a circuit set, which contradicts the assumption that set
N9 = {5, 6, 7, 8} is a basis set of matroid N2. This completes
the proof.

B. ON THE REDUCTION PROCESS FROM INDEX
CODING TO MATROID
In this subsection, through Lemmas 1-5, we establish some
reduction techniques to map specific constraints on the col-
umn space of the encoder matrix of an index coding instance
to the constraints on the column space of the matrix, which
is a linear representation of a matroid instance. Proofs of
Lemmas 1-5 are provided in Appendix B.
Remark 4: Note that the reduction technique from matroid

to index coding, proposed in [2], requires all the basis sets
B and circuit sets C of a matroid to map the constraints
on its linear representation matrix to the constraints on the
encoding matrix of an index coding instance. This results in
a groupcast index coding instance, with significantly high
number of users. For example, applying this method to
matroid instances N1 and N2 results in two groupcast index

coding instances, each with more than 300 users. Moreover,
applying the reduction method in [8] (from groupcast to uni-
cast index coding instance) will lead to two asymmetric-rate
unicast index coding instances, each comprising more than
1000 users. However, in the reduction techniques in this
paper (Lemmas 1-5), we efficiently use some specific con-
straints to build the two symmetric-rate unicast index coding
instances I1 and I2, containing only 29 users.
In this subsection, we assume that M ⊆ [m], i, l ∈ M, and

j ∈ [m]\M.
Lemma 1: Assume M is an acyclic set of I. Then, the

condition in (2) for all i ∈ M requires rank(HM) = |M|t,
implying that M must be an independent set of H.
Lemma 2: Let M be a minimal cyclic set of I. To have

rank(HM) = (|M| − 1)t, M must be a circuit set of H.
Example 3: Consider the index coding instance I =

{Bi, i ∈ [4]}, where
B1 = {2, 3}, B2 = {3, 4},
B3 = {1, 4}, B4 = {1, 2}. (69)

First, since set [3] is an acyclic set of I, according to
Lemma 1, we must have rank(H[3]) = 3t. Besides, set [4] is
a minimal cyclic set of I. To have rank(H[4]) = 3t, accord-
ing to Lemma 2, set [4] must be a circuit set of H. It can be
easily seen that the users can be all satisfied by the following
encoder matrix

H =
⎡

⎣
1 0 0 1
0 1 0 1
0 0 1 1

⎤

⎦. (70)

Lemma 3: Assume M is an independent set of I, and
j ∈ Bi,∀i ∈ M\{l} for some l ∈ M. Then, if col(H{j}) ⊆
col(HM), we must have col(H{j}) = col(H{l}).
Example 4: Consider the index coding instance I =

{Bi, i ∈ [4]}, where
B1 = {2, 3}, B2 = {1, 3, 4}, B3 = {1, 2, 4}, B4 = ∅.

Since set [3] is an independent set of I, Lemma 1 requires
that rank(H[3]) = 3t. Now, if we desire rank(H[4]) = 3t,
then we must have col(H{4}) ⊆ col(H[3]). Since 4 ∈ Bi, i ∈
[3]\{1}, according to Lemma 3, we must have col(H{4}) =
col(H{1}). It can be easily checked that the following encoder
matrix can satisfy all the four users

⎡

⎣
1 0 0 1
0 1 0 0
0 0 1 0

⎤

⎦. (71)

Lemma 4: Let M ⊆ [m] and j ∈ [m]\M. Assume that

(i) M is an independent set of H,
(ii) col(H{j}) ⊆ col(HM),
(iii) M forms a minimal cyclic set of I,
(iv) j ∈ Bi,∀i ∈ M.

Now, the condition in (2) for all i ∈ [m] requires set {j} ∪M
to be a circuit set of H.
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FIGURE 2. H∗ ∈ F
4×29
q : If Fq does have characteristic three (such as GF (3)), then H∗ is an encoding matrix for the index coding instance I1, and if Fq does have any

characteristic other than characteristic three (such as GF (2)), then H∗ is an encoding matrix for the index coding instance I2.

Example 5: Consider the index coding instance I =
{Bi, i ∈ [4]}, where

B1 = {2, 4},B2 = {3, 4},B3 = {1, 4},B4 = ∅. (72)

Assume that for the encoder matrix H, we have rank(H[3]) =
3t, as follows

⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦.

It can be seen that set [3] is a minimal cyclic set of I. Now,
if we desire col(H{4}) ⊆ col(H[3]), due to 4 ∈ Bi, i ∈ [3],
set [4] must be a circuit set of H, as follows

⎡

⎣
1 0 0 1
0 1 0 1
0 0 1 1

⎤

⎦.

Lemma 5: Assume for matrix H ∈ F
4t×9t
q ,

(i) set [4] is a basis set,
(ii) each set {1, 2, 3, 5}, {1, 2, 4, 6}, {1, 3, 4, 7}, {2, 3, 4, 8}

is a circuit set,
(iii)

col
(
H{9}) ⊆ col

(
H{4,5}),

col
(
H{9}) ⊆ col

(
H{3,6}),

col
(
H{9}) ⊆ col

(
H{2,7}),

col
(
H{9}) ⊆ col

(
H{1,8}).

Then, each set {1, 8, 9}, {2, 7, 9}, {3, 6, 9}, {4, 5, 9} is also a
circuit set.

C. INDEX CODING INSTANCES I1 AND I2
This subsection characterizes the index coding instances I1
and I2, each of size 29, and each with the broadcast rate
β(I1) = β(I2) = 4. The interfering message set of all the
users in I1 and I2 are exactly the same, except for users
ui, i ∈ [5 : 9]. Theorems 2 and 3 establish the sufficient and
necessary conditions for linear coding to be optimal for I1
and I2, respectively.

• Sufficient condition: It is shown that scalar linear cod-
ing with the encoding matrix H∗ ∈ F

4×29
q , shown in

Figure 2, achieves the optimal broadcast rate of I1 if its
field Fq does have characteristic three (such as GF(3)),
and it is optimal for I2 if its field Fq does have any
characteristic other than characteristic three (such as
GF(2)).

• Necessary condition: Using Lemmas 1-5, it is proved
that the constraints on the column space of the local
encoding matrix of the first 9 users H[9] in I1 and
I2, respectively, are equivalent to the constraints on
the column space of the matrices, which linearly rep-
resent matroid instances N1 and N2. This implies that
an encoding matrix H is optimal for I1 only if field
does have characteristic three, and it is optimal for I2
only if field does have any characteristic other than
characteristic three.

1) INDEX CODING INSTANCE I1

Definition 24 (Index Coding Instance I1): The index coding
instance I1 = {Bi, i ∈ [29]} is characterized as follows

B1 = ([4]\{1}) ∪ {8} ∪ ([10:25]\{10, 14, 18, 22}),
B2 = ([4]\{2}) ∪ {7} ∪ ([10:25]\{11, 15, 19, 23}),
B3 = ([4]\{3}) ∪ {6} ∪ ([10:25]\{12, 16, 20, 24}),
B4 = ([4]\{4}) ∪ {5} ∪ ([10:25]\{13, 17, 21, 25}),
B5 = {7, 8},
B6 = {5, 8},
B7 = {5, 6},
B8 = {6, 7},
B9 = {5, 6, 7, 8},
B10 = {5, 11},
B11 = {5, 12},
B12 = {5, 10},
B13 = {1, 8, 9},
B14 = {6, 15},
B15 = {6, 17},
B16 = {4, 5, 9},
B17 = {6, 14},
B18 = {7, 20},
B19 = {3, 6, 9},
B20 = {7, 21},
B21 = {7, 18},
B22 = {2, 7, 9},
B23 = {8, 24},
B24 = {8, 25},
B25 = {8, 23},
B26 = {4, 5, 9, 16},
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B27 = {3, 6, 9, 19},
B28 = {2, 7, 9, 22},
B29 = {1, 8, 9, 13}. (73)

Theorem 2: λq(I1) = βMAIS(I1) = 4 if and only if Fq

does have characteristic three. In other words, linear coding
is optimal for I1 only over the fields with characteristic
three.
The proof can be concluded from Propositions 8 and 9.
Proposition 8: There exists a scalar linear code (t = 1)

over a field with characteristic three, which is optimal
for I1.
Proof: In Appendix C, it is shown that the encoding matrix

H∗ ∈ F
4×29
q , shown in Figure 2, will satisfy all users in I1,

where the field Fq has characteristic three. The key part of
H∗ is its submatrix H{5,6,7,8}∗ , where rank(H{5,6,7,8}∗ ) = 3
is achievable over the fields with characteristic three. This
satisfies condition (2) for user u9 with B9 = {5, 6, 7, 8}.
Proposition 9: Matrix H ∈ F

4t×29t
q is an encoding matrix

for index coding instance I1 only if its submatrix H[9] is a
linear representation of matroid instance N1.
Proof: We prove that set N0 = [4] is a basis set of H, and

each set Ni, i ∈ [9] in (15) is a circuit set of H. The proof
is described as follows.

• First, since βMAIS(I1) = 4, we must have rank(H) = 4t.
Now, from Bi, i ∈ [4] in (73), it can be seen that set
[4] is an independent set of I1, so based on Lemma 1,
set [4] is an independent set of H. Since rank(H) = 4t,
set N0 = [4] will be a basis set of H. Now, in order to
have rank(H) = 4t, for all j ∈ [29]\[4], we must have
col(H{j}) ⊆ col(H[4]).

• According to Lemma 3, from Bi, i ∈ [4], it can be seen
that:

– for each j ∈ {10, 14, 18, 22},
j ∈ Bi, i ∈ [4]\{1} → col

(
H{j}) = col

(
H{1}), (74)

– for each j ∈ {11, 15, 19, 23},
j ∈ Bi, i ∈ [4]\{2} → col

(
H{j}) = col

(
H{2}), (75)

– for each j ∈ {12, 16, 20, 24},
j ∈ Bi, i ∈ [4]\{3} → col

(
H{j}) = col

(
H{3}), (76)

– for each j ∈ {13, 17, 21, 25},
j ∈ Bi, i ∈ [4]\{4} → col

(
H{j}) = col

(
H{4}). (77)

Let M1 = {10, 11, 12},M2 = {14, 15, 17},M3 =
{18, 20, 21} and M4 = {23, 24, 25}. Now, (74)-(77)
lead to

col
(
HM1

)
= col

(
H[4]\{4}), (78)

col
(
HM2

)
= col

(
H[4]\{3}), (79)

col
(
HM3

)
= col

(
H[4]\{2}), (80)

col
(
HM4

)
= col

(
H[4]\{1}). (81)

Thus, each M1,M2,M3 and M4 is an independent set
of H.

• To have rank(H) = 4t, one must have rank(HBi) =
3t, i ∈ [29]. Since [4] is a basis set, from Bi, i ∈ [4],
we must have

B4 → col
(
H{5}) ⊆ col

(
H[4]\{4}) (78)= col

(
HM1

)
, (82)

B3 → col
(
H{6}) ⊆ col

(
H[4]\{3}) (79)= col

(
HM2

)
, (83)

B2 → col
(
H{7}) ⊆ col

(
H[4]\{2}) (80)= col

(
HM3

)
, (84)

B1 → col
(
H{8}) ⊆ col

(
H[4]\{1}) (81)= col

(
HM4

)
. (85)

• From Bi, i ∈ M1,M2,M3 and M4, it can be verified that

M1 is a minimal cyclic set of I1 & 5 ∈ Bi, i ∈ M1, (86)

M2 is a minimal cyclic set of I1 & 6 ∈ Bi, i ∈ M2, (87)

M3 is a minimal cyclic set of I1 & 7 ∈ Bi, i ∈ M3, (88)

M4 is a minimal cyclic set of I1 & 8 ∈ Bi, i ∈ M4. (89)

• Now, all the four conditions in Lemma 4 are satisfied
for set M1 with j = 5, set M2 with j = 6, set M3 with
j = 7, and set M4 with j = 8. So, based on Lemma 4,
each set {5} ∪ M1, {6} ∪ M2, {7} ∪ M3 and {8} ∪ M4
is a circuit set of H. Now, based on (78)-(81), each
set N1 = {1, 2, 3, 5},N2 = {1, 2, 4, 6},N3 = {1, 3, 4, 7}
and N4 = {2, 3, 4, 8} is also a circuit set.

• Due to rank(HBi) = 3t, i ∈ {26, 27, 28, 29}, we must
have

rank
(
H{4,5,9,16}) = 3t, (90)

rank
(
H{3,6,9,19}) = 3t, (91)

rank
(
H{2,7,9,22}) = 3t, (92)

rank
(
H{1,8,9,13}) = 3t. (93)

Now, since B16 = {4, 5, 9},B19 = {3, 6, 9},B22 =
{2, 7, 9} and B13 = {1, 8, 9}, we must have

(90) → rank
(
H{4,5,9}) = 2t, (94)

(91) → rank
(
H{3,6,9}) = 2t, (95)

(92) → rank
(
H{2,7,9}) = 2t, (96)

(93) → rank
(
H{1,8,9}) = 2t. (97)

Thus,

(94) → col
(
H{9}) ⊆ col

(
H{4,5}),

(95) → col
(
H{9}) ⊆ col

(
H{3,6}),

(96) → col
(
H{9}) ⊆ col

(
H{2,7}),

(97) → col
(
H{9}) ⊆ col

(
H{1,8}).
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Hence, based on Lemma 5, each set N5 =
{1, 8, 9},N6 = {2, 7, 9},N7 = {3, 6, 9},N8 = {4, 5, 9}
is a circuit set.

• Finally, from B5,B6,B7 and B8, it can be seen that set
{5, 6, 7, 8} is a minimal cyclic set of I1. Moreover, from
B9, we must have rank(HB9) = rank(H{5,6,7,8}) = 3t.
Thus, based on Lemma 2, set N9 = {5, 6, 7, 8} must be
a circuit set of H. This completes the proof. �

2) INDEX CODING INSTANCE I2

Definition 25 (Index Coding Instance I2): For the index
coding instance I2 = {Bi, i ∈ [29]}, the interfering mes-
sage sets are all the same as the ones in (73), except sets
Bi, i ∈ {5, 6, 7, 8, 9}, which are as follows

Bi = {5, 6, 7, 8}\{i}, i ∈ {5, 6, 7, 8},
B9 = ∅. (98)

Theorem 3: λq(I2) = βMAIS(I2) = 4 if and only if Fq

does have any characteristic other than characteristic three.
In other words, linear coding is optimal for I1 only over the
fields with any characteristic other than characteristic three.
The proof can be concluded from Propositions 10 and 11.
Proposition 10: There exists a scalar linear code (t = 1)

over a field of any characteristic other than characteristic
three, which is optimal for I2.
Proof: In Appendix C, it is shown that the encoding matrix

H∗ ∈ F
4×29
q , shown in Figure 2, will satisfy all users in I2,

where the field Fq has any characteristic other than charac-
teristic three. The key part of H∗ is its submatrix H{5,6,7,8}∗ ,
where rank(H{5,6,7,8}∗ ) = 4 is achievable over fields with any
characteristic other than three. This satisfies the condition
in (2) for users ui, i ∈ {5, 6, 7, 8}.
Proposition 11: Matrix H ∈ F

4t×29t
q is an encoding matrix

for index coding instance I2 only if its submatrix H[9] is a
linear representation of matroid instance N2.
Proof: Since the interfering message sets Bi,∈

[29]\{5, 6, 7, 8, 9} of I2 are the same as the sets in (73),
we can borrow the results from Proposition 9, where set [4]
is a basis set, and sets {1, 2, 3, 5}, {1, 2, 4, 6}, {1, 3, 4, 7},
{2, 3, 4, 8}, {1, 8, 9}, {2, 7, 9}, {3, 6, 9} and {4, 5, 9} are cir-
cuit sets. Now, due to (98), the set {5, 6, 7, 8} must also be
a basis set, which completes the proof.

V. INDEX CODING INSTANCE I3
This subsection provides index coding instance I3 with the
MAIS bound βMAIS(I3) = 8. First, we prove that linear
coding cannot achieve the optimal rate over any field with
characteristic three. To prove this, we first define a matroid
instances N3 and show that it is not linearly representable
over the fields with characteristic three. Then, we show that
the main constraints on the column space of the encoding
matrix of I3 can be reduced to the constraints on the column
space of the matrix, which is the linear representation of N3.

Finally, we provide a scalar nonlinear code over the fields
with characteristic three, which is optimal for I3.

In this subsection, we assume that M ⊆ [m],N ⊆ [n], and
the value of each m, n, |M| and |N| is an even integer.

A. MATROID INSTANCE N3
In this subsection, we first define the concept of quasi-
circuit set of a matrix which is similar to the concept of
circuit set (where this similarity can be seen by comparing
Equations (99) and (101), respectively, with Equations (10)
and (11)).
Definition 26 (Qausi-circuit Set of Matrix H): Let L ⊆ [ n2 ].

We say that set N = {2j−1, 2j, j ∈ L} ⊆ [n] is a quasi-circuit
set of H, if for all j ∈ L, we have

rank
(
H{2j−1,2j}) = 2t,

rank
(
HN\{2j−1,2j}) = rank

(
HN

)
= (|N| − 2)t. (99)

Lemma 6: Let L ⊆ [ n2 ]. Assume N = {2j− 1, 2j, j ∈ L} is
a quasi-circuit set of H and

Nj,i �
[
M2j−1,2i−1 M2j,2i−1
M2j−1,2i M2j,2i

]
. (100)

Now, for any j ∈ L, we have

H{2j−1,2j} =
∑

i∈L\{j}
H{2i−1,2i}Nj,i, (101)

such that each Nj,i is invertible.
Proof: Equation (99) requires that

col
(
H{2j−1,2j}) ⊆ col

(
HN\{2j−1,2j})).

Thus, we must have H{2j−1,2j} = ∑
i∈L\{j} H{2i−1,2i}Nj,i.

Now, if one of the Nj,i, i = l ∈ L\{j} is not invertible,
then rank(HN\{2l−1,2l}) < (|N|− 2)t, which contradicts (99).
Thus, all Nj,i, i ∈ L\{j} must be invertible.
Example 6: It can be seen that for the following matrix

H =

⎡

⎢⎢⎣

1 0 0 0 1 1
0 1 0 0 0 1
0 0 1 0 1 0
0 0 0 1 1 1

⎤

⎥⎥⎦, (102)

set [6] is a quasi-circuit set as we have

rank
(
H{1,2}) = rank

(
H{3,4}) = rank

(
H{5,6}) = 2,

rank
(
H{1,2,3,4}) = rank

(
H{1,2,5,6}) = rank

(
H{3,4,5,6}) = 4

rank
(
H[6]

)
= 4. (103)

Definition 27 (Matroid Instance N3): Consider the matroid
instance N3 = {f (N),N ⊆ [n]}, where n = 18, f (N3) =
8, set N0 = [8] is a basis set, the sets Ni’s, i ∈ [8] are
quasi-circuit sets, which are as follows

N1 = {1, 2, 3, 4, 5, 6, 9, 10},
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FIGURE 3. HN3
∈ F

8×18
q : If Fq does have any characteristic other than characteristic three (such as GF (2)), then HN3

is a scalar linear representation of matroid N3.

N2 = {1, 2, 3, 4, 7, 8, 11, 12},
N3 = {1, 2, 5, 6, 7, 8, 13, 14},
N4 = {3, 4, 5, 6, 7, 8, 15, 16},
N5 = {1, 2, 15, 16, 17, 18},
N6 = {3, 4, 13, 14, 17, 18},
N7 = {5, 6, 11, 12, 17, 18},
N8 = {7, 8, 9, 10, 17, 18}, (104)

and

f (N9 = [9:16]) ≥ 7. (105)

Proposition 12: Matroid instance N3 is not linearly
representable over any field with characteristic three.
Proof: First, it can be verified that matrix HN3 ∈ F

8∗58
q ,

shown in Figure 3, is a scalar linear representation of N3 if
field Fq has any characteristic other than characteristic three.
The key part of HN is its submatrix H[9:16]

N , which is as
follows

H[9:16]
N3

=

⎡

⎢⎢⎣

I2 I2 I2 02
I2 I2 02 I2
I2 02 I2 I2
02 I2 I2 I2

⎤

⎥⎥⎦.

It can be seen that rank(H[9:16]
N3

) = 8 is achievable over
fields with any characteristic other than three. This satisfies
the condition for set N9 = [9 : 16] in (105).

Since set [8] is a basis set, and each Ni, i ∈ [8] in (104)
is a quasi-circuit set, (101) results in

H{9,10} = H{1,2}N5,1 +H{3,4}N5,2 +H{5,6}N5,3, (106)

H{11,12} = H{1,2}N6,1 +H{3,4}N6,2 +H{7,8}N6,4, (107)

H{13,14} = H{1,2}N7,1 +H{5,6}N7,3 +H{7,8}N7,4, (108)

H{15,16} = H{3,4}N8,2 +H{5,6}N8,3 +H{7,8}N8,4, (109)

H{17,18} = H{1,2}N9,1 +H{15,16}N9,8, (110)

H{17,18} = H{3,4}N9,2 +H{13,14}N9,7, (111)

H{17,18} = H{5,6}N9,3 +H{11,12}N9,6, (112)

H{17,18} = H{7,8}N9,4 +H{9,10}N9,5. (113)

Now, since each Nj,i is invertible (according to Lemma 6),
equations (106)-(113) are similar to equations (21)-(28).
Therefore, over the fields with characteristic three, we can
achieve the similar result in (68), as follows

2H{15,16}N9,8

= H{9,10}N9,5 +H{11,12}N9,6 +H{13,14}N9,7, (114)

where each N9,5,N9,6, N9,7, end N9,8 is invertible. Thus,

rank
(
H{9:16}) = rank

(
H{9:14}) ≤ 6, (115)

which contradicts (105). This completes the proof.

B. ON THE REDUCTION PROCESS FROM INDEX
CODING TO MATROID
In this subsection, first we define the concept of quasi-
minimal cyclic set of an index coding instance, which is
similar to the concept of minimal cyclic set (where this
similarity can be seen by comparing Equation (4) with
Equations (116) and (116)). Then, through Lemmas 7-9,
we establish some reduction techniques to map specific
constraints on the column space of the encoder matrix of
an index coding instance to the constraints on the column
space of the matrix, linearly representing a matroid instance.
Lemmas 7 and 8, respectively, are variations of Lemmas 4
and 5, where the concept of quasi-minimal cyclic set is
used instead of the concept of minimal cyclic set. Proof of
Lemmas 7-9 are provided in Appendix D.
Here, we assume that m is an even integer, L′ ⊆ L = [m2 ],

M′ = {2i− 1, 2i, i ∈ L′} ⊆ M = {2i− 1, 2i, i ∈ L} ⊆ [m].
Definition 28 (Qausi-Minimal Cyclic Set of I): Let

M = {i2j−1, i2j, j ∈ [ |M|
2 ]}. Now, M is referred to as a

quasi-minimal cyclic set of I if

Bi2j−1 ∩M =

⎧
⎪⎨

⎪⎩

M\{i2j−1, i2j+1, i2j+2
}
, j ∈

[ |M|
2 − 1

]
,

M\{i2j−1, i1, i2
}
, j = |M|

2 .

Bi2j ∩M =

⎧
⎪⎨

⎪⎩

M\{i2j, i2j+1, i2j+2
}
, j ∈

[ |M|
2 − 1

]
,

M\{i2j, i1, i2
}
, j = |M|

2 .

(116)

Example 7: Consider the index coding instance I =
{Bi, i ∈ [6]}, where

B1 = {2, 3, 4}, B2 = {1, 3, 4},
B3 = {4, 5, 6}, B4 = {3, 5, 6},
B5 = {1, 2, 6}, B6 = {1, 2, 5}.

It can be seen that set [6] is a quasi-minimal cyclic set of
I. It can be also checked that the matrix in (102) is an
encoding matrix for I and can satisfy all the users ui,∈ [6].
Lemma 7: Assume
(i) M is an independent set of H,
(ii) col(H{2j−1,2j}) ⊆ col(HM),
(iii) M forms a quasi-minimal cyclic set of I,
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(iv) {2j− 1, 2j} ⊆ Bi,∀i ∈ M.

Now, the condition in (2) for all i ∈ [m] requires set
{2j− 1, 2j} ∪M to be a quasi-circuit set of H.
Lemma 8: Suppose for matrix H ∈ F

8t×18
q ,

(i) set [8] is a basis set,
(ii) each set {1, 2, 3, 4, 5, 6, 9, 10}, {1, 2, 3, 4, 7, 8, 11, 12},

{1, 2, 5, 6, 7, 8, 13, 14} and {3, 4, 5, 6, 7, 8, 15, 16} is a
quasi-circuit set,

(iii)

col
(
H{17,18}) ⊆ col

(
H{7,8,9,10}).

col
(
H{17,18}) ⊆ col

(
H{5,6,11,12}),

col
(
H{17,18}) ⊆ col

(
H{3,4,13,14}),

col
(
H{17,18}) ⊆ col

(
H{1,2,15,16}),

Then, each set {1, 2, 15, 16, 17, 18}, {3, 4, 13, 14, 17, 18},
{5, 6, 11, 12, 17, 18} and {7, 8, 9, 10, 17, 18} will also be a
quasi-circuit set.
Lemma 9: Let matrix H be an encoding matrix for index

coding instance I = {Bi, i ∈ [m]}. Assume M′ ⊆ M ⊆ [m].
Now, if M\{i} ⊆ Bi for all i ∈ M′, then we must have

rank
(
HM

)
= rank

(
HM\M′) + |M′|t.

C. INDEX CODING INSTANCE I3
Definition 29 (Index Coding Instance I3): The index coding
instance I3 = {Bi, i ∈ [58]} is characterized as follows

B1 = (
[
8]\{1}) ∪ {15, 16} ∪ ([19 : 50]\{19, 27, 35, 43}),

B2 = (
[
8]\{2}) ∪ {15, 16} ∪ ([19 : 50]\{20, 28, 36, 44}),

B3 = (
[
8]\{3}) ∪ {13, 14} ∪ ([19 : 50]\{21, 29, 37, 45}),

B4 = (
[
8]\{4}) ∪ {13, 14} ∪ ([19 : 50]\{22, 30, 38, 46}),

B5 = (
[
8]\{5}) ∪ {11, 12} ∪ ([19 : 50]\{23, 31, 39, 47}),

B6 = (
[
8]\{6}) ∪ {11, 12} ∪ ([19 : 50]\{24, 32, 40, 48}),

B7 = (
[
8]\{7}) ∪ {9, 10} ∪ ([19 : 50]\{25, 33, 41, 49}),

B8 = (
[
8]\{8}) ∪ {9, 10} ∪ ([19 : 50]\{26, 34, 42, 50}),

B9 = [9 : 16]\{9},
B10 = {9, 12, 14},
B11 = [9 : 16]\{11},
B12 = {11, 14, 16},
B13 = [9 : 16]\{13},
B14 = {13, 10, 16},
B15 = [9 : 16]\{15},
B16 = {15, 10, 12},
B17 = {18},
B18 = {17},
B19 = {9, 10, 20, 21, 22},
B20 = {9, 10, 19, 21, 22},
B21 = {9, 10, 22, 23, 24},

B22 = {9, 10, 21, 23, 24},
B23 = {9, 10, 19, 20, 24},
B24 = {9, 10, 19, 20, 23},
B25 = {1, 2, 15, 16, 17, 18, 26},
B26 = {1, 2, 15, 16, 17, 18, 25},
B27 = {11, 12, 28, 29, 30},
B28 = {11, 12, 27, 29, 30},
B29 = {11, 12, 30, 33, 34},
B30 = {11, 12, 29, 33, 34},
B31 = {7, 8, 9, 10, 17, 18, 32},
B32 = {7, 8, 9, 10, 17, 18, 31},
B33 = {11, 12, 27, 28, 34},
B34 = {11, 12, 27, 28, 33},
B35 = {13, 14, 36, 39, 40},
B36 = {13, 14, 35, 39, 40},
B37 = {5, 6, 11, 12, 17, 18, 38},
B38 = {5, 6, 11, 12, 17, 18, 37},
B39 = {13, 14, 40, 41, 42},
B40 = {13, 14, 39, 41, 42},
B41 = {13, 14, 35, 36, 42},
B42 = {13, 14, 35, 36, 41},
B43 = {3, 4, 13, 14, 17, 18, 44},
B44 = {3, 4, 13, 14, 17, 18, 43},
B45 = {15, 16, 46, 47, 48},
B46 = {15, 16, 45, 47, 48},
B47 = {15, 16, 48, 49, 50},
B48 = {15, 16, 47, 49, 50},
B49 = {15, 16, 45, 46, 50},
B50 = {15, 16, 45, 46, 49},
B51 = {7, 8, 9, 10, 17, 18, 31, 32, 52},
B52 = {7, 8, 9, 10, 17, 18, 31, 32, 51},
B53 = {5, 6, 11, 12, 17, 18, 37, 38, 54},
B54 = {5, 6, 11, 12, 17, 18, 37, 38, 53},
B55 = {3, 4, 13, 14, 17, 18, 43, 44, 56},
B56 = {3, 4, 13, 14, 17, 18, 43, 44, 55},
B57 = {1, 2, 15, 16, 17, 18, 25, 26, 58},
B58 = {1, 2, 15, 16, 17, 18, 25, 26, 57}. (117)

Theorem 4: λq(I3) = βMAIS(I3) = 8 if and only if Fq

does have any characteristic other than characteristic three.
In other words, linear coding is optimal for I3 only over the
fields with any characteristic other than characteristic three.
However, there exists a scalar nonlinear code over the fields
with characteristic three, which is optimal for I3.
Proof: The proof can be concluded from

Propositions 13, 14, and 15.
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FIGURE 4. H∗ ∈ F
8×58
q : If Fq does have any characteristic other than characteristic three (such as GF (2)), then H∗ is an encoding matrix for index coding instance I3.

Proposition 13: There exists a scalar linear coding over
a field of any characteristic other than characteristic three,
which is optimal for I3.
Proof: It can be verified that the encoding matrix H∗ ∈

F
8×58
q , shown in Figure 4, will satisfy all users in I3, where

the field Fq has any characteristic other than characteristic
three. The key part of H∗ is its submatrix H[9:16]∗ , where
rank(H[9:16]∗ ) = 8 is achievable over fields with any charac-
teristic other than three. This satisfies the condition in (2)
for users ui, i ∈ {9, 11, 13, 15}.
Proposition 14: Matrix H ∈ F

8t×58t
q is an encoding matrix

for index coding instance I3 only if submatrix H[18] is a
linear representation of matroid instance N3.
Proof: Refer to Appendix E.

D. AN OPTIMAL NONLINEAR CODE FOR I3 OVER
FIELDS WITH CHARACTERISTIC THREE
Definition 30 [Nonlinear Function g( · )]: Let xi, xj, xl, xv ∈
Fq = GF(3). Now, the nonlinear function g(·) : F4

q → Fq is
defined as follows:

g
(
xi, xj, xl, xv

) = 2xixi
(
xj + xl + xv

)

+ 2xjxj(xi + xl + xv)

+ 2xlxl
(
xi + xj + xv

)

+ 2xvxv
(
xi + xj + xl

)

+ 2
(
xixj + xixl + xixv

+ xjxl + xjxv + xlxv
)

+ xixjxl + xixjxv + xixlxv + xjxlxv. (118)

Lemma 10: Let xi, xj, xl, xv, xw ∈ GF(3). Then, using the
value of xw and the following five combinations:

g
(
xi, xj, xl, xw

) + g
(
xi, xj, xv, xw

)

g(xi, xl, xv, xw)+ g
(
xj, xl, xv, xw

)
,

xi + xj + xl,

xi + xj + xv,

xi + xl + xv,

xj + xl + xv,

we can find the value of each xi, xj, xl, and xv.
Proof: Refer to Appendix F.
Lemma 11: Using the value of xi, xj, xl and xv + xw, we

can find the value of g(xi, xj, xv, xw)+ 2g(xi, xl, xv, xw).
Proof: Refer to Appendix F.
Proposition 15: There exists a scalar nonlinear code over

the fields with characteristic three, which can achieve the
broadcast rate of I3.

Proof: First, it can be seen that set [8] is a MAIS set of
I3. So, βMAIS(I3) = 8. Now, we prove that β(CI3) = 8 for
a scalar nonlinear index code CI3 = (φI3 , {ψ i

I3
}), where the

encoder and decoder do as below.
First, function φI3 encodes messages xi, i ∈ [58] into eight

coded messages zk, k ∈ [8], as follows
{
zj, j ∈ [8]

} = φI3({xi, i ∈ [58]}), (119)

where

z1 = x1 + x9 + x11 + x13 + x17 + x19 + x27 + x35 + x43 + x53,

z2 = x2 + x10 + x12 + x14 + x18 + x20 + x28 + x36 + x44 + x54

+ g(x9, x11, x13, x17),

z3 = x3 + x9 + x11 + x15 + x17 + x21 + x29 + x37 + x45 + x51,

z4 = x4 + x10 + x12 + x16 + x18 + x22 + x30 + x38 + x46 + x52

+ g(x9, x11, x15, x17),

z5 = x5 + x9 + x13 + x15 + x17 + x23 + x31 + x39 + x47 + x57,

z6 = x6 + x10 + x14 + x16 + x18 + x24 + x32 + x40 + x48 + x58

+ g(x9, x13, x15, x17),

z7 = x7 + x11 + x13 + x15 + x17 + x25 + x33 + x41 + x49 + x55,

z8 = x8 + x12 + x14 + x16 + x18 + x26 + x34 + x42 + x50 + x56

+ g(x11, x13, x15, x17).

Now, we show how the i-th decoder ψ i
I3

recovers the
requested message xi using the coded messages zk, k ∈ [8]
along with the messages in its side information.

• Each user ui, i ∈ [8] can directly decode its requested
message xi, from the coded message zi.

• User u9 decodes (x9 + x11 + x13), (x9 + x11 + x15),
(x9 + x13 + x15), and (x11 + x13 + x15), respectively,
from z1, z3, z5 and z7. It also adds z2 + z4 + z6 +
z8 to achieve g(x9, x11, x13, x17)+ g(x9, x11, x15, x17)+
g(x9, x13, x15, x17)+ g(x11, x13, x15, x17). Now, accord-
ing to Lemma 10, by having x17, it is able to recover
its requested message x9.

• User u10 first decodes x9 and x12 + x14, respectively,
from z1 and z8. Then, it can decode its requested
message x10 from z2.

• User u11 decodes (x9 + x11 + x13), (x9 + x11 + x15),
(x9 + x13 + x15), and (x11 + x13 + x15), respectively,
from z1, z3, z5 and z7. It also adds z2 + z4 + z6 +
z8 to achieve g(x9, x11, x13, x17)+ g(x9, x11, x15, x17)+
g(x9, x13, x15, x17)+ g(x11, x13, x15, x17). Now, accord-
ing to Lemma 10, by having x17, it is able to recover
its requested message x11.
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• User u12 first decodes x11 and x14 + x16, respectively,
from z3 and z6. Then, it can decode its requested
message x12 from z4.

• User u13 decodes (x9 + x11 + x13), (x9 + x11 + x15),
(x9 + x13 + x15), and (x11 + x13 + x15), respectively,
from z1, z3, z5 and z7. It also adds z2 + z4 + z6 +
z8 to achieve g(x9, x11, x13, x17)+ g(x9, x11, x15, x17)+
g(x9, x13, x15, x17)+ g(x11, x13, x15, x17). Now, accord-
ing to Lemma 10, by having x17, it is able to recover
its requested message x13.

• User u14 first decodes x13 and x10 + x16, respectively,
from z5 and z4. Then, it can decode its requested
message x14 from z6.

• User u15 decodes (x9 + x11 + x13), (x9 + x11 + x15),
(x9 + x13 + x15), and (x11 + x13 + x15), respectively,
from z1, z3, z5 and z7. It also adds z2 + z4 + z6 +
z8 to achieve g(x9, x11, x13, x17)+ g(x9, x11, x15, x17)+
g(x9, x13, x15, x17)+ g(x11, x13, x15, x17). Now, accord-
ing to Lemma 10, by having x17, it is able to recover
its requested message x15.

• User u16 first decodes x15 and x10 + x12, respectively,
from z7 and z2. Then, it can decode its requested
message x16 from z8.

• User u17 can decode its desired message x17 from z1.
• User u18 can decode its desired message x18 from z2.
• User u19 first decodes x9 from z5. Then, it can decode
x19 from z1.

• User u20 first decodes x9 from z5. Then, it decodes x10
from z6. Finally, it can decode x20 from z2.

• User u21 first decodes x9 from z1. Then, it can decode
x21 from z3.

• User u22 first decodes x9 from z1. Then, it decodes x10
from z2. Finally, it can decode x22 from z4.

• User u23 first decodes x9 from z3. Then, it can decode
x23 from z5.

• User u24 first decodes x9 from z3. Then, it decodes x10
from z4. Finally, it can decode x24 from z6.

• User u25 first decodes x15 + x17 from z3. Then, it can
decode x25 from z7.

• User u26 first decodes x15 + x17 from z3. Then, it adds
z6 and 2z8 to achieve g(x9 + x13 + x15 + x17)+2g(x11 +
x13 + x15 + x17)+2x26 (note, term x16 + x18 is canceled
out). Now, since u26 knows x9, x11, x13 and x15 + x17,
according to Lemma 11, it can achieve g(x9 + x13 +
x15+x17)+2g(x11+x13+x15+x17). Thus, it can decode
its desired message x26.

• User u27 first decodes x11 from z7. Then, it can decode
x27 from z1.

• User u28 first decodes x11 from z7. Then, it decodes x12
from z8. Finally, it can decode x28 from z2.

• User u29 first decodes x11 from z1. Then, it can decode
x29 from z3.

• User u30 first decodes x11 from z1. Then, it decodes x12
from z2. Finally, it can decode x30 from z4.

• User u31 first decodes x9 + x17 from z1. Then, it can
decode x31 from z5.

• User u32 first decodes x9 + x17 from z1. Then, it adds
z4 and 2z6 to achieve g(x9 + x11 + x15 + x17)+ 2g(x9 +
x13 + x15 + x17)+2x32 (note, term x10 + x18 is canceled
out). Now, since u32 knows x11, x13, x15 and x9 + x17,
according to Lemma 11, it can achieve g(x9 + x11 +
x15 +x17)+2g(x9 +x13 +x15 +x17). Thus, it can decode
its desired message x32.

• User u33 first decodes x11 from z3. Then, it can decode
x33 from z7.

• User u34 first decodes x11 from z3. Then, it decodes x12
from z4. Finally, it can decode x34 from z8.

• User u35 first decodes x13 from z7. Then, it can decode
x35 from z1.

• User u36 first decodes x13 from z7. Then, it
decodes x14 from z8. Finally, it can decode x36
from z2.

• User u37 first decodes x11 + x17 from z7. Then, it can
decode x37 from z3.

• User u38 first decodes x11 + x17 from z7. Then, it adds
z2 and 2z4 to achieve g(x9 + x11 + x13 + x17)+ 2g(x9 +
x11 + x15 + x17)+2x38 (note, term x12 + x18 is canceled
out). Now, since u38 knows x9, x13, x15 and x11 + x17,
according to Lemma 11, it can achieve g(x9 + x11 +
x13 +x17)+2g(x9 +x11 +x15 +x17). Thus, it can decode
its desired message x38.

• User u39 first decodes x13 from z1. Then, it can decode
x39 from z5.

• User u40 first decodes x13 from z1. Then, it decodes x14
from z2. Finally, it can decode x40 from z6.

• User u41 first decodes x13 from z5. Then, it can decode
x41 from z7.

• User u42 first decodes x13 from z5. Then, it decodes x14
from z6. Finally, it can decode x42 from z8.

• User u43 first decodes x13 + x17 from z5. Then, it can
decode x43 from z1.

• User u44 first decodes x13 + x17 from z5. Then, it adds
z6 and 2z2 to achieve g(x9 + x13 + x15 + x17)+ 2g(x9 +
x11 + x13 + x17)+2x44 (note, term x14 + x18 is canceled
out). Now, since u44 knows x9, x11, x15 and x13 + x17,
according to Lemma 11, it can achieve g(x9 + x13 +
x15 +x17)+2g(x9 +x11 +x13 +x17). Thus, it can decode
its desired message x44.

• User u45 first decodes x15 from z7. Then, it can decode
x45 from z3.

• User u46 first decodes x15 from z7. Then, it decodes x16
from z8. Finally, it can decode x46 from z4.

• User u47 first decodes x15 from z3. Then, it can decode
x47 from z5.

• User u48 first decodes x15 from z3. Then, it decodes x16
from z4. Finally, it can decode x48 from z6.

• User u49 first decodes x15 from z5. Then, it can decode
x49 from z7.

• User u50 first decodes x15 from z5. Then, it decodes x16
from z6. Finally, it can decode x50 from z8.

• User u51 first decodes x9 + x17 from z1. Then, it can
decode x51 from z3.
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• User u52 first decodes x9 + x17 from z1. Then, it adds
z2 and 2z4 to achieve g(x9 + x11 + x13 + x17)+ 2g(x9 +
x11 + x15 + x17)+2x52 (note, term x10 + x18 is canceled
out). Now, since u52 knows x11, x13, x15 and x9 + x17,
according to Lemma 11, it can find g(x9 + x11 + x13 +
x17)+ 2g(x9 + x11 + x15 + x17). Thus, it can decode its
desired message x52.

• User u53 first decodes x11 + x17 from z7. Then, it can
decode x53 from z1.

• User u54 first decodes x11 + x17 from z7. Then, it adds
z8 and 2z2 to achieve g(x11 + x13 + x15 + x17)+2g(x9 +
x11 + x13 + x17)+2x54 (note, term x12 + x18 is canceled
out). Now, since u54 knows x9, x13, x15 and x11 + x17,
according to Lemma 11, it can find g(x11 + x13 + x15 +
x17)+ 2g(x9 + x11 + x13 + x17). Thus, it can decode its
desired message x54.

• User u55 first decodes x13 + x17 from z5. Then, it can
decode x55 from z7.

• User u56 first decodes x13 + x17 from z5. Then, it adds
z6 and 2z8 to achieve g(x9 + x13 + x15 + x17)+2g(x11 +
x13 + x15 + x17)+2x56 (note, term x14 + x18 is canceled
out). Now, since u56 knows x9, x11, x15 and x13 + x17,
according to Lemma 11, it can find g(x9 + x13 + x15 +
x17)+ 2g(x11 + x13 + x15 + x17). Thus, it can decode its
desired message x56.

• User u57 first decodes x15 + x17 from z3. Then, it can
decode x57 from z5.

• User u58 first decodes x15 + x17 from z3. Then, it adds
z4 and 2z6 to achieve g(x9 + x11 + x15 + x17)+ 2g(x9 +
x13 + x15 + x17)+2x58 (note, term x16 + x18 is canceled
out). Now, since u58 knows x9, x11, x13 and x15 + x17,
according to Lemma 11, it can find g(x9 + x11 + x15 +
x17)+ 2g(x9 + x13 + x15 + x17). Thus, it can decode its
desired message x58. �

VI. CONCLUSION
The suboptimality of linear coding rate for the general index
coding problem is due to its dependency on the field size.
This dependency has been illustrated through the two well-
known matroid instances, namely the Fano and non-Fano
matroids, which, in turn, limits its scope only to fields with
characteristic two. In this paper, this scope of dependency
was extended to the fields with characteristic three by design-
ing two index coding instances of size 29 such that for the
first instance, linear coding is optimal only over the fields
with characteristic three, while for the second instance, linear
coding is optimal over fields with any characteristic other
than characteristic three. For each instance, it was shown
that the key constraints on the column space of its encoding
matrix can be captured by a matroid with the ground set of
size 9, for which the existence of its linear representation is
dependent on the fields with characteristic three. Presenting
the proofs and discussions using these two relatively small
matroids is helpful in pointing out the key constraints caus-
ing the linear coding rate to become dependent on the field
size. Finally, we designed the third index coding instance

of size 58 such that while linear coding cannot achieve
its optimal rate over fields with characteristic three, there
exists an optimal nonlinear code over fields with character-
istic three. It was shown that connecting the first and third
index coding instances in two specific ways, called no-way
and two-way connections, will lead to two new index cod-
ing instances of size 87 and 91, for which linear coding is
outperformed by nonlinear codes.
Extending the results of this paper to find the matroid

instances and their corresponding index coding instances
whose linear representation and linear coding rate is dependent
on fields with higher characteristics would be an interesting
direction for future studies. Another intriguing direction is
to design a general optimal nonlinear coding scheme as an
extension of the minrank coding scheme [25], which is the
optimal linear code for the general index coding problem.

APPENDIX A
EXPANDED DEFINITION OF MATROID INSTANCES N1
AND N2
To characterize matroid instances N1 and N2, we need to
assign nonnegative integer values to f (N),N ⊆ [n = 9]
which satisfy the three conditions in (7). In this section,
first by providing a simple example, we show that how a
matroid instance can be characterized by some of its basis
and circuit sets. This will then be followed by the expanded
definition of matroid instances N1 and N2.
Lemma 12: Given a matroid instance N = {f (N),N ⊆

[n]}, if set N is a basis or circuit set, then the value of each
f (N1 ⊆ N) is determined as follows:

• If set N is a basis set, then f (N1 ⊆ N) = |N1|.
• If set N is a circuit set, then f (N1 ⊂ N) = |N1|, and
f (N) = |N| − 1.

Proof: We only need to prove that if f (N) = |N|, then
f (N1 ⊆ N) = |N1|. The proof can be easily described using
the first and third conditions in (7), as follows:

• According to the first condition in (7), we have

f (N1) ≤ |N1|,
f (N\N1) ≤ |N\N1| = |N| − |N1|. (120)

• According to the third condition in (7), we have

f (∅)+ f (N) ≤ f (N\N1)+ f (N1). (121)

Now, since f (∅) = 0 (as f (∅) ≤ |∅| = 0) and f (N) = |N|,
from (120) and (121), we must have f (N1) = |N1|.
Example 8: Consider matroid instance N =

{(N, f (N)),N ⊆ [n]} with n = 4 and f (N ) = 3 such
that set {1, 2, 3} is a basis set, and set {1, 2, 4} is a circuit
set. Now, we show that using (7) and (8), all the values
of f (N),N ⊆ [n] are determined. First, note that based on
Lemma 12, we have

f (N ⊆ {1, 2, 3}) = |N|,
f (N ⊂ {1, 2, 4}) = |N|, f ({1, 2, 4}) = 2.
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Now, only the values of f (N) for sets {3, 4}, {1, 3, 4}, {2, 3, 4}
and {1, 2, 3, 4} need to be determined. Using (7), we show
that each set {1, 3, 4} and {2, 3, 4} is a basis set, as follows:

f ({1, 3, 4})+ f ({1, 2, 4}) ≥ f ({1, 4})+ f ({1, 2, 3, 4}) (122)
≥ f ({1, 4})+ f ({1, 2, 3})
= 5, (123)

where (122) and (123), respectively, are due to the third
and second conditions in (7). Since f ({1, 2, 4}) = 2, we
have f ({1, 3, 4}) ≥ 3, and due to the first condition,
f ({1, 3, 4}) ≤ 3, which leads to f ({1, 3, 4}) = 3. This means
that set {1, 3, 4} is a basis set, and thus, f ({3, 4}) = 2.
Similarly for set {2, 3, 4}, we have

f ({2, 3, 4})+ f ({1, 2, 4}) ≥ f ({2, 4})+ f ({1, 2, 3, 4})
≥ f ({2, 4})+ f ({1, 2, 3})
= 5,

leading to f ({1, 3, 4}) = 3.
Finally, we get f ({1, 2, 3, 4}) = 3, as follows:

3 = f ({1, 2, 3}) ≤ f ({1, 2, 3, 4}) ≤ f (N ) = 3. (124)

A. MATROID INSTANCES N1 AND N2
Here, for both matroid instances N1 and N2, we consider
the following sets, where Ni, i ∈ [9] are equal to (15):

T1 = {Ni, i ∈ [9]},
T2 = {{1, 2} ∪ N,N ⊆ {7, 8, 9},N �= ∅},
T3 = {{1, 3} ∪ N,N ⊆ {6, 8, 9},N �= ∅},
T4 = {{1, 4} ∪ N,N ⊆ {5, 8, 9},N �= ∅},
T5 = {{2, 3} ∪ N,N ⊆ {6, 7, 9},N �= ∅},
T6 = {{2, 4} ∪ N,N ⊆ {5, 7, 9},N �= ∅},
T7 = {{3, 4} ∪ N,N ⊆ {5, 6, 9},N �= ∅}, (125)

Definition 31 (Expanded Definition of Matroid Instance
N1): Matroid instance N1 = {f (N),N ⊆ [n]} of size n = 9
and rank f (N1) = 4, is characterized as follows:

f (N) = 3, ∀N ∈ Ti, i ∈ [7],

f (N) = min{4, |N|}, ∀N ⊆ [n],N �∈ Ti, i ∈ [7] (126)

Using the three conditions in (7), it can be shown that
Definition 22 will lead to (126). Here for the sake of brevity,
we only show that (126) holds for sets N ∈ Ti, i ∈ [7], but
this can also be shown in the same way for the remaining
sets.

• T1: Since each set Ni ∈ T1, i ∈ [9] is a circuit set, based
on Lemma 12, for all i ∈ [9], we have

f (Ni) = |Ni| − 1, f (N ⊂ Ni) = |N|. (127)

• T2: First, we show that f ({1, 2, 7}) = 3, as follows:

f ({1, 2, 7})+ f ({1, 3, 4, 7}) ≥ f ({1, 7})+ f ({1, 2, 3, 4, 7})
≥ f ({1, 7})+ f ({1, 2, 3, 4})
= 6.

Since f (N3 = {1, 3, 4, 7}) = 3, we get f ({1, 2, 7}) = 3.
Similarly, we get f ({1, 2, 8}) = 3, as follows:

f ({1, 2, 8})+ f ({2, 3, 4, 8}) ≥ f ({2, 8})+ f ({1, 2, 3, 4, 8})
≥ f ({2, 8})+ f ({1, 2, 3, 4})
= 6.

Since f (N4 = {2, 3, 4, 8}) = 3, we get f ({1, 2, 8}) = 3.
Now, we show f ({1, 2, 7, 8}) = f ({1, 2, 7, 9}) =
f ({1, 2, 8, 9}) = f ({1, 2, 7, 8, 9}) = 3, as follows:

f ({9})+ f ({1, 2, 7, 8, 9}) ≤ f ({1, 8, 9})+ f ({2, 7, 9})
= 4.

Due to f ({9}) = 1, we get f ({1, 2, 7, 8, 9}) ≤ 3.
Now, since f ({1, 2, 7}) = f ({1, 2, 8}) = 3, we get
f ({1, 2, 7, 8}) = f ({1, 2, 7, 9}) = f ({1, 2, 8, 9}) =
f ({1, 2, 7, 8, 9}) = 3.

• T3: First, we show that f ({1, 3, 6}) = 3, as follows:

f ({1, 3, 6})+ f ({1, 2, 4, 6}) ≥ f ({1, 6})+ f ({1, 2, 3, 4, 6})
≥ f ({1, 6})+ f ({1, 2, 3, 4})
= 6.

Since f (N2 = {1, 2, 4, 6}) = 3, we get f ({1, 3, 6}) = 3.
Similarly, we get f ({1, 3, 8}) = 3, as follows:

f ({1, 3, 8})+ f ({2, 3, 4, 8}) ≥ f ({3, 8})+ f ({1, 2, 3, 4, 8})
≥ f ({3, 8})+ f ({1, 2, 3, 4})
= 6.

Since f (N4 = {2, 3, 4, 8}) = 3, we get f ({1, 3, 8}) = 3.
Now, we show f ({1, 3, 6, 8}) = f ({1, 3, 6, 9}) =
f ({1, 3, 8, 9}) = f ({1, 3, 6, 8, 9}) = 3, as follows:

f ({9})+ f ({1, 3, 6, 8, 9}) ≤ f ({1, 8, 9})+ f ({3, 6, 9})
= 4.

Due to f ({9}) = 1, we get f ({1, 3, 6, 8, 9}) ≤ 3.
Now, since f ({1, 3, 6}) = f ({1, 3, 8}) = 3, we get
f ({1, 3, 6, 8}) = f ({1, 3, 6, 9}) = f ({1, 3, 8, 9}) =
f ({1, 3, 6, 8, 9}) = 3.

• T4: First, we show that f ({1, 4, 5}) = 3, as follows:

f ({1, 4, 5})+ f ({1, 2, 3, 5}) ≥ f ({1, 5})+ f ({1, 2, 3, 4, 5})
≥ f ({1, 5})+ f ({1, 2, 3, 4})
= 6.

Since f (N1 = {1, 2, 3, 5}) = 3, we get f ({1, 4, 5}) = 3.
Similarly, we get f ({1, 4, 8}) = 3, as follows:

f ({1, 4, 8})+ f ({2, 3, 4, 8}) ≥ f ({4, 8})+ f ({1, 2, 3, 4, 8})
≥ f ({4, 8})+ f ({1, 2, 3, 4})
= 6.

Since f (N4 = {2, 3, 4, 8}) = 3, we get f ({1, 4, 8}) = 3.
Now, we show f ({1, 4, 5, 8}) = f ({1, 4, 5, 9}) =
f ({1, 4, 8, 9}) = f ({1, 4, 5, 8, 9}) = 3, as follows:
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f ({9})+ f ({1, 4, 5, 8, 9}) ≤ f ({1, 8, 9})+ f ({4, 5, 9})
= 4.

Due to f ({9}) = 1, we get f ({1, 4, 5, 8, 9}) ≤ 3.
Now, since f ({1, 4, 5}) = f ({1, 4, 8}) = 3, we get
f ({1, 4, 5, 8}) = f ({1, 4, 5, 9}) = f ({1, 4, 8, 9}) =
f ({1, 4, 5, 8, 9}) = 3.

• T5: First, we show that f ({2, 3, 6}) = 3, as follows:

f ({2, 3, 6})+ f ({1, 2, 4, 6}) ≥ f ({2, 6})+ f ({1, 2, 3, 4, 6})
≥ f ({2, 6})+ f ({1, 2, 3, 4})
= 6.

Since f (N2 = {1, 2, 4, 6}) = 3, we get f ({2, 3, 6}) = 3.
Similarly, we get f ({2, 3, 7}) = 3, as follows:

f ({2, 3, 7})+ f ({1, 3, 4, 7}) ≥ f ({3, 7})+ f ({1, 2, 3, 4, 7})
≥ f ({3, 7})+ f ({1, 2, 3, 4})
= 6.

Since f (N3 = {1, 3, 4, 7}) = 3, we get f ({2, 3, 7}) = 3.
Now, we show f ({2, 3, 6, 7}) = f ({2, 3, 6, 9}) =
f ({2, 3, 7, 9}) = f ({2, 3, 6, 7, 9}) = 3, as follows:

f ({9})+ f ({2, 3, 6, 7, 9}) ≤ f ({2, 7, 9})+ f ({3, 6, 9})
= 4.

Due to f ({9}) = 1, we get f ({2, 3, 6, 7, 9}) ≤ 3.
Now, since f ({2, 3, 6}) = f ({2, 3, 7}) = 3, we get
f ({2, 3, 6, 7}) = f ({2, 3, 6, 9}) = f ({2, 3, 7, 9}) =
f ({2, 3, 6, 7, 9}) = 3.

• T6: First, we show that f ({2, 4, 5}) = 3, as follows:

f ({2, 4, 5})+ f ({1, 2, 3, 5}) ≥ f ({2, 5})+ f ({1, 2, 3, 4, 5})
≥ f ({2, 5})+ f ({1, 2, 3, 4})
= 6.

Since f (N1 = {1, 2, 3, 5}) = 3, we get f ({2, 4, 5}) = 3.
Similarly, we get f ({2, 4, 7}) = 3, as follows:

f ({2, 4, 7})+ f ({1, 3, 4, 7}) ≥ f ({4, 7})+ f ({1, 2, 3, 4, 7})
≥ f ({4, 7})+ f ({1, 2, 3, 4})
= 6.

Since f (N3 = {1, 3, 4, 7}) = 3, we get f ({2, 4, 7}) = 3.
Now, we show f ({2, 4, 5, 7}) = f ({2, 4, 5, 9}) =
f ({2, 4, 7, 9}) = f ({2, 4, 5, 7, 9}) = 3, as follows:

f ({9})+ f ({2, 4, 5, 7, 9}) ≤ f ({2, 7, 9})+ f ({4, 5, 9})
= 4.

Due to f ({9}) = 1, we get f ({2, 4, 5, 7, 9}) ≤ 3.
Now, since f ({2, 4, 5}) = f ({2, 4, 7}) = 3, we get
f ({2, 4, 5, 7}) = f ({2, 4, 5, 9}) = f ({2, 4, 7, 9}) =
f ({2, 4, 5, 7, 9}) = 3.

• T7: First, we show that f ({3, 4, 5}) = 3, as follows:

f ({3, 4, 5})+ f ({1, 2, 3, 5}) ≥ f ({3, 5})+ f ({1, 2, 3, 4, 5})
≥ f ({3, 5})+ f ({1, 2, 3, 4})
= 6.

Since f (N1 = {1, 2, 3, 5}) = 3, we get f ({3, 4, 5}) = 3.
Similarly, we get f ({3, 4, 6}) = 3, as follows:

f ({3, 4, 6})+ f ({1, 2, 4, 6}) ≥ f ({4, 6})+ f ({1, 2, 3, 4, 6})
≥ f ({4, 6})+ f ({1, 2, 3, 4})
= 6.

Since f (N2 = {1, 2, 4, 6}) = 3, we get f ({3, 4, 6}) = 3.
Now, we show f ({3, 4, 5, 6}) = f ({3, 4, 5, 9}) =
f ({3, 4, 6, 9}) = f ({3, 4, 5, 6, 9}) = 3, as follows:

f ({9})+ f ({3, 4, 5, 6, 9}) ≤ f ({3, 6, 9})+ f ({4, 5, 9})
= 4.

Due to f ({9}) = 1, we get f ({3, 4, 5, 6, 9}) ≤ 3.
Now, since f ({3, 4, 5}) = f ({3, 4, 6}) = 3, we get
f ({3, 4, 5, 6}) = f ({3, 4, 5, 9}) = f ({3, 4, 6, 9}) =
f ({3, 4, 5, 6, 9}) = 3.

Similarly, it can be shown that (61) is equivalent to the
following definition.
Definition 32 (Expanded Definition of Matroid Instance

N2): For matroid instance N2 = {f (N),N ⊆ [n]} of size
n = 9 and rank f (N2) = 4, the values assigned to f (N),N ⊆
[n] are the same as (126), except for set N9 = {5, 6, 7, 8},
which is f (N9) = |N9| = 4. This is because set N9 is a basis
set for N2.

APPENDIX B
PROOF OF LEMMAS 1-5
Remark 5: It can be verified that the decoding condition
in (2) along with the properties of the rank function gives
the following results.

rank
(
H{i}∪M) = rank

(
HM

)
+ t,∀M ⊆ Bi, ∀i ∈ [m],

(128)

rank
(
H{i}) = t, ∀i ∈ [m], (129)

rank
(
HM1

)
≤ rank

(
HM2

)
, ∀M1 ⊆ M2 ⊆ [m]. (130)

A. PROOF OF LEMMA 1
If M is an acyclic set, then we can find a sequence of its
elements i1, . . . , i|M| ∈ M such that Mj ⊆ Bij ,∀j ∈ [|M|],
where Mj = {ij+1, . . . , i|M|},∀j ∈ [|M| − 1] and M|M| = ∅.
Note M = {i1} ∪M1 and Mj = {ij+1} ∪Mj+1,∀j ∈ [|M| − 1].
By applying the condition in (128) for each i = i1, . . . , i|M|,
we have

rank
(
HM={i1}∪M1

)
= rank

(
HM1={i2}∪M2

)
+ t

= rank
(
HM2={i3}∪M3

)
+ 2t

= · · ·
= |M|t,

which means that M is a basis set of H.
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B. PROOF OF LEMMA 2
First, note that for any l ∈ M, set M\{l} is an acyclic set.
Then, according to Lemma 1,

rank
(
HM\{l}) = (|M| − 1)t, ∀l ∈ M. (131)

So, having rank(HM) = (|M| − 1)t requires H{l} =∑
i∈M\{l} H{i}Ml,i. Now, if one of the Ml,i, i ∈ M\{l} is not

invertible, then rank(HM\{i}) < (|M| − 1)t, which contra-
dicts (131). Thus, each Ml,i must be invertible, which means
that M is a circuit set of H.

C. PROOF OF LEMMA 3
First, because M is an independent set, then M\{i} ⊆ Bi,∀i ∈
M. Moreover, since M is an acyclic set of I, then accord-
ing to Lemma 1, rank(HM) = |M|t. Now, in order to have
col(H{j}) ⊆ col(HM), one must have H{j} = ∑

i∈M H{i}Mj,i.
Since j ∈ [m]\M and j ∈ Bi for some i ∈ M\{l}, then
{j} ∪ M\{l} ⊆ Bl. Now, assume Mj,i is a nonzero matrix
(i.e., rank(Mj,i) ≥ 1). Then,

rank
(
H{j}∪M) = rank

(
H{l}∪({j}∪M\{l}))

= rank
(
H{j}∪M\{l}) + t (132)

= rank
([
H{j} HM\{l} ]) + t

= rank
([∑

i∈M H{i}Mj,i HM\{l} ]) + t

≥ rank
([
H{l}Mj,l HM\{l} ]) + t (133)

= rank
(
H{l}Mj,l

)
+ (|M| − 1)t + t (134)

> |M|t, (135)

where (132) is due to (128), (133) is because of the property
of the rank function by removing the term

∑
i∈M\{l} H{i}Mj,i

from
∑

i∈M H{i}Mj,l as it is a linear combination of the
columns of HM\{l}. (134) is based on Lemma 1 and the
fact that M is an acyclic set of I. Thus, the column
space of H{l} is linearly independent of column space of
HM\{l}. Finally, (135) is due to the fact that H{l} is invert-
ible and rank(Mj,i) ≥ 1. The result in (135) contradicts the
assumption that rank(H{j}∪M) = |M|t, and hence, we must
have Mj,i = 0t. The same argument for i ∈ M\{l} gives
Mj,i = 0t,∀i ∈ M\{l}. Therefore, H{j} = H{l}Mj,l and Mj,l

must be invertible to have rank H{j} = t.

D. PROOF OF LEMMA 4
Corollaries 1-4 can be derived from earlier results and will
be used in the proof of Lemma 4.
Corollary 1: Let M be an independent set of H. Now, if

col(H{j}) ⊆ col(HM), then there exists one subset M′ ⊆ M,
such that {j} ∪M′ is a circuit set of H.
Proof: Since col(H{j}) ⊆ col(HM), we must have H{j} =∑
i∈M H{i}Mj,i such that only matrices Mj,i, i ∈ M′ ⊆ M

are invertible. Thus, according to Definition 16, set {j} ∪M′
forms a circuit set of H.

Corollary 2: If M is a minimal cyclic set of I, then
according to Definitions 10 and 11, any of its proper subsets
M′ ⊂ M will be an acyclic set of I.
Corollary 3 [25]: If M is an acyclic set of I, then there

exists at least one l ∈ M such that M\{l} ⊆ Bl.
Corollary 4: Suppose {j} ∪M is a circuit set of H. Then

for any l ∈ M, we have col(H{j}∪M\{l}) = col(HM).
Proof: Since {j}∪M is a circuit set of H, we have H{j} =∑
i∈M H{j}Mj,i such that each Mj,i is invertible. Now, assume

l ∈ M. Then, we have

col
(
H{j}∪M\{l}) = col

([
H{j}|HM\{l}])

= col

([
∑

i∈M
H{i}Mj,i|HM\{l}

])

= col
([
H{l}Mj,l|HM\{l}])

= col
(
HM

)
, (136)

where (136) is due to the invertibility of Mj,l.

1) PROOF OF LEMMA 4

Since M is an independent set of H, and col(H{j}) ⊆
col(HM), then according to Corollary 1, there exists a subset
M′ ⊆ M such that {j} ∪ M′ is a circuit set. Now, we show
that M′ = M, otherwise it leads to a contradiction. Assume
M′ ⊂ M. First, since M is a minimal cyclic set of I, based on
Corollary 2, M′ ⊂ M is an acyclic set of I. Second, accord-
ing to Corollary 3, there exists l ∈ M′ such that M′\{l} ⊆ Bl.
Also, due to j ∈ Bl, we get {j} ∪ (M′\{l}) ⊆ Bl. Thus,

l ∈ M′ → col
(
H{l}) ⊆ col

(
HM′)

,

{j} ∪ (
M′\{l}) ⊆ Bl → col

(
H{j}∪(M′\{l})

)
⊆ col

(
HBl

)
. (137)

Third, since {j} ∪M′ is a circuit set, Corollary 4 leads to

col
(
H{j}∪M′\{l}) = col

(
HM′)

. (138)

Now, from (137) and (138), we have

col
(
H{l}) ⊆ col

(
HM′) = col

(
H{j}∪M′\{l}) ⊆ col

(
HBl

)
,

which contradicts the decoding condition in (2) for user ul
as col(H{l}) ⊆ col(HBl). Therefore, we must have M′ = M.

E. PROOF OF LEMMA 5
Since col(H{9}) ⊆ col(H{1,8}), we have

H{9} = H{1}M9,1 +H{8}M9,8. (139)

Moreover, since set {2, 3, 4, 8} is a circuit set, we must have

H{8} = H{2}M8,2 +H{3}M8,3 +H{4}M8,4, (140)

where each M8,2,M8,3,M8,4 is invertible. Thus, based
on (139) and (140), H{9} is equal to

H{1}M9,1 +
(
H{2}M8,2 +H{3}M8,3 +H{4}M8,4

)
M9,8

= H{1}M9,1 +H{2}M′
8,2 +H{3}M′

8,3 +H{4}M′
8,4, (141)
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where M′
8,i = M8,iM9,8, i = 2, 3, 4. On the other hand, since

{1, 3, 4, 7} is a circuit set, we get

H{7} = H{1}M7,1 +H{3}M7,3 +H{4}M7,4, (142)

where each M7,1,M7,3,M7,4 is invertible. Now, for set
{2, 7, 9}, we have

rank
(
H{2,7,9}) = rank

([
H{2}|H{7}|H{9}])

= rank
([
H{2}|H{7}|H{9} −H{2}M′

8,2

])

= t + rank
([
H{7}|H{9} −H{2}M′

8,2

])
. (143)

Now, since col(H{9}) must be a subspace of col(H{2,7,9}),
we must have rank(H{2,7,9}) = 2t. Thus, in (143), H{9} −
H{2}M′

8,2 must be linearly dependent on H{7}, which based
on (141) and (142) requires each M9,1,M′

8,3,M
′
8,4 to be

invertible. Besides, eachM′
8,3,M

′
8,4 is invertible only ifM9,8

is invertible. Thus, since both M9,1 and M9,8 are invertible,
set {1, 8, 9} forms a circuit set of H. Similarly, it can be
shown that all sets {2, 7, 9}, {3, 6, 9} and {4, 5, 9} are circuit
sets.

APPENDIX C
PROOF OF PROPOSITIONS 8 AND 10
A. PROOF OF PROPOSITIONS 8
We show that matrix H∗ ∈ F

4×29
q , presented in Figure 2, will

satisfy all users ui, in ∈ [29] of the index coding instance I1
if the field Fq has characteristic three. Let y = H∗x and Fq =
GF(3). Now, we show that encoding matrix H∗ satisfies the
decoding condition in (2) for all i ∈ [29]. Figures 5 and 6
present H{i}∪Bi∗ for all i ∈ [29].

• It can be seen that user ui, i ∈ [4] can decode its desired
message xi from the coded message yi (or the i-th row
of H∗).

• User u5 first decodes x7 + x8 from y4. Then, it can
decode x5 from y3.

• User u6 first decodes x5 + x8 from y3. Then, it can
decode x6 from y2.

• User u7 first decodes x5 + x6 from y2. Then, it can
decode x7 from y1.

• User u8 first decodes x6 + x7 from y1. Then, it can
decode x8 from y4.

• User u9 adds y1, y2, y3, y4 to achieve x9 as follows

y1 + y2 + y3 + y4 = 3(x5 + x6 + x7 + x8)+ 4x9

= x9, (144)

where (144) follows from the fact that 3 = 0 and 4 = 1
over the Galois field GF(3).

• User u10 first decodes x5 from y3. Then, it can decode
x10 from y1.

• User u11 decodes x5 from y1. Then, it can decode x11
from y2.

• User u12 decodes x5 from y2. Then, it can decode x12
from y3.

• User u13 first decodes x8 + x9 from y2 or y3. Then, it
can decode x13 from y4.

• User u14 first decodes x6 from y4. Then, it can decode
x14 from y1.

• User u15 first decodes x6 from y1. Then, it can decode
x15 from y2.

• User u16 first decodes x5 + x9 from y1 or y2. Then, it
can decode x16 from y3.

• User u17 first decodes x6 from y2. Then, it can decode
x17 from y4.

• User u18 first decodes x7 from y4. Then, it can decode
x18 from y1.

• User u19 first decodes x6 + x9 from y1 or y4. Then, it
can decode x19 from y2.

• User u20 first decodes x7 from y1. Then, it can decode
x20 from y3.

• User u21 first decodes x7 from y3. Then, it can decode
x21 from y4.

• User u22 first decodes x7 + x9 from y3 or y4. Then, it
can decode x22 from y1.

• User u23 first decodes x8 from y4. Then, it can decode
x23 from y2.

• User u24 first decodes x8 from y2. Then, it can decode
x24 from y3.

• User u25 first decodes x8 from y3. Then, it can decode
x25 from y4.

• User u26 first decodes x5 + x9 from y1. Then, it can
decode x26 from y2.

• User u27 first decodes x6 + x9 from y4. Then, it can
decode x27 from y1.

• User u28 first decodes x7 + x9 from y3. Then, it can
decode x28 from y4.

• User u29 first decodes x8 + x9 from y2. Then, it can
decode x29 from y3.

B. PROOF OF PROPOSITIONS 10
We show that matrix H∗ ∈ F

4×29
q , shown in Figure 2, will

satisfy all users ui,∈ [29] of the index coding instance I2
if the field Fq does have any characteristic other than char-
acteristic three. Let y = H∗x. Since all the users except
ui, i ∈ [29]\{5, 6, 7, 8, 9} have the same interfering message
set as the users in the index coding instance I1, we can
use the same argument in the previous subsection to show
that these users will be satisfied by H∗, shown in Figure 2.
We note that the characteristic of the field does not affect
the results for users ui, i ∈ [29]\{5, 6, 7, 8, 9}. Thus, we
just need to prove that users ui, i ∈ {5, 6, 7, 8, 9} will be
satisfied.
Due to B9 = ∅, user u9 can easily decode its

desired message x9 from any of the coded messages
yi, i ∈ [4].

For the users ui, i ∈ {5, 6, 7, 8}, we have

H{i}∪Bi∗ = H{5,6,7,8}∗ =

⎡

⎢⎢⎣

1 1 1 0
1 1 0 1
1 0 1 1
0 1 1 1

⎤

⎥⎥⎦, i ∈ {5, 6, 7, 8}

u5 : y1 + y2 + y3 − y4 − y4 = 3x5,
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FIGURE 5. H
{i}∪Bi∗ , i ∈ [17].

u6 : y1 + y2 + y4 − y3 − y3 = 3x6,

u7 : y1 + y3 + y4 − y2 − y2 = 3x7,

u8 : y2 + y3 + y4 − y1 − y1 = 3x8. (145)

Since number 3 is invertible in the fields with any char-
acteristic other than characteristic three, all users ui, i ∈
{5, 6, 7, 8} can decode their requested message. This com-
pletes the proof.
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FIGURE 6. H
{i}∪Bi∗ , i ∈ [29]\[17].

APPENDIX D
PROOF OF LEMMAS 7-9
A. PROOF OF LEMMA 7
Corollaries 5-8 can be derived from earlier results and will
be used in the proof of Lemma 7.
Corollary 5: Let M be an independent set of H. Now,

if col(H{2j−1,2j}) ⊆ col(HM), then there exists one subset
M′ ⊆ M, such that {2j− 1, 2j} ∪M′ is a quasi-circuit set of
H.
Proof: Since col(H{2j−1,2j}) ⊆ col(HM), we must have

H{2j−1,2j} = ∑
i∈LH{i}Nj,i such that only matrices Nj,i, i ∈

L′ ⊆ L are invertible. Thus, according to Lemma 6, set
{2j − 1, 2j} ∪ M′ forms a circuit set of H where M′ =
{2i− 1, 2i, i ∈ L′} ⊆ M.
Corollary 6: If M is a quasi-minimal cyclic set of I,

then according to Definitions 28 and 11, its proper subsets
M′ ⊂ M will be an acyclic set of I.
Corollary 7 [25]: If M is an acyclic set of I, then there

exists at least one 2i−1 ∈ M such thatM\{2i−1, 2i} ⊆ B2i−1.
Corollary 8: Suppose {2j − 1, 2j} ∪ M is a quasi-circuit

set of H. Then for any {2l − 1, 2l} ⊆ M, we have
col(H{2j−1,2j}∪M\{2i−1,2i}) = col(HM).
Proof: Since {2j − 1, 2j} ∪M is a quasi-circuit set of H,

we have H{2j−1,2j} = ∑
i∈LH{2i−1,2i}Nj,i such that each Nj,i

is invertible. Now, assume {2l− 1, 2l} ⊆ M. Then, we have

col
(
H{2j−1,2j}∪M\{2l−1,2l})

= col
([
H{2j−1,2j}|HM\{2l−1,2l}])

= col

([
∑

i∈L
H{2i−1,2i}Nj,i|HM\{2l−1,2l}

])

= col
([
H{2l−1,2l}Nj,l|HM\{2l−1,2l}])

= col
(
HM

)
, (146)

where (146) is due to the invertibility of Nj,l.

1) PROOF OF LEMMA 7

Since M is an independent set of H, and col(H{2j−1,2j}) ⊆
col(HM), then according to Corollary 5, there exists a subset
M′ ⊆ M such that {2j−1, 2j}∪M′ is a quasi-circuit set. Now,
we show that M′ = M, otherwise it leads to a contradiction.
Assume M′ ⊂ M. First, since M is a quasi-minimal cyclic set
of I, based on Corollary 6, M′ ⊂ M is an acyclic set of I.
Second, according to Corollary 3, there exists {2l− 1, 2l} ⊆
M′ such that M′\{2l − 1, 2l} ⊆ B2l−1,B2l. Moreover, due
to {2j− 1, 2j} ⊆ B2l−1,B2l, we get {2j− 1, 2j} ∪ (M′\{2l−
1, 2l}) ⊆ B2l−1,B2l. Thus,

{2l− 1, 2l} ⊆ M′ → col
(
H{2l−1,2l}) ⊆ col

(
HM′)

,

{2j− 1, 2j} ∪ (
M′\{2l− 1, 2l}) ⊆ B2l−1 → (147)

col
(
H{2j−1,2j}∪(M′\{2l−1,2l})

)
⊆ col

(
HB2l−1

)
. (148)

Third, since {2j−1, 2j}∪M′ is a quasi-circuit set, Corollary 8
leads to

col
(
H{2j−1,2j}∪M′\{2l−1,2l}) = col

(
HM′)

. (149)
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Now, from (147), (148) and (138), we have

col
(
H{2l−1,2l}) ⊆ col

(
HM′) = col

(
H{2j−1,2j}∪M′\{2l−1,2l})

⊆ col
(
HB2l−1

)
,

which contradicts the decoding condition in (2) for user
u2l−1 as col(H{2l−1}) ⊆ col(HB2l−1). Therefore, we must
have M′ = M.

B. PROOF OF LEMMA 8
Since col(H{17,18}) ⊆ col(H{1,2,15,16}), we have

H{17,18} = H{1,2}N9,1 +H{15,16}N9,8. (150)

Moreover, since set {3, 4, 5, 6, 7, 8, 15, 16} is a quasi-circuit
set, we must have

H{15,16} = H{3,4}N8,2 +H{5,6}N8,3 +H{7,8}N8,4, (151)

where each N8,2,N8,3,N8,4 is invertible. Thus, based
on (150) and (151), H{17,18} is equal to

H{1,2}N9,1 +
(
H{3,4}N8,2 +H{5,6}N8,3 +H{7,8}N8,4

)
N9,8

= H{1,2}N9,1 +H{3,4}N′
8,2 +H{5,6}N′

8,3 +H{7,8}N′
8,4,

(152)

where N′
8,i = N8,iN9,8, i = 2, 3, 4. On the other hand, since

{1, 2, 5, 6, 7, 8, 13, 14} is a quasi-circuit set, we get

H{13,14} = H{1,2}N7,1 +H{5,6}N7,3 +H{7,8}N7,4, (153)

where each N7,1,N7,3,N7,4 is invertible. Now, for set
{3, 4, 13, 14, 17, 18}, we have

rank
(
H{3,4,13,14,17,18}) = rank

([
H{3,4}|H{13,14}|H{17,18}])

= rank
([
H{3,4}|H{13,14}|H{17,18}

−H{3,4}N′
8,2

])

= 2t + rank
([
H{13,14}|H{17,18}

− H{3,4}N′
8,2

])
. (154)

Now, since col(H{17,18}) must be a sub-
space of col(H{3,4,13,14,17,18}), we must have
rank(H{3,4,13,14,17,18}) = 4t. Thus, in (154),
H{17,18} − H{3,4}N′

8,2 must be linearly dependent on
H{13,14}, which based on (152) and (153) requires each
N9,1,N′

8,3,N
′
8,4 to be invertible. Besides, each N′

8,3,N
′
8,4

is invertible only if N9,8 is invertible. Thus, since both
N9,1 and N9,8 are invertible, set {1, 2, 15, 16, 17, 18} forms
a quasi-circuit set of H. Similarly, it can be shown that
all sets {3, 4, 13, 14, 15, 16}, {5, 6, 11, 12, 17, 18} and
{7, 8, 9, 10, 17, 18} are quasi-circuit sets.

C. PROOF OF LEMMA 9
Assume M′ = {i1, . . . , i|M′|}. Then, applying the decoding
condition in Remark 5 for i1, . . . , i|M′|, will result in

rank
(
HM

)
= t + rank

(
HM\{i1}

)
,

= · · · ,
= |M′|t + rank

(
H
M\

{
i1,...,i|M′ |

})
,

= |M′|t + rank
(
HM\M′)

,

which completes the proof.

APPENDIX E
PROOF OF PROPOSITION 14
We prove that N0 = [8] is a basis set of H, each set Ni, i ∈ [8]
in (104) will be a quasi-circuit set of H, and rank(H[9:18]) ≥
7. The proof is described as follows.

• First, since βMAIS(I3) = 8, we must have rank(H) = 8t.
Now, from Bi, i ∈ [8] in (117), it can be seen that set [8]
is an independent set of I3, so according to Lemma 1,
set [8] is an independent set of H. Moreover, since
rank(H) = 8t, set N0 = [8] will be a basis set of H.
Now, in order to have rank(H) = 8t, for all j ∈ [29]\[8],
we must have col(H{2j−1,2j}) ⊆ col(H[8]).

• According to Lemma 3, from Bi, i ∈ [8], it can be seen
that:

– for each j ∈ {19, 27, 35, 43},
j ∈ Bi, i ∈ [8]\{1} → col

(
H{j}) = col

(
H{1}),

(155)

– for each j ∈ {20, 28, 36, 44},
j ∈ Bi, i ∈ [8]\{2} → col

(
H{j}) = col

(
H{2}),

(156)

– for each j ∈ {21, 29, 37, 45},
j ∈ Bi, i ∈ [8]\{3} → col

(
H{j}) = col

(
H{3}),

(157)

– for each j ∈ {22, 30, 38, 46},
j ∈ Bi, i ∈ [8]\{4} → col

(
H{j}) = col

(
H{4}).

(158)

– for each j ∈ {23, 31, 39, 47},
j ∈ Bi, i ∈ [8]\{5} → col

(
H{j}) = col

(
H{5}),

(159)

– for each j ∈ {24, 32, 40, 48},
j ∈ Bi, i ∈ [8]\{6} → col

(
H{j}) = col

(
H{6}),

(160)
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– for each j ∈ {25, 33, 41, 49},
j ∈ Bi, i ∈ [8]\{7} → col

(
H{j}) = col

(
H{7}),

(161)

– for each j ∈ {26, 34, 42, 50},
j ∈ Bi, i ∈ [8]\{8} → col

(
H{j}) = col

(
H{8}).

(162)

Let

M1 = {19, 20, 21, 22, 23, 24},
M2 = {27, 28, 29, 30, 33, 34},
M3 = {35, 36, 39, 40, 41, 42},
M4 = {45, 46, 47, 48, 49, 50}.

From (155)-(158), it can be seen that

col
(
HM1

)
= col

(
H[8]\{7,8}), (163)

col
(
HM2

)
= col

(
H[8]\{5,6}), (164)

col
(
HM3

)
= col

(
H[8]\{3,4}), (165)

col
(
HM4

)
= col

(
H[8]\{1,2}). (166)

Thus, each set M1,M2,M3 and M4 is an independent
set of H.

• To have rank(H) = 8t, one must have rank(HBi) =
7t, i ∈ [58]. Now, since set [8] is a basis set, then from
Bi, i ∈ [8] we must have

B7,B8 → col
(
H{9,10}) ⊆ col

(
H[8]\{7,8}) (163)= col

(
HM1

)
, (167)

B5,B6 → col
(
H{11,12}) ⊆ col

(
H[8]\{5,6}) (164)= col

(
HM2

)
, (168)

B3,B4 → col
(
H{13,14}) ⊆ col

(
H[8]\{3,4}) (165)= col

(
HM3

)
, (169)

B1,B2 → col
(
H{15,16}) ⊆ col

(
H[8]\{1,2}) (166)= col

(
HM4

)
. (170)

• From Bi, i ∈ M1,M2,M3 and M4, it can be verified that

M1 is a quasi-minimal cyclic set & {9, 10} ∈ Bi, i ∈ M1, (171)

M2 is a quasi-minimal cyclic set & {11, 12} ∈ Bi, i ∈ M2, (172)

M3 is a quasi-minimal cyclic set & {13, 14} ∈ Bi, i ∈ M3, (173)

M4 is a quasi-minimal cyclic set & {15, 16} ∈ Bi, i ∈ M4. (174)

• Now, all the four conditions in Lemma 7 are satisfied for
set M1 with j = 5, set M2 with j = 6, set M3 with j = 7,
and set M4 with j = 8. Thus, according to Lemma 4,
each set {9, 10} ∪M1, {11, 12} ∪M2, {13, 14} ∪M3 and
{15, 16} ∪ M4 will be a quasi-circuit set of H. Now,
according to (163)-(166), each set

N1 = {1, 2, 3, 4, 5, 6, 9, 10},
N2 = {1, 2, 3, 4, 7, 8, 11, 12},
N3 = {1, 2, 5, 6, 7, 8, 13, 14},
N4 = {3, 4, 5, 6, 7, 8, 15, 16},

will also form a quasi-circuit set.

• Since

{7, 8, 9, 10, 17, 18, 31, 32, 51, 52} \{i} ⊆ Bi, i ∈ {51, 52}, (175)
{5, 6, 11, 12, 17, 18, 37, 38, 53, 54}\{i} ⊆ Bi, i ∈ {53, 54}, (176)
{3, 4, 13, 14, 17, 18, 43, 44, 55, 56}\{i} ⊆ Bi, i ∈ {55, 56}, (177)
{1, 2, 15, 16, 17, 18, 25, 26, 57, 58}\{i} ⊆ Bi, i ∈ {57, 58}, (178)

based on Lemma 9, we must have

(175) → rank
(
H{7,8,9,10,17,18,31,32}) ≤ 6t, (179)

(176) → rank
(
H{5,6,11,12,17,18,37,38}) ≤ 6t, (180)

(177) → rank
(
H{3,4,13,14,17,18,43,44}) ≤ 6t, (181)

(178) → rank
(
H{1,2,15,16,17,18,25,26}) ≤ 6t. (182)

Now, since

{7, 8, 9, 10, 17, 18, 31, 32} \{i} ⊆ Bi, i ∈ {31, 32}, (183)
{5, 6, 11, 12, 17, 18, 37, 38}\{i} ⊆ Bi, i ∈ {37, 38}, (184)
{3, 4, 13, 14, 17, 18, 43, 44}\{i} ⊆ Bi, i ∈ {43, 44}, (185)
{1, 2, 15, 16, 17, 18, 25, 26}\{i} ⊆ Bi, i ∈ {25, 26}, (186)
based on Lemma 9, we must have

(179), (183) → rank
(
H{7,8,9,10,17,18}) ≤ 4t, (187)

(180), (184) → rank
(
H{5,6,11,12,17,18}) ≤ 4t, (188)

(181), (185) → rank
(
H{3,4,13,14,17,18}) ≤ 4t, (189)

(182), (186) → rank
(
H{1,2,15,16,17,18}) ≤ 4t. (190)

Thus,

(187) → col
(
H{17,18}) ⊆ col

(
H{7,8,9,10}).

(188) → col
(
H{17,18}) ⊆ col

(
H{5,6,11,12}),

(189) → col
(
H{17,18}) ⊆ col

(
H{3,4,13,14}),

(190) → col
(
H{17,18}) ⊆ col

(
H{1,2,15,16}),

Hence, based on Lemma 8, each set

N5 = {1, 2, 15, 16, 17, 18},
N6 = {3, 4, 13, 14, 17, 18},
N7 = {5, 6, 11, 12, 17, 18},
N8 = {7, 8, 9, 10, 17, 18},

is a quasi-circuit set.
• Finally, from Bi, i ∈ [9 : 16], it can be seen that

[9 : 16]\{i} ⊆ Bi, i ∈ {9, 11, 13, 15}. (191)

Thus, according to Lemma 9, we get

rank
(
H{10,12,14,16}) = rank

(
H[9:16]

)
− 4t, (192)
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On the other hand, it can be observed that set
{10, 12, 14, 16} is a minimal cyclic set of I3. Thus,
according to Proposition 2, we have

rank
(
H{10,12,14,16}) ≥ 3t, (193)

Now, (192) and (193) will result in

rank
(
HN9=[9:16]

)
≥ 7t, (194)

which completes the proof.

APPENDIX F
PROOF OF LEMMAS 10 AND 11
A. PROOF OF LEMMA 10
Let

a1 = g
(
xi, xj, xl, xw

) + g
(
xi, xj, xv, xw

)

+ g(xi, xl, xv, xw)+ g
(
xj, xl, xv, xw

)
,

a2 = (
xi + xj + xl

)(
xi + xj + xv

)
(xi + xl + xv),

a3 = 2
(
xi + xj + xl

)(
xi + xj + xl

)(
2xi + xj + xl + 2xv

)

+ 2
(
xi + xj + xv

)(
xi + xj + xv

)(
2xi + xj + xv + 2xl

)

+ 2(xi + xl + xv)(xi + xl + xv)
(
2xi + xl + xv + 2xj

)
,

a4 = 2
(
xi + xj + xl

)(
xi + xj + xl

)

+ 2
(
xi + xj + xv

)(
xi + xj + xv

)

+ 2(xi + xl + xv)(xi + xl + xv)

+ 2
(
xj + xl + xv

)(
xj + xl + xv

)
. (195)

It can be verified that

a1 = xixi
(
xj + xl + xv

) + xjxj(xi + xl + xv)

+ xlxl
(
xi + xj + xv

) + xvxv
(
xi + xj + xl

)

+ (
xixj + xixl + xixv + xjxl + xjxv + xlxv

)
(1 + 2xw)

+ xixjxl + xixjxv + xixlxv + xjxlxv, (196)

a2 = xixixi + 2xixi
(
xj + xl + xv

)
xjxj(xi + xl + xv)+

+ xlxl
(
xi + xj + xv

) + xvxv
(
xi + xj + xl

)
2xjxlxv, (197)

a3 = xjxjxj + xlxlxl + xvxvxv + xjxj(xi + xl + xv)

+ xlxl
(
xi + xj + xv

) + xvxv
(
xi + xj + xl

)

+ 2
(
xixjxl + xixjxv + xixlxv

)
, (198)

a4 = 2
(
xixj + xixl + xixv + xjxl + xjxv + xlxv

)
. (199)

Now, it can be seen that

a1 + a2 + a3 + a4(1 + 2xw)

= xixixi + xjxjxj + xlxlxl + xvxvxv
= xi + xj + xl + xv, (200)

where (200) follows from the fact that for any xi ∈ GF(3),
we have xixixi = xi. Thus, by having xi+xj+xl, xi+xj+xv,
xi+xl+xv, and xj+xl+xv, each xi, xj, xl and xv is decodable
from (200). This completes the proof.

B. PROOF OF LEMMA 11
It can be verified that function g(xi, xj, xv, xw) can be
rewritten as follows

g
(
xi, xj, xv, xw

) = 2xixi
(
xj + xv + xw

)

+ 2xjxj(xi + xv + xw)

+ 2(xvxv + xwxw)
(
xi + xj

)

+ 2(xvxvxw + xwxwxv)

+ 2xixj + 2
(
xi + xj

)
(xv + xw)+ 2xvxw

+ xixj(xv + xw)+ xvxw
(
xi + xj

)
. (201)

It can be seen that

2(xvxv + xwxw)
(
xi + xj

) + xvxw
(
xi + xj

)

= 2(xvxv + xwxw + 2xvxw)
(
xi + xj

)

= 2(xv + xw)(xv + xw)
(
xi + xj

)
. (202)

Since terms xi, xj and xv + xw are known, from (201)
and (202), it can be observed that only term 2(xvxvxw +
xwxwxv + xvxw) is unknown.
Similarly, in g(xi, xl, xv, xw), since the terms xi, xl and

xv + xw are known, only term 2(xvxvxw + xwxwxv + xvxw) is
unknown.
Thus, in g(xi, xj, xv, xw) + 2g(xi, xl, xv, xw), the unknown

terms 2(xvxvxw + xwxwxv + xvxw) is canceled out. Hence,
using the value of xi, xj, xl and xv + xw, the value of
g(xi, xj, xv, xw)+ 2g(xi, xl, xv, xw) will be found.
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